

Open Access

More than fishing in the dark: PCR of a dispersed sequence produces simple but ultrasensitive *Wolbachia* detection

Daniela I Schneider¹, Lisa Klasson², Anders E Lind² and Wolfgang J Miller^{1*}

Abstract

Background: Detecting intracellular bacterial symbionts can be challenging when they persist at very low densities. *Wolbachia*, a widespread bacterial endosymbiont of invertebrates, is particularly challenging. Although it persists at high titers in many species, in others its densities are far below the detection limit of classic end-point Polymerase Chain Reaction (PCR). These low-titer infections can be reliably detected by combining PCR with DNA hybridization, but less elaborate strategies based on end-point PCR alone have proven less sensitive or less general.

Results: We introduce a multicopy PCR target that allows fast and reliable detection of A-supergroup *Wolbachia* - even at low infection titers - with standard end-point PCR. The target is a multicopy motif (designated ARM: A-supergroup repeat *m*otif) discovered in the genome of *w*Mel (the *Wolbachia* in *Drosophila melanogaster*). ARM is found in at least seven other *Wolbachia* A-supergroup strains infecting various *Drosophila*, the wasp *Muscidifurax* and the tsetse fly *Glossina*. We demonstrate that end-point PCR targeting ARM can reliably detect both high- and low-titer *Wolbachia* infections in *Drosophila*, *Glossina* and interspecific hybrids.

Conclusions: Simple end-point PCR of ARM facilitates detection of low-titer *Wolbachia* A-supergroup infections. Detecting these infections previously required more elaborate procedures. Our ARM target seems to be a general feature of *Wolbachia* A-supergroup genomes, unlike other multicopy markers such as insertion sequences (IS).

Keywords: *Wolbachia*, *Drosophila*, *Glossina*, Hybrid, High- and low-titer endosymbiont infection, Limit of detection, *A*-supergroup repeat *m*otif (ARM)

Background

Detecting endosymbionts such as the widespread alphaproteobacterium *Wolbachia* in its host cell environment requires reliable and ideally simple but still sensitive molecular marker systems. When such bacteria are present at high titers, classic end-point PCR is sufficient to unambiguously determine infection status of an unknown specimen. Particularly for *Wolbachia*, a quite comprehensive set of diagnostic PCR markers has been developed and applied successfully. The most commonly used among these makers is the multi locus sequence typing (MLST) system [1-3] and the four hypervariable regions (HVRs) of the *Wolbachia* outer surface protein gene *wsp*

* Correspondence: wolfgang.miller@meduniwien.ac.at

¹Laboratory of Genome Dynamics, Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 10, Vienna 1090, Austria

[4,5]. Both MLST, comprising a set of five singlecopy Wolbachia genes, and the wsp locus were demonstrated to be highly useful for Wolbachia infection determination and consequent diversity assessment. However, those marker systems are limited if the endosymbiont persists at very low titers within the host, either only during a certain ontogenetic stage [6] or throughout all life stages. In both cases proper detection of the endosymbiont is hindered and this points towards the need of an alternative strategy for efficient, robust and fast Wolbachia detection. One approach to address this issue is to use multicopy Wolbachia gene markers for PCR analyses. Particularly insertion sequences (IS; [7,8]) represent a good strategy to increase the detection threshold [9,10]. However, this approach relies on the conservation of such elements and their copy-numbers in diverse strains, which might not be the case over longer evolutionary distances due to the mobile nature of these elements. Another

© 2014 Schneider et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Full list of author information is available at the end of the article

approach to cope with the detection problem introduced by low-titer infections is 'nested PCR'. This method might help to increase the detection threshold but is also highly prone to contamination [6]. A third strategy combines standard PCR with consequent hybridization [6,11,12], which increases overall detection limit by four orders of magnitude [6]. On the other hand, this is an elaborate and time-consuming technique. Hence, we set out to find a more sensitive marker for detection of low-titer *Wolbachia* infections using standard PCR and identified ARM as such a simple but 'ultra-sensitive' marker for A-supergroup *Wolbachia*.

Results and discussion

Identification of a multicopy marker associated with tandem repeats in A-supergroup Wolbachia genomes (ARM)

To find a marker that serves a highly sensitive detection method of low-titer *Wolbachia* strains we identified multicopy regions in the A-supergroup *w*Mel genome (*Wolbachia* of *Drosophila melanogaster*; GenBank NC_002978). An intergenic region of 440 bp associated with the recently described hypervariable tandem repeat region (Figure 1; [13]) was the most promising candidate, hereafter called ARM (*A*-supergroup repeat *m*otif) as it was found in 24 almost identical copies dispersed throughout the *w*Mel genome (Additional file 1). However, for a marker to be useful as a general tool it also needs to be conserved and present in multiple copies in other strains and we therefore used the *w*Mel repeat sequence to search an additional 13 draft and complete Wolbachia genomes from four different Wolbachia supergroups for the same sequence. We were able to identify the presence of the repeat in seven A-supergroup Wolbachia genomes (wHa, wRi, wWil, wAna, wUni, wSuzi and wGmm; see Table 1), albeit in variable copy numbers. In the Drosophila associated Wolbachia strains, the copy numbers were around 20 per genome (Table 1), whereas the other two A-supergroup genomes (wUni and wGmm) contained about half the amount of copies. Low number of hits in wUni is most likely explained by the incomplete status of the genome resulting in an underestimation of the actual copy number. In the B- (wNo, wVitB, wPip), C- (wOo, wOv), and D-supergroup (wBm) genomes, ARM was not found. Even though some of the genomes in supergroups B, C, and D are incomplete, the total absence of the repeat in all genomes from these supergroups suggests that this motif might be Wolbachia A-supergroup specific. Additionally, VNTR-tandem repeats associated with ARM in A-supergroup infections are also absent

		•	5	
Wolbachia	Supergroup	Host	Number of matches to ARM	GenBank references
wMel	А	Drosophila melanogaster	24	NC_002978; [8]
wHa	А	Drosophila simulans	23	CP003884; [23]
wRi	A	Drosophila simulans	21	NC_012416; [22]
<i>w</i> Wil	A	Drosophila willistoni	17 ^a	ASM15358v1; TSC#14030-0811.24
wAna	A	Drosophila ananassae	20 ^a	ASM16747v1; [24]
wUni	A	Muscidifax uniraptor	7 ^a	wUni_1.0; [22]
wSuzi	A	Drosophila suzukii	23ª	CAOU02000000; [25]
wGmm	A	Glossina morsitans morsitans	20ª	[14]
wNo	В	Drosophila simulans	0 ^b	CP003883; [23]
<i>w</i> VitB	В	Nasonia vitripennis	0 ^b	WVB_1.0; [26]
wPip	В	Culex quinquefasciatus	0 ^b	NC_010981.1; [27]
wOo	С	Onchocerca ochengi	0 ^b	NC_018267.1; [28]
wOv	С	Onchocerca volvulus	0 ^b	ASM33837v1; [29]
<i>w</i> Bm	D	Brugia malayi	0 ^b	NC_006833.1; [30]

Table 1 Number of matches to ARM in complete and draft Wolbachia genomes

Number of matches in column four refer to hits of the 315 bp ARM-PCR amplicon in the searched *Wolbachia* genomes. Hits were produced using the blastn algorithm (megablast) with match/mismatch scores 1,-2. *Wolbachia* strains are organized by supergroup (column two). Matches to ARM were only found within the A-supergroup. ^aMinimum number of ARMs in the corresponding genome. Exact number cannot be given due to the lack of a complete genome. ^bRefers to no similarity detected between ARM and searched genome (complete/draft).

from genomes of B- to D-supergroups, further indicating that this feature might indeed be A-supergroup specific.

ARM facilitates detection of low-titer Wolbachia from A-supergoup

ARM-targeting primer were tested via end-point PCR screen on DNA from high- and low-titer Wolbachia infections in Drosophila and Glossina (tsetse fly) species (Additional file 2). As shown in Figure 2, the classic Wolbachia singlecopy gene marker wsp (Wolbachia outer surface protein gene) is only applicable for samples with high-titer infections, since Wolbachia was only detected in high-titer D. paulistorum Orinocan semispecies (OR, Figure 2A) as well as in *D. willistoni* (Dw^+ , Figure 2B), D. melanogaster (Dm⁺, Figure 2B), D. simulans (Ds⁺, Figure 2B) and Glossina morsitans morsitans (Gmm, Figure 2B). The wsp primer failed to detect Wolbachia in low-titer strains like D. paulistorum Amazonian (AM) and Centroamerican (CA) semispecies plus Glossina swynnertoni (Figure 2A,B), indicating that a singlecopy gene like *wsp* is not suited for tracking low-titer infections. As multicopy gene markers like insertion sequences (IS) can be used to increase the detection limit, we ran PCR using primer for Insertion Sequence 5 (IS5; [8-10] on the same sample set. We observed increased sensitivity compared to wsp-PCR since Wolbachia was detected in low-titer CA2 (Figure 2A) and in the A/O hybrid samples. However, IS5 primer failed at amplifying the target sequence in all three Glossina samples (Gmm, Gsw and Gs/Gm hybrid; Figure 2B) despite the overall high Wolbachia titer in Gmm [12].

We have recently shown that *Wolbachia* titers increase in *D. paulistorum* [11] and *Glossina* [12] hybrid backgrounds, which should significantly facilitate detection and strain characterization. Such titer increase was sufficient to detect *Wolbachia* with the *IS5* primer set in A/O hybrids, but the low-titer *Wolbachia* infection in the AM mother still remained undetected (Figure 2B). Failure of *IS5*-amplification in the *Gs/Gm* hybrid plus parents is explained by lacking homology between primer sequences and target, as no matches with the *IS5* primer sequence were found in the *wGmm* genome [14]. This finding implies that *IS5* is not suitable as a general *Wolbachia* A-supergroup marker.

Figure 2A and B show that the ARM-marker system can be applied to address aforementioned problems arising with *wsp* and *IS5* primer: sensitivity during PCR is increased significantly and all tested A-supergroup infections are unambiguously detected. *Wolbachia* was traced in all low-titer New world *Drosophila* species (AM1, AM2; CA1, CA2) plus the A/O hybrid. In contrast to *IS5*, the ARM primer set amplified *Wolbachia* from all three *Glossina* samples (*Gmm, Gsw* and *Gs/Gm* hybrid). As anticipated, all samples from high-titer *Wolbachia* infections (OR, Dw^+ , Dm^+ , Ds^+) showed bright bands with ARM, whereas *Wolbachia*-uninfected specimens (Dw^- , Ds^-) did not (Figure 2A,B). This argues for a high specificity of the ARM primer and against mis-amplification of a random host target rather than the specific symbiont target site.

Conclusions

We suggest that the new multicopy *Wolbachia* A-supergroup marker can be used as an 'ultra-sensitive'

tool to trace low-titer infections by means of classic end-point PCR. First, ARM has the advantage of higher sensitivity compared to classic singlecopy Wolbachia markers like wsp and thus improves detection limit significantly. Particularly, ARM-PCR can be easily applied to screen larger numbers of untyped DNA specimens, even of low quality arising from long-term storage and/ or storage in inappropriate media, from laboratory stocks or samples directly from nature. This is of pivotal interest since classical detection tools might yield false negatives when examining species harboring Wolbachia at very low densities, and thereby lead to underestimating natural prevalence of A-supergroup infections. Given that 80% of the Dipteran infections are supergroup A [15], our new method will significantly facilitate and improve the sensitivity of such surveys. In addition our approach is an advantage over the classic IS5-marker, which fails in Wolbachia from the tsetse fly Glossina. Taken together, we show that a Wolbachia sequence motif found in multiple copies associated with the VNTR loci facilitates reliable *Wolbachia* screening of samples from low-titer infections and might thus serve as a great tool for the *Wolbachia* research community. Furthermore a similar approach might be applied to detect other symbionts such as *Sodalis glossinidius* (secondary symbiont of *Glossina*) and the primary symbiont *Candidatus* Sodalis pierantonius str. SOPE of the weevil *Sitophilus orizae*. Both symbiont genomes exhibit more than 20% of repetitive DNA rendering them appropriate candidates for repeatbased PCR analysis [16,17]. However, we anticipate that such a method reaches its limit when dealing with symbiont genomes, which have become highly streamlined in the course of tight host-symbiont coevolution.

Methods

Drosophila and Glossina strains plus hybrid samples

Drosophila specimens included members of New world and Old world clades (Additional file 2). Representatives of the new world clade were *Drosophila paulistorum* semispecies AM, CA and OR, together with *Wolbachia*- infected (Dw^+) and -uninfected (Dw^-) *D. willistoni* (see Additional file 2 for details). The Old world clade was represented by *Wolbachia*-infected *D. melanogaster* (Dm^+) and *Wolbachia*-infected (Ds^+) and uninfected (Ds^-) *D. simulans* (Additional file 2). Additionally, the tsetse fly species *Glossina swynnertoni* and *G. morsitans morsitans* (genus *Glossina*, superfamily Hippoboscoidea) and hybrids from *D. paulistorum* (A/O) and *Glossina* (*Gs/Gm*) were included (Additional file 2). Detailed descriptions of establishing hybrid samples can be found in [11,12]. *Drosophila* strains are permanently maintained in the Laboratory of Genome Dynamics in Vienna, *Glossina* colonies are kept at the Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.

Analysis of complete and draft Wolbachia genomes for candidate marker loci and primer design

Candidate multicopy marker regions were identified by running nucmer and repeat-match from the MUMmer 3 package [18] on the *w*Mel genome (*Wolbachia*, endosymbiont of *Drosophila melanogaster*; GenBank reference NC_002978). Searches were performed with the megablast algorithm using default settings against 14 *Wolbachia* genomes present in GenBank (see Table 1; www.ncbi.nlm. nih.gov) and other analyses were performed using Geneious 5.6.6 software (Biomatters, New Zealand).

Diagnostic wsp-, IS5-, ARM- and 12S rRNA-PCR

Primer pairs for diagnostic *wsp*-PCR were taken from [19] and the corresponding PCR set-up is described in [11]. Primers and PCR profile for IS5 can be found in [9]. We designed the following primer set targeting ARM: ARM-F 5'-TTCGCCAATCTGCAGATTAAA-3' and ARM-R 5'-GTTTTAAACGCTTGACAA-3'. Both primers are positioned in the flanking regions of the VNTR-105 locus in wMel [9,13], and produce an amplicon of 315 bp constant size. Composition of the locus is shown in Figure 1. Diagnostic ARM-PCR was performed in 20 µl reactions containing 1x reaction buffer, 3.0 mM MgCl₂, 0.4 µM of forward and reverse primer, 35 µM dNTPs, 0.4 U of Taq Polymerase (Promega) and 2 µl of DNA template. PCR was performed using a profile of 2 min initial denaturation at 94°C followed by 30 cycles consisting of 45 sec denaturation at 94°C, 45 sec annealing at 55°C, and 1 min extension at 72°C. Final extension was performed for 10 min at 72°C. In order to assess DNA quality, we amplified part of the mitochondrial 12S rRNA gene with primer set 12SCFR 5'-GAGAGTGACGGGCGATATGT-3' and 12SCRR 5'-AAACCAGGATTAGATACCCTAT-TAT-3' [20]. PCR conditions are outlined in [21]. PCR amplicons were examined using gel-electrophoresis on a 1% agarose gel pre-stained with 0.05 mg ethidium bromide.

Ethics statement

This study did not involve any subjects and materials that require approval by an ethics committee (human, vertebrate, regulated invertebrates). No genetically modified organisms were part of this study.

Additional files

Additional file 1: Positions of ARM in the wMel and wRi genomes. Circular schemes of the wRi (Wolbachia symbiont of Drosophila simulans; NC_012416; [22]) and wMel genomes (Wolbachia, endosymbiont of D. melanogaster; NC_002978; [8]), showing that ARM (indicated by black bars) is equally dispersed throughout the genomes.

Additional file 2: Detailed information on *Drosophila* and *Glossina* specimens used in this study. First column refers to the abbreviated code used for each specimen in text, figures and figure legends. Last column lists reference and/or collector's name [31,11,32-34,12].

Abbreviations

VNTR: Variable number of tandem repeats; *wsp*: *Wolbachia* outer surface protein gene; *IS5*: Insertion sequence element 5; ARM: A-supergroup repeat motif.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

DIS and WJM conceived the study. DIS, LK, AEL and WJM designed and performed the experiments. WJM provided material. DIS, LK, AEL and WJM analyzed the data. DIS, LK and WJM wrote the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements

We thank E. Kehrer and M. Leitner for careful maintenance of fly strains in the lab, A. G. Parker and A. M. Abd-Alla for providing *Glossina* material and S. Aksoy from Yale School of Public Health for sharing *wGmm* genome data. DIS and WJM were partly funded by research grant FWF P22634-B17 from the Austrian Science Fund (FWF).

Author details

¹Laboratory of Genome Dynamics, Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 10, Vienna 1090, Austria. ²Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala, Sweden.

Received: 3 March 2014 Accepted: 30 April 2014 Published: 12 May 2014

References

- Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG: Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. *Proc Natl Acad Sci* U S A 1998, 95:3140–3145.
- Paraskevopoulos C, Bordenstein SR, Wernegreen JJ, Werren JH, Bourtzis K: Toward a Wolbachia multilocus sequence typing system: discrimination of Wolbachia strains present in Drosophila species. *Curr Microbiol* 2006, 53:388–395.
- Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA Choudhury RR, Hayashi C, Maiden MC, Tettelin H, Werren JH: Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 2008, 72:7098–7110.
- Zhou W, Rousset F, O'Neil S: Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 1998, 265:509–515.

- Braig HR, Zhou W, Dobson SL, O'Neill SL: Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont *Wolbachia pipientis. J Bacteriol* 1998, 180:2373–2378.
- Arthofer W, Riegler M, Schneider D, Krammer M, Miller WJ, Stauffer C: Hidden Wolbachia diversity in field populations of the European cherry fruit fly, *Rhagoletis cerasi* (Diptera, Tephritidae). *Mol Ecol* 2009, 18:3816–3830.
- Masui S, Kamoda S, Sasaki T, Ishikawa H: The first detection of the insertion sequence ISW1 in the intracellular reproductive parasite *Wolbachia. Plasmid* 1999, 42:13–19.
- Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O'Neill SL, Eisen JA: Phylogenomics of the reproductive parasite *Wolbachia pipientis wMel*: a streamlined genome overrun by mobile genetic elements. *PLoS Biol* 2004, 2:E69.
- Riegler M, Sidhu M, Miller WJ, O'Neill SL: Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 2005, 15:1428–1433.
- 10. Cordaux R: *ISWpi1* from *Wolbachia pipientis* defines a novel group of insertion sequences within the *IS5* family. *Gene* 2008, 409:20–27.
- Miller WJ, Ehrman L, Schneider D: Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of *Drosophila paulistorum*. *PLoS Pathog* 2010, 6:e1001214.
- Schneider DI, Garschall KI, Parker AG, Abd-Alla AM, Miller WJ: Global Wolbachia prevalence, titer fluctuations and their potential of causing cytoplasmic incompatibilities in tsetse flies and hybrids of Glossina morsitans subgroup species. J Invertebr Pathol 2013, 112(Suppl):S104–S115.
- Riegler M, Iturbe-Ormaetxe I, Woolfit M, Miller WJ, O'Neill SL: Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of *Wolbachia*. *BMC Microbiol* 2012, 12(Suppl 1):S12.
- Brelsfoard C, Tsiamis G, Falchetto M, Gomulski L, Telleria E, Alam U, Ntountoumis E, Swain M, Malacrida A, Bourtzis K, Aksoy S: *Wolbachia* symbiont genome sequence and extensive chromosomal insertions described from the tsetse fly *Glossina morsitans*. 2014. in press: doi:10.1371/journal.pntd.0002728.
- Stahlhut JK, Desjardins CA, Clark ME, Baldo L, Russell JA, Werren JH, Jaenike J: The mushroom habitat as an ecological arena for global exchange of *Wolbachia*. *Mol Ecol* 2010, **19**:1940–1952.
- 16. Belda E, Moya A, Bentley S, Silva FJ: Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of *Sodalis glossinidius*, the secondary endosymbiont of tsetse flies. *BMC Genom* 2010, 11:449.
- Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C, Aoyagi A, Duval B, Baca A, Silva FJ, Vallier A, Jackson DG, Latorre A, Weiss RB, Heddi A, Moya A, Dale C: Genome degeneration and adaptation in a nascent stage of symbiosis. *Genome Biol Evol* 2014, 6:76–93.
- Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. *Genome Biol* 2004, 5:R12.
- Jeyaprakash A, Hoy MA: Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 2000, 9:393–405.
- Hanner R, Fugate M: Branchiopod phylogenetic reconstruction from 12S rDNA sequence data. J Crustacean Biol 1997, 17:74–183.
- Augustinos AA, Santos-Garcia D, Dionyssopoulou E, Moreira M, Papapanagiotou A, Scarvelakis M, Doudoumis V, Ramos S, Aguiar AF, Borges PA, Khadem M, Latorre A, Tsiamis G, Bourtzis K: Detection and characterization of *Wolbachia* infections in natural populations of aphids: is the hidden diversity fully unraveled? *PLoS One* 2011, 6:e28695.
- Klasson L, Westberg J, Sapountzis P, Näslund K, Lutnaes Y, Darby AC, Veneti Z, Chen L, Braig HR, Garrett R, Bourtzis K, Andersson SG: The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci U S A 2009, 106:5725–5730.
- 23. Elegaard KM, Klasson L, Näslund K, Bourtzis K, Andersson SG: **Comparative** genomics of *Wolbachia* and the bacterial species concept. *PLoS Genet* 2013, 9:e1003381.
- Salzberg SL, Dunning Hotopp JC, Delcher AL, Pop M, Smith DR, Eisen MB, Nelson WC: Serendipitous discovery of *Wolbachia* genomes in multiple Drosophila species. *Genome Biol* 2005, 6:R23. Erratum in. *Genome Biol* 2005, 6:402.

- Siozios S, Cestaro A, Kaur R, Pertot I, Rota-Stabelli O, Anfora G: Draft Genome Sequence of the Wolbachia Endosymbiont of Drosophila suzukