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Oxygen stress reduces zoospore survival of
Phytophthora species in a simulated aquatic
system
Ping Kong* and Chuanxue Hong
Abstract

Background: The genus Phytophthora includes a group of agriculturally important pathogens and they are
commonly regarded as water molds. They produce motile zoospores that can move via water currents and on their
own locomotion in aquatic environments. However, zoosporic response to dissolved oxygen, an important water
quality parameter, is not known. Like other water quality parameters, dissolved oxygen concentration in irrigation
reservoirs fluctuates dramatically over time. The aim of this study was to determine whether and how zoospore
survival may be affected by elevated and low concentrations of dissolved oxygen in water to better understand the
aquatic biology of these pathogens in irrigation reservoirs.

Results: Zoospores of P. megasperma, P. nicotianae, P. pini and P. tropicalis were assessed for survival in 10%
Hoagland’s solution at a range of dissolved concentrations from 0.9 to 20.1 mg L-1 for up to seven exposure times
from 0 to 72 h. Zoospore survival was measured by resultant colony counts per ml. Zoospores of these species
survived the best in control Hoagland’s solution at dissolved oxygen concentrations of 5.3 to 5.6 mg L-1. Zoospore
survival rates decreased with increasing and decreasing concentration of dissolved oxygen, depending upon
Phytophthora species and exposure time. Overall, P. megasperma and P. pini are less sensitive than P. nicotianae and
P. tropicalis to hyperoxia and hypoxia conditions.

Conclusion: Zoospores in the control solution declined over time and this natural decline process was enhanced
under hyperoxia and hypoxia conditions. These findings suggest that dramatic fluctuations of dissolved oxygen in
irrigation reservoirs contribute to the population decline of Phytophthora species along the water path in the same
reservoirs. These findings advanced our understanding of the aquatic ecology of these pathogens in irrigation
reservoirs. They also provided a basis for pathogen risk mitigation by prolonging the turnover time of runoff water
in recycling irrigation systems via better system designs.
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Background
Phytophthora species, a group of fungal-like destructive
plant pathogens, are known as water molds [1-4]. They
produce motile zoospores that can spread through irriga-
tion systems from runoff water retention basins at orna-
mental crop production facilities and cause severe plant
diseases and crop losses. Over 40 species of Phytophthora
have been recovered from irrigation systems and natural
waterways [5].
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Zoospores generally are short-live and their survival is
subject to environmental stresses. Majority of zoospores sur-
vive for less than 24 h [6-8]. Zoospore survival of individ-
ual species in aquatic environments depends upon water
pH [7,9], electrical conductivity (EC) [6], and CO2 [10,11].
Dissolved oxygen is another important water quality

parameter. Dissolved oxygen concentration in agricultural
reservoirs varies among water sources and fluctuates sea-
sonally as well as diurnally within the same sources due to
activities of phytoplankton, change of temperature and at-
mosphere pressure [12]. Dissolved oxygen concentration
in lakes, streams, and ponds that receive runoff from
nurseries was 9.0, 7.0 and 12.0 mg L-1, respectively [13].
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Dissolved oxygen concentrations in runoff water contain-
ment basin that was also an irrigation reservoir varied
from 0.3 to 26.5 mg L-1 over time [13]. These oxygen con-
centrations are much lower than the atmospheric oxygen
level of 21% or 276 mg L-1 based on the air density of
1.2 g m-3 with 23.2% of oxygen at the sea level (http://
www.en.wikipedia.org/wiki/Atmosphere_of_Earth).
Dissolved oxygen is known to affect the survival of

fish and other aquatic organisms including algae [14].
Whether and how dissolved oxygen may affect zoo-
spore survival of Phytophthora species in irrigation
reservoirs is not known. Previous studies in relation
to oxygen have focused primarily on other propagules
in terrestrial rather than zoospores in aquatic environ-
ments. Species of Phytophthora grew well in oxygen con-
centrations from 0.04% to 21% (or 0.5–276 mg L-1) in
soil or on agar media [15,16]. Mycelia can grow under a
wide range of oxygen conditions as long as its concen-
tration was below 1.6% (or 21 mg L-1) [15,17]. How-
ever, Phytophthora species produce sporangia in water
films under a narrow range of dissolved oxygen concen-
trations. For instance, sporangium production was prolific
at an oxygen level of 5% (or ≥ 65 mg L-1) but production
nil to few at 1% (or 13 mg L-1) [18]. Few oospores were
produced at atmospheric oxygen levels of 276 mg L-1 or
higher while numerous were produced at much lower
levels at 13 and 65 mg L-1 [16,17,19]. Disease development
delayed in plants inoculated with P. cinnamomi at an oxy-
gen range of 0.9–2.3 mg L-1 in aeroponic and hydroponic
systems [20,21]. These studies demonstrate that different
propagules may require different levels of oxygen for pro-
duction, growth and survival.
Here, we report the effects of elevated and low con-

centrations of dissolved oxygen in a simulated aquatic
system on zoospore survival for several Phytophthora
species. The aim of this study was to develop a better
understanding of aquatic ecology of Phytophthora spe-
cies, establishing a base for devising sustainable mitiga-
tion strategies for these pathogens in irrigation water.

Methods
Base medium, dissolved oxygen treatment systems
The base medium used for all the experiments in this
study was 10% Hoagland’s solution. The full strength so-
lution was prepared with Hoagland’s basal salt mixture
(MP Bio, Solon, OH, USA) and adjusted with NaOH to
have a final pH of 7.0. To maintain a stable pH, the
stock solution was buffered with 1 mM MES hydrate
(Sigma, St. Louis, MO USA) and stored at 4°C until use.
The stock solution was freshly diluted with dH2O at
1:10. The diluted solution was then placed in 500-ml
glass bottles leaving no or little room for air. Bottle fill-
ing was done 18–20 h ahead of experiment to allow
temperature equilibrium. As measured with EcoSense®
DO 200 meter (YSI Inc, South Burlington, VT, USA),
dissolved oxygen concentration in the control solution
(CK) as static 10% Hoagland’s solution at 23°C was 5.3
to 5.6 mg L-1.

Potential side effect of nitrogen as replacement gas on
zoospore survival
Although nitrogen does not react with water it dissolves
in water at 20 mg L-1at 20C (http://www.lenntech.com/
periodic/water/nitrogen/nitrogen-and-water.htm). To de-
termine whether dissolved N2 in the solution from bubbling
pure N2 directly affects zoospore survival, assays were per-
formed with four selected Phytophthora species. Three
treatments were included: (i) CK–the control Hoagland’s
solution, (ii) N2–the same solution bubbled with pure N2

for 10 min to reduce dissolved oxygen concentration to
0.9 mg L-1, and (iii) dN2–the bubbled solution with N2 for
10 min was poured into open containers allowing to re-
store dissolved oxygen concentration to 5.3 mg L-1 over a
48-h period. The details of species and isolates as well as
the zoospore survival assay protocol are described below.
For simplicity, only data from P. tropicalis are presented.

Elevation and reduction of dissolved oxygen
concentration in the base medium
Dissolved oxygen elevation and reduction was achieved
by bubbling pure oxygen (O2) or nitrogen (N2) into 10%
Hoagland’s solution in the bottles. For dissolved oxygen
concentration elevation, oxygen was bubbled at 0.5 L min-1

for 0, 15, 30, 45, 60, 75, 90, 120 or 150 seconds. Dissolved
oxygen concentrations were measured immediately after
bubbling. This experiment was repeated three times. The
dissolved oxygen concentration in the solution after bub-
bling 90 seconds were out of range of the DO 200 meter
which can measure up to 18 mg L-1. Data from repeating
experiments were pooled after homogeneity test. Prior to
the further analysis, bubbling time was divided into 15-
second segments and assigned numerical values with 1 for
the first (0-15 seconds), 2 for the second (16-30 seconds),
and 5 for the fifth (61-75 seconds). Correspondingly, dis-
solved oxygen elevation was computed for individual
15-second time segments with 3.2, 2.4, 2.2, 1.8, and
1.5 mg L-1 for the first, second, third, fourth and fifth
(Table 1). The speed of dissolved oxygen concentra-
tion elevation was then related to these 15-second
time segments using Proc GLM (SAS Institute, Cary,
North Carolina, USA). A resultant model was used to
make elevated concentrations of dissolved oxygen as
desired in the zoospore survival assays. To track the
dynamics of dissolved oxygen concentration in the so-
lutions, additional measurements were taken at 2, 4, 8
and 24 h following oxygen bubbling. All bottles were
sealed with parafilm then capped tightly after bub-
bling and each measurement.
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Table 1 Dissolved oxygen (DO) levels in 10% Hoagland’s solution generated by oxygen (O2) or nitrogen (N2) bubbling

O2 bubbling at 0.5 L min-1 N2 bubbling at 0.4 L min-1

Time (Sec) Assigned time
segment value (x)

Measured DO
(mg L-1)y

SD Predicted DO increase
within time segment (y)Z

Predicted total
DO in solution

Time
(Min)

Measured DO
(mg L-1)

SD

0 0 5.6 0.2 - 5.6 0 5.3 0.1

15 1 8.8 0.0 3.2 8.8 2 2.0 0.0

30 2 11.2 0.2 2.5 11.3 5 1.2 0.0

45 3 13.4 0.3 2.1 13.4 10 0.9 0.1

60 4 15.2 0.2 1.8 15.4 20 0.9 0.0

75 5 16.7 0.2 1.6 16.7 30 1.0 0.1

90 6 Out of range ND 1.4 18.1

120 8 Out of range ND 1.1 19.2

150 10 Out of range ND 0.9 20.1
yThese numbers are meter readings and the meter cannot measure dissolved oxygen above 18.0 mg L-1.
ZThese values are calculated based on a regression model: y = 3.2 - ln (x), as generated from the SAS analysis.
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For dissolved oxygen reduction, pure nitrogen gas was
bubbled into the Hoagland’s solution in the bottles at
0.4 L min-1 for 2, 5, 10, 20, or 30 min. Dissolved oxygen
concentrations were measured immediately after bub-
bling subsequently selected for the zoospore survival
studies. Similarly, the dynamics of dissolved oxygen con-
centration in the solutions was tracked following the N2

bubbling.

Phytophthora species and zoospore suspension
preparation
Irrigation water isolates of four Phytophthora species:
P. megasperma (isolate 42D2), P. nicotianae (45H1), P. pini
(previously, P. citricola, 43H1) and P. tropicalis (7G9) were
used in this study [7]. These species had differential re-
sponses to pH stress [22].
Cultures were maintained and zoospore suspensions

were prepared as described previously [7]. Briefly, zoo-
spore suspension was prepared with agar plugs from
one-week-old cultures. The plugs were grown in 10%
clarified V8 juice broth at room temperature for 7 days for
P. nicotianae and P. tropicalis, and 3 days for P. mega-
sperma and P. pini. After the media were removed, the
cultures were then rinsed with sterile distilled water
(SDW), drained and exposed to fluorescent light for 24 -
48 h for P. nicotianae and P. tropicalis, 8 h for P. mega-
sperma. For P. pini, the cultures were flooded with SDW
again then incubated under lights for 8 h to facilitate
sporangium production. After the light exposure, water
was drained then plates were refilled with chilled sterile
soil water extract to trigger zoospore release. Zoospore
yields reached > 104 mL-1 after 30 min for P. nicotianae
and P. tropicalis, and after overnight for P. megasperma
and P. pini. Zoospore suspensions were filtered through a
layer of sterile miracloth to remove cultural plugs and
mycelia. Zoospore concentrations were determined with
a haemocytometer.
Zoospore survival assays
Three sets of zoospore survival assays were performed
to determine the impacts of (i) potential side effect of ni-
trogen as a replacement gas for oxygen in the Hoagland’s
solutions, (ii) elevated and (iii) low concentrations of dis-
solved oxygen in comparison with the regular concentra-
tion in the control solutions that were not bubbled with
any gas (O2 or N2). The elevated concentrations of dis-
solved oxygen tested were 11.3, 15.2, 18.1, 19.2, 20.1 mg L-1,
and the normal concentration of 5.6 mg L-1 (control)
along with reduced concentrations of dissolved oxygen at
2.0, 1.2, and 0.9 mg L-1. The dissolved oxygen treatments
were made as described above.
A certain volume of fresh zoospore suspension was

added to each bottle to make a final concentration of 50
zoospores mL-1 without altering the dissolved oxygen
concentration in the Hoagland’s solutions. Bottles were
gently inverted twice then two or three 1-mL aliquots
were taken out from each bottle within 10 min. Each ali-
quot was spread onto a 90-mm plate with PARP-V8 agar
[23]. Additional samples were taken at 2, 4, 8, and 24 h
in the elevated dissolved oxygen assays. Two more sam-
ples were taken for the reduced dissolved oxygen assays
at 48 or 72 h, respectively. The plates were placed at
room temperature for 2 to 3 days. Emerging colonies in
each plate were counted and the colony counts were
used to measure zoospore survival in the Hoagland’s
solutions at various concentrations of dissolved oxy-
gen for different exposure times. Each experiment in-
cluded three replicate bottles and was repeated at least
three times.

Statistical analyses of zoospore survival assay data
Data of zoospore survival rates as measured by resultant
colony counts from repeating assays were examined for
homogeneity then analyzed separately with Proc ANOVA.
Mean survival rates of three replicates from 6 or 9 plates
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Figure 1 Impact of dissolved N2 and oxygen on zoospore
survival of Phytophthora tropicalis. CK, 10% Hoagland’s solution
(pH 7) at dissolved oxygen (DO) of 5.3 mg L-1 without N2 bubbling;
N2, same solution bubbled with N2 for 10 min to reduced DO to
0.9 mg L-1; dN2, same solution bubbled with N2 for 10 min then
aerated until DO returned to 5.3 mg L-1; Each column is a mean of
the three replicates, topped with standard deviations of the mean.
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were separated by the least significant difference (LSD) at
P = 0.05. Linear regression analyses were performed to de-
termine whether and how the elevated concentrations
of dissolved oxygen may affect the colony counts by
Phytophthora species and exposure time. Similar ana-
lyses also were conducted to determine whether and how
the level of dissolved oxygen reduction in the Hoagland’s
solutions from its normal concentration (5.3 mg L-1) may
influence the colony counts of four Phytophthora species
at different exposure times.

Results and discussion
Effect of dissolved nitrogen on zoospore survival
In preliminary studies using hydrazine hydrate and CO2

to manipulate dissolved oxygen concentration in Hoag-
land’s solution, we found that both chemicals themselves
significantly reduced zoospore survival [10,22]. Nitrogen
was used as replacement gas for oxygen in previous in-
vestigations into the mycelial growth of Aphanomyces
euteiches [24], Phytophthora cactorum [15], Pythium
ultimum [25], and spore germination of Phytophthora
citrophthora, Phytophthora nicotianae, and Thielaviopsis
basicola in liquid medium [17,26]. Nitrogen also was
used in hydroponic systems to investigate root infec-
tion of avocado (Persea americana), shortleaf pine (Pinus
echinata) and loblolly pine (Pinus taeda) by Phytophthora
cinnamomi [21,27,28]. However, none of these studies
evaluated the potential impact of high concentration
of nitrogen itself. Thus, the first assay performed was
to determine whether nitrogen itself impacts zoospore
survival.
Hoagland’s solution at 10% strength was used as base

medium and four species of Phytophthora were included
in this assay. Zoospore survival was compared among
three solutions: (i) control solutions (CK) as a static 10%
Hoagland’s solution with dissolved oxygen at 5.6 mg L-1,
(ii) bubbled with nitrogen (N2) to reduce dissolved oxy-
gen concentration to 0.9 mg L-1, and (iii) degassed after
nitrogen bubbling (dN2) with a final concentration of
dissolved oxygen similar to that in the control solution.
No difference in colony counts was observed between
the control and degassed solutions (dN2) regardless of
exposure time as illustrated by P. tropicalis (Figure 1).
As expected, more colony counts were consistently re-
sulted from the degassed solutions (dN2) than those not
degassed (N2) solutions (Figure 1). These results indicate
that dissolved nitrogen in the Hoagland’s solution had
no effect on the zoospore survival. Similar results were
obtained for the other three species evaluated in this
study. These results implicate nitrogen had no impact
on spore germination, mycelial growth, and root infec-
tion of avocado and pines in those previous studies
[15,17,21,24,25,27,28] and it is a good replacement gas
for the subsequent assays in this study.
Elevation and reduction of dissolved oxygen
concentration with gas bubbling
The second assays conducted were to establish the rela-
tionship between dissolved oxygen concentration and
gas bubbling time and to understand the post-bubbling
dynamics of dissolved oxygen concentration in the solutions.
Dissolved oxygen concentrations in the 10% Hoagland’s
solution increased with increasing oxygen bubbling time
(Table 1). But the speed of dissolved oxygen elevation in
the solution decreased at every additional 15-second seg-
ment of bubbling time. This relationship was best fitted
(R = 0.9842) as:

y ¼ 3:2– ln xð Þ

in which y is the speed of dissolved oxygen elevation
(mg L-1) per 15 seconds; x is the number of 15-second
segments (x > 0).
The concentrations of dissolved oxygen in the solu-

tions after being bubbled with oxygen for 90, 120 and
150 seconds were estimated to be 18.1, 19.2, and
20.1 mg L-1, respectively (Table 1).
Dissolved oxygen concentrations decreased with increas-

ing nitrogen bubbling time up to 10 minutes (Table 1). Ex-
tended nitrogen bubbling for 20 and 30 min did not
further decrease the dissolved oxygen concentration in the
Hoagland’s solutions (Table 1). Thus, these 20 and 30 min
treatments were excluded from the subsequent studies.
There was little change in the dissolved oxygen concen-

tration within the 24 h of oxygen and nitrogen bubbling
(Figure 2). However, dissolved oxygen concentration in
the Hoagland’s solutions was gradually restored to its ori-
ginal concentration of 5.3 to 5.6 mg L-1 within 72 hours of
bubbling regardless of gas treatment (O2 or N2).
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Effect of elevated concentrations of dissolved oxygen on
zoospore survival
Among the four species assessed in this study, only zoo-
spores of P. megasperma in the control bottles at dis-
solved oxygen concentration of 5.6 mg L-1 consistently
declined with increasing exposure time as reflected in
the intercept of the linear models (Table 2). The greatest
colony count of this species was observed at 10-min and
2-h exposures and the least at 24-h exposure. It is not
known at this time why the greatest colony counts of
P. nicotianae, P. pini and P. tropicalis occurred at 2- or
4-h instead of 10-min exposures.
As indicated by the slope of linear models, zoospore

survival of all four species were negatively impacted
by elevated concentrations of dissolved oxygen for most
exposure times (Table 2). For instance, the colony
counts of P. megasperma decreased with increasing
dissolved oxygen concentration at 10-min (P < 0.0001),
2-h (P = 0.0010) and 4-h exposures (P = 0.0324). The
colony counts of the other three species decreased
with increasing dissolved oxygen concentration at all
exposure times with a few exceptions. As indicated by
the slope of linear models, the greatest rate of decrease in
colony counts occurred at 4-h exposure with 0.7 colony
per unit of dissolved oxygen increase for P. nicotianae
(P = 0.0001), 1.4 for P. pini (P < 0.0001), and 0.6 for
P. tropicalis (P = 0.0004), respectively. The only exceptions
were observed in P. megasperma at 24 h, P. nicotianae at
10 min and 24 h, as well as P. pini at 10 min.
These results indicated that zoospore survival in run-

off water containment basins is subjected to fluctuations
of dissolved oxygen concentration in particular of hyper-
oxia conditions although there are slightly differences
among the four species assessed in this study. P. mega-
sperma was least affected by elevated concentrations of
dissolved oxygen as was by a range of pH in a previous
study [7]. Differences in oxygen response were previously
observed among oomycetes and fungi. By their oxygen re-
sponse, these fungi and oomycetes can be grouped into
three categories. First, mycelial growth is directly propor-
tional to atmospheric oxygen level with the optimum
at 21.0%. This pattern is exemplified by P. nicotianae



Table 2 Linear regression analyses of colony counts (y)
and elevated concentrations of dissolved oxygen in the
Hoagland’s solutions (x) after being bubbled with pure
oxygen by Phytophthora species and exposure timez

Species Exposure (h) Intercept (a) Slope (b) P

P. megasperma 0 (10 min) 24.1 -0.4 < 0.0001

2 22.0 -0.3 0.0010

4 15.3 -0.2 0.0324

8 11.9 -0.2 0.4980

24 9.5 0.1 0.1902

P. nicotianae 0 2.8 0.2 0.0032

2 23.5 -0.4 0.0011

4 33.0 -0.7 0.0001

8 22.5 -0.2 0.0377

24 7.0 0.2 0.0202

P. pini 0 7.6 0.3 0.0032

2 42.3 -0.9 0.0033

4 43.1 -1.4 < 0.0001

8 21.2 -0.3 0.0175

24 17.7 -0.4 0.0006

P. tropicalis 0 13.3 -0.2 0.0794

2 21.2 -0.4 0.0025

4 22.0 -0.6 0.0004

8 17.7 -0.3 0.0098

24 10.2 -0.4 < 0.0001
zLinear model: y = a + bx, in which x ≥ 5.6 mg L-1.

Table 3 Linear regression analyses of colony counts (y)
and levels (x) of dissolved oxygen reduction from that in
the control Hoagland’s solution by Phytophthora species
and exposure timez

Species Exposure (h) Intercept (a) Slope (b) P

P. megasperma 0 (10 min) 18.2 -1.0 0.0936

2 11.3 -0.2 0.6267

4 9.9 -0.8 0.0104

8 7.4 -0.3 0.2903

24 8.4 -0.7 0.0292

48 7.6 -0.9 0.0015

72 4.5 -0.3 0.0724

P. nicotianae 0 7.8 0.8 0.1067

2 25.0 -1.2 0.0548

4 28.5 -2.6 0.0008

8 12.3 -0.4 0.4421

24 5.1 -0.2 0.4100

48 3.6 0.0 0.8670

72 2.2 0.1 0.3973

P. pini 0 9.1 0.4 0.2462

2 32.6 -0.3 0.6893

4 37.2 -2.1 0.0002

8 20.8 -1.3 < 0.0001

24 14.4 -0.8 0.0034

48 7.4 -0.3 0.2382

72 8.3 -0.5 0.0313

P. tropicalis 0 27.8 -1.8 0.0156

2 31.4 -1.3 0.0749

4 29.7 -0.3 0.6712

8 22.5 -0.1 0.8042

24 7.8 -0.3 0.1730

48 0.7 0.4 0.0008

72 0.4 0.2 0.0079
zLinear model: y = a + bx, in which x = 5.3 −meter readings of dissolved
oxygen in the Hoagland’s solutions after being bubbled with pure nitrogen,
so 0 ≤ x ≤ 5.3 mg L-1.
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(syn. P. parasitica), P. citrophthora and T. basicola [17]
and P. cactorum [15]. Second, mycelial growth has a clear
optimal oxygen level typically well below 21.0%, which
distinguishes this group from those of the first pattern.
Examples of this group included A. euteiches that had
optimal growth at 5.0% [24]. Third, mycelial growth
increases with increasing atmospheric oxygen only to a
concentration, above which results in no further growth
benefits. This pattern is illustrated by P. ultimum, of
which mycelial growth was reduced at oxygen concentra-
tion of 1.3% but was the same for all oxygen levels from
4.0% to 21.0% [25].
It is unclear how the elevated concentrations of dis-

solved oxygen affected zoospore survival of different
species. In this study we did observe that zoospores of P.
nicotianae, P. pini and P. tropicalis remained motile for
more than 2 h after their release from sporangia while the
most zoospores of P. megasperma had already encysted
before they were added to the 500-ml volume at the vari-
ous dissolved oxygen concentrations. It is reasonable to
assume that motile zoospores are more vulnerable to en-
vironmental stresses including elevated concentrations of
dissolved oxygen or hyperoxia than those encycled ones
with cell wall.
It is worth of noting that zoospores of P. nicotianae
died instantly in a 9.5-L fish tank being bubbled with
oxygen at 0.5 L min-1 for 20 min under a separate ex-
periment [22]. The dissolved oxygen concentration in
this fish tank was estimated to be over 27.3 mg L-1 ac-
cording to the formula developed above. It also was pre-
viously reported that hyperoxia suppressed fungi and
bacteria [29,30].
Artificial oxygenation of irrigation water for pathogen

mitigation may not be economically feasible. However,
dissolved oxygen concentration in irrigation reservoirs
can naturally rise up to 26.5 mg L-1 due to phytosyn-
thetic activities [13]. Zoospores are the principal, if not



Kong and Hong BMC Microbiology 2014, 14:124 Page 7 of 8
http://www.biomedcentral.com/1471-2180/14/124
sole, dispersal and infective propagules of Phytophthora
and Pythium species in recycling irrigation systems
[31-35]. Thus, the results of present study, along with
those of previous studies [15,17,21,24,25,27,28], help
understand the dynamics of these pathogens in irrigation
reservoirs under hyperoxia conditions [36,37].

Effect of low concentrations of dissolved oxygen on
zoospore survival
As in the dissolved oxygen elevation assays, the greatest
colony counts in the control bottles occurred at 10-min
exposure for P. megasperma and at 2- or 4-h exposure
for the other three species (Table 3).
Zoospore survival of the four species assessed in this

study also was negatively impacted by low concentra-
tions of dissolved oxygen in two distinct patterns
(Table 3). One pattern is represented by P. megasperma
and P. pini. The impact on these two species generally
occurred at 4-h or longer exposures at which their col-
ony counts decreased with increasing level of dissolved
oxygen reduction from the normal concentration of
5.3 mg L-1 in the control Hoagland’s solution. The great-
est rate of decrease in colony counts occurred at 48-h
exposure for P. megasperma at 0.9 colony per unit of
dissolved oxygen reduction (P = 0.0015) and at 4-h ex-
posure for P. pini at 2.1 (P = 0.0002). Phytophthora nico-
tianae and P. tropicalis showed an exactly opposite
pattern. The colony counts decreased with increasing
level of reduction in dissolved oxygen concentration at
both 2- and 4-h exposures for P. nicotianae, 10-min and
2-h exposures for P. tropicalis.
These results indicate that P. nicotianae and P. tropicalis

are more prone than P. megasperma and P. pini to hyp-
oxia stress in aquatic environments. They help understand
the more consistent and greater recoveries of P. mega-
sperma and P. pini than other major plant pathogens
including P. nicotianae and P. tropicalis in irrigation sys-
tems [5,36,37]. Nevertheless, zoospore survival of all four
species decreased with increasing intensity of hypoxia.
Dissolved oxygen concentration in surface water of ir-
rigation reservoirs can be as low as 0.3 mg L-1 [13]. This
degree of hypoxia is likely to have more pronounced im-
pact on the survival of zoospores in irrigation systems
than what observed in this study. The results of present
study are critical to understanding the population dynam-
ics of Phytophthora species in irrigation reservoirs during
hypoxia conditions [36,37].

Conclusions
In this study we showed for the first time the zoosporic
responses to oxygen stress of four economically import-
ant species of Phytophthora in a simulated aquatic sys-
tem. Zoospores of these species survived the best in the
control solutions at dissolved oxygen concentrations of
5.3 to 5.6 mg L-1. Zoospore survival rate decreased with
increasing intensity of hyperoxia and hypoxia conditions,
depending upon Phytophthora species and exposure
time. This study also demonstrated that P. megasperma
had decreasing colony counts with increasing exposure
hours from zero to 24 h while the other three species
(P. nicotianae, P. pini and P. tropicalis) had the great-
est colony counts at 2 and 4 h during the first 24 h
of both elevated and low dissolved oxygen assays. Once
again, this study demonstrated that zoospore mortality in-
creases with increasing number of exposure days as did in
previous studies [6,7,9]. This natural zoospore decline
process was enhanced under hyperoxia and hypoxia con-
ditions. These findings suggest that seasonal and diurnal
fluctuations of water quality including dissolved oxygen
[13,38] more than likely had contributed to the popula-
tion decline of Phytophthora species along the water
path in the same agricultural reservoirs [36,37]. These
findings advanced our understanding of aquatic ecol-
ogy of Phytophthora species. They also provided an im-
portant basis for pathogen risk avoidance and mitigation
by designing better recycling irrigation systems and
modifying existing systems to prolong runoff water turn-
over time.
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