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More than fishing in the dark: PCR of a dispersed
sequence produces simple but ultrasensitive
Wolbachia detection
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Abstract

Background: Detecting intracellular bacterial symbionts can be challenging when they persist at very low densities.
Wolbachia, a widespread bacterial endosymbiont of invertebrates, is particularly challenging. Although it persists at
high titers in many species, in others its densities are far below the detection limit of classic end-point Polymerase
Chain Reaction (PCR). These low-titer infections can be reliably detected by combining PCR with DNA hybridization,
but less elaborate strategies based on end-point PCR alone have proven less sensitive or less general.

Results: We introduce a multicopy PCR target that allows fast and reliable detection of A-supergroup Wolbachia - even
at low infection titers - with standard end-point PCR. The target is a multicopy motif (designated ARM: A-supergroup
repeat motif) discovered in the genome of wMel (the Wolbachia in Drosophila melanogaster). ARM is found in at
least seven other Wolbachia A-supergroup strains infecting various Drosophila, the wasp Muscidifurax and the
tsetse fly Glossina. We demonstrate that end-point PCR targeting ARM can reliably detect both high- and low-titer
Wolbachia infections in Drosophila, Glossina and interspecific hybrids.

Conclusions: Simple end-point PCR of ARM facilitates detection of low-titer Wolbachia A-supergroup infections.
Detecting these infections previously required more elaborate procedures. Our ARM target seems to be a general
feature of Wolbachia A-supergroup genomes, unlike other multicopy markers such as insertion sequences (IS).

Keywords: Wolbachia, Drosophila, Glossina, Hybrid, High- and low-titer endosymbiont infection, Limit of detection,
A-supergroup repeat motif (ARM)
Background
Detecting endosymbionts such as the widespread alpha-
proteobacterium Wolbachia in its host cell environment
requires reliable and ideally simple but still sensitive mo-
lecular marker systems. When such bacteria are present
at high titers, classic end-point PCR is sufficient to un-
ambiguously determine infection status of an unknown
specimen. Particularly for Wolbachia, a quite compre-
hensive set of diagnostic PCR markers has been devel-
oped and applied successfully. The most commonly used
among these makers is the multi locus sequence typing
(MLST) system [1-3] and the four hypervariable regions
(HVRs) of the Wolbachia outer surface protein gene wsp
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[4,5]. Both MLST, comprising a set of five singlecopy
Wolbachia genes, and the wsp locus were demonstrated
to be highly useful for Wolbachia infection determin-
ation and consequent diversity assessment. However,
those marker systems are limited if the endosymbiont
persists at very low titers within the host, either only
during a certain ontogenetic stage [6] or throughout all
life stages. In both cases proper detection of the endo-
symbiont is hindered and this points towards the need
of an alternative strategy for efficient, robust and fast
Wolbachia detection. One approach to address this issue
is to use multicopy Wolbachia gene markers for PCR ana-
lyses. Particularly insertion sequences (IS; [7,8]) represent
a good strategy to increase the detection threshold [9,10].
However, this approach relies on the conservation of such
elements and their copy-numbers in diverse strains, which
might not be the case over longer evolutionary distances
due to the mobile nature of these elements. Another
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approach to cope with the detection problem introduced
by low-titer infections is ‘nested PCR’. This method might
help to increase the detection threshold but is also highly
prone to contamination [6]. A third strategy combines
standard PCR with consequent hybridization [6,11,12],
which increases overall detection limit by four orders of
magnitude [6]. On the other hand, this is an elaborate
and time-consuming technique. Hence, we set out to
find a more sensitive marker for detection of low-titer
Wolbachia infections using standard PCR and identified
ARM as such a simple but ‘ultra-sensitive’ marker for
A-supergroup Wolbachia.

Results and discussion
Identification of a multicopy marker associated with
tandem repeats in A-supergroup Wolbachia genomes
(ARM)
To find a marker that serves a highly sensitive detection
method of low-titer Wolbachia strains we identified
multicopy regions in the A-supergroup wMel genome
(Wolbachia of Drosophila melanogaster; GenBank NC_002978).
An intergenic region of 440 bp associated with the re-
cently described hypervariable tandem repeat region
(Figure 1; [13]) was the most promising candidate, here-
after called ARM (A-supergroup repeat motif ) as it was
5’-TTCGCCAATCTGCAGATTAAA (21-mer)
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WD_1129

Arg-tRNA

315 bp ARM a

A

B

ARM

Figure 1 Schematic presentation of ARM. (A) Position of ARM in associa
(GenBank NC_002978). Scheme for VNTR-105 repeat region was adapted fro
structural features). Black arrows indicate the full 105 bp core repeat segme
yellow) is located within the intergenic region containing the VNTR-105 rep
NADH-ubiquinone oxidoreductase, putative) on the 5’-prime end and WD_
3’-prime end. (B) Detailed scheme of ARM. The 315 bp PCR amplicon is ge
are displayed above and below the PCR amplicon (indicated in yellow).
found in 24 almost identical copies dispersed through-
out the wMel genome (Additional file 1). However, for a
marker to be useful as a general tool it also needs to be
conserved and present in multiple copies in other strains
and we therefore used the wMel repeat sequence to search
an additional 13 draft and complete Wolbachia genomes
from four different Wolbachia supergroups for the same
sequence. We were able to identify the presence of the re-
peat in seven A-supergroup Wolbachia genomes (wHa,
wRi, wWil, wAna, wUni, wSuzi and wGmm; see Table 1),
albeit in variable copy numbers. In the Drosophila as-
sociated Wolbachia strains, the copy numbers were
around 20 per genome (Table 1), whereas the other two
A-supergroup genomes (wUni and wGmm) contained
about half the amount of copies. Low number of hits in
wUni is most likely explained by the incomplete status
of the genome resulting in an underestimation of the
actual copy number. In the B- (wNo, wVitB, wPip),
C- (wOo, wOv), and D-supergroup (wBm) genomes,
ARM was not found. Even though some of the genomes in
supergroups B, C, and D are incomplete, the total absence
of the repeat in all genomes from these supergroups sug-
gests that this motif might be Wolbachia A-supergroup
specific. Additionally, VNTR-tandem repeats associated
with ARM in A-supergroup infections are also absent
WD_1131
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(18-mer) TTGTCAAGCGTTTAAAAC-3’

mplicon

tion with VNTR-105 locus plus flanking regions in the wMel genome
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Table 1 Number of matches to ARM in complete and draft Wolbachia genomes

Wolbachia Supergroup Host Number of matches to ARM GenBank references

wMel A Drosophila melanogaster 24 NC_002978; [8]

wHa A Drosophila simulans 23 CP003884; [23]

wRi A Drosophila simulans 21 NC_012416; [22]

wWil A Drosophila willistoni 17a ASM15358v1; TSC#14030-0811.24

wAna A Drosophila ananassae 20a ASM16747v1; [24]

wUni A Muscidifax uniraptor 7a wUni_1.0; [22]

wSuzi A Drosophila suzukii 23a CAOU02000000; [25]

wGmm A Glossina morsitans morsitans 20a [14]

wNo B Drosophila simulans 0b CP003883; [23]

wVitB B Nasonia vitripennis 0b WVB_1.0; [26]

wPip B Culex quinquefasciatus 0b NC_010981.1; [27]

wOo C Onchocerca ochengi 0b NC_018267.1; [28]

wOv C Onchocerca volvulus 0b ASM33837v1; [29]

wBm D Brugia malayi 0b NC_006833.1; [30]

Number of matches in column four refer to hits of the 315 bp ARM-PCR amplicon in the searched Wolbachia genomes. Hits were produced using the blastn
algorithm (megablast) with match/mismatch scores 1,-2. Wolbachia strains are organized by supergroup (column two). Matches to ARM were only found within
the A-supergroup. aMinimum number of ARMs in the corresponding genome. Exact number cannot be given due to the lack of a complete genome. bRefers to no
similarity detected between ARM and searched genome (complete/draft).
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from genomes of B- to D-supergroups, further indicat-
ing that this feature might indeed be A-supergroup
specific.

ARM facilitates detection of low-titer Wolbachia from
A-supergoup
ARM-targeting primer were tested via end-point PCR
screen on DNA from high- and low-titer Wolbachia in-
fections in Drosophila and Glossina (tsetse fly) species
(Additional file 2). As shown in Figure 2, the classic
Wolbachia singlecopy gene marker wsp (Wolbachia
outer surface protein gene) is only applicable for samples
with high-titer infections, since Wolbachia was only de-
tected in high-titer D. paulistorum Orinocan semispecies
(OR, Figure 2A) as well as in D. willistoni (Dw+, Figure 2B),
D. melanogaster (Dm+, Figure 2B), D. simulans (Ds+,
Figure 2B) and Glossina morsitans morsitans (Gmm,
Figure 2B). The wsp primer failed to detect Wolbachia
in low-titer strains like D. paulistorum Amazonian (AM)
and Centroamerican (CA) semispecies plus Glossina swyn-
nertoni (Figure 2A,B), indicating that a singlecopy gene
like wsp is not suited for tracking low-titer infections. As
multicopy gene markers like insertion sequences (IS) can
be used to increase the detection limit, we ran PCR using
primer for Insertion Sequence 5 (IS5; [8-10] on the same
sample set. We observed increased sensitivity compared
to wsp-PCR since Wolbachia was detected in low-titer
CA2 (Figure 2A) and in the A/O hybrid samples. How-
ever, IS5 primer failed at amplifying the target sequence
in all three Glossina samples (Gmm, Gsw and Gs/Gm
hybrid; Figure 2B) despite the overall high Wolbachia
titer in Gmm [12].
We have recently shown that Wolbachia titers in-
crease in D. paulistorum [11] and Glossina [12] hybrid
backgrounds, which should significantly facilitate detec-
tion and strain characterization. Such titer increase was
sufficient to detect Wolbachia with the IS5 primer set in
A/O hybrids, but the low-titer Wolbachia infection in
the AM mother still remained undetected (Figure 2B).
Failure of IS5-amplification in the Gs/Gm hybrid plus
parents is explained by lacking homology between pri-
mer sequences and target, as no matches with the IS5
primer sequence were found in the wGmm genome
[14]. This finding implies that IS5 is not suitable as a
general Wolbachia A-supergroup marker.
Figure 2A and B show that the ARM-marker system

can be applied to address aforementioned problems aris-
ing with wsp and IS5 primer: sensitivity during PCR is
increased significantly and all tested A-supergroup infec-
tions are unambiguously detected. Wolbachia was traced
in all low-titer New world Drosophila species (AM1,
AM2; CA1, CA2) plus the A/O hybrid. In contrast to IS5,
the ARM primer set amplified Wolbachia from all three
Glossina samples (Gmm, Gsw and Gs/Gm hybrid). As an-
ticipated, all samples from high-titer Wolbachia infections
(OR, Dw+, Dm+, Ds+) showed bright bands with ARM,
whereas Wolbachia-uninfected specimens (Dw-, Ds-) did
not (Figure 2A,B). This argues for a high specificity of the
ARM primer and against mis-amplification of a random
host target rather than the specific symbiont target site.

Conclusions
We suggest that the new multicopy Wolbachia A-
supergroup marker can be used as an ‘ultra-sensitive’
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Figure 2 Comparison of Wolbachia marker sensitivity by PCR. (A) The three Wolbachia markers wsp, IS5 and ARM were tested on the
following specimens: New world Drosophila species from the Drosophila willistoni group including D. paulistorum Amazonian (AM1, AM2), and
Centroamerican (CA1, CA2) semispecies. Orinocan semispecies (OR) served as Wolbachia positive control; Ds- as Wolbachia negative control.
B = blank. Quality of DNA was assessed with universal primer set 12SCFR, 12SCRR targeting the mitochondrial 12S rRNA gene [20,21]. Expected
amplicon sizes for Wolbachia positive control (OR) are 631 bp (wsp), 752 bp (IS5), 315 bp (ARM) and 399 bp (12S rRNA). (B) Same markers as
above were tested on additional samples including hybrids: A/O hybrid plus parents AM and OR; Glossina Gs/Gm hybrid plus parental strains Gsw
and Gmm (Additional file 2). Drosophila New world members include D. willistoni Dw+ and Dw-. Old world species are D. melanogaster Dm+; D.
simulans Ds+ and Ds-. B = blank. Note: IS5 primer set does not produce amplicons in all three Glossina samples due to complete absence of this IS
element in symbionts of tsetse flies (see discussion).
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tool to trace low-titer infections by means of classic
end-point PCR. First, ARM has the advantage of higher
sensitivity compared to classic singlecopy Wolbachia
markers like wsp and thus improves detection limit sig-
nificantly. Particularly, ARM-PCR can be easily applied
to screen larger numbers of untyped DNA specimens,
even of low quality arising from long-term storage and/
or storage in inappropriate media, from laboratory
stocks or samples directly from nature. This is of pivotal
interest since classical detection tools might yield false
negatives when examining species harboring Wolbachia
at very low densities, and thereby lead to underestimating
natural prevalence of A-supergroup infections. Given that
80% of the Dipteran infections are supergroup A [15], our
new method will significantly facilitate and improve the
sensitivity of such surveys. In addition our approach is
an advantage over the classic IS5-marker, which fails in
Wolbachia from the tsetse fly Glossina. Taken together,
we show that a Wolbachia sequence motif found in
multiple copies associated with the VNTR loci facilitates
reliable Wolbachia screening of samples from low-titer
infections and might thus serve as a great tool for the
Wolbachia research community. Furthermore a similar
approach might be applied to detect other symbionts such
as Sodalis glossinidius (secondary symbiont of Glossina)
and the primary symbiont Candidatus Sodalis pieranto-
nius str. SOPE of the weevil Sitophilus orizae. Both
symbiont genomes exhibit more than 20% of repetitive
DNA rendering them appropriate candidates for repeat-
based PCR analysis [16,17]. However, we anticipate that
such a method reaches its limit when dealing with sym-
biont genomes, which have become highly streamlined
in the course of tight host-symbiont coevolution.

Methods
Drosophila and Glossina strains plus hybrid samples
Drosophila specimens included members of New world
and Old world clades (Additional file 2). Representatives
of the new world clade were Drosophila paulistorum
semispecies AM, CA and OR, together with Wolbachia-
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infected (Dw+) and -uninfected (Dw-) D. willistoni (see
Additional file 2 for details). The Old world clade was
represented by Wolbachia-infected D. melanogaster (Dm+)
and Wolbachia-infected (Ds+) and uninfected (Ds-) D.
simulans (Additional file 2). Additionally, the tsetse fly
species Glossina swynnertoni and G. morsitans morsitans
(genus Glossina, superfamily Hippoboscoidea) and hybrids
from D. paulistorum (A/O) and Glossina (Gs/Gm) were
included (Additional file 2). Detailed descriptions of estab-
lishing hybrid samples can be found in [11,12]. Drosophila
strains are permanently maintained in the Laboratory of
Genome Dynamics in Vienna, Glossina colonies are kept
at the Insect Pest Control Laboratory, Joint FAO/IAEA
Division of Nuclear Techniques in Food and Agriculture,
Vienna, Austria.

Analysis of complete and draft Wolbachia genomes for
candidate marker loci and primer design
Candidate multicopy marker regions were identified by
running nucmer and repeat-match from the MUMmer 3
package [18] on the wMel genome (Wolbachia, endosym-
biont of Drosophila melanogaster; GenBank reference
NC_002978). Searches were performed with the megablast
algorithm using default settings against 14 Wolbachia ge-
nomes present in GenBank (see Table 1; www.ncbi.nlm.
nih.gov) and other analyses were performed using Gen-
eious 5.6.6 software (Biomatters, New Zealand).

Diagnostic wsp-, IS5-, ARM- and 12S rRNA-PCR
Primer pairs for diagnostic wsp-PCR were taken from [19]
and the corresponding PCR set-up is described in [11].
Primers and PCR profile for IS5 can be found in [9]. We
designed the following primer set targeting ARM: ARM-F
5’-TTCGCCAATCTGCAGATTAAA-3’ and ARM-R 5’-
GTTTTAAACGCTTGACAA-3’. Both primers are posi-
tioned in the flanking regions of the VNTR-105 locus in
wMel [9,13], and produce an amplicon of 315 bp constant
size. Composition of the locus is shown in Figure 1. Diag-
nostic ARM-PCR was performed in 20 μl reactions con-
taining 1x reaction buffer, 3.0 mM MgCl2, 0.4 μM of
forward and reverse primer, 35 μM dNTPs, 0.4 U of Taq
Polymerase (Promega) and 2 μl of DNA template. PCR
was performed using a profile of 2 min initial denaturation
at 94°C followed by 30 cycles consisting of 45 sec de-
naturation at 94°C, 45 sec annealing at 55°C, and 1 min
extension at 72°C. Final extension was performed for
10 min at 72°C. In order to assess DNA quality, we
amplified part of the mitochondrial 12S rRNA gene with
primer set 12SCFR 5′-GAGAGTGACGGGCGATATGT-
3′ and 12SCRR 5′-AAACCAGGATTAGATACCCTAT-
TAT-3′ [20]. PCR conditions are outlined in [21]. PCR
amplicons were examined using gel-electrophoresis on
a 1% agarose gel pre-stained with 0.05 mg ethidium
bromide.
Ethics statement
This study did not involve any subjects and materials
that require approval by an ethics committee (human,
vertebrate, regulated invertebrates). No genetically modi-
fied organisms were part of this study.

Additional files

Additional file 1: Positions of ARM in the wMel and wRi genomes.
Circular schemes of the wRi (Wolbachia symbiont of Drosophila simulans;
NC_012416; [22]) and wMel genomes (Wolbachia, endosymbiont of
D. melanogaster; NC_002978; [8]), showing that ARM (indicated by black
bars) is equally dispersed throughout the genomes.

Additional file 2: Detailed information on Drosophila and Glossina
specimens used in this study. First column refers to the abbreviated
code used for each specimen in text, figures and figure legends. Last
column lists reference and/or collector’s name [31,11,32-34,12].
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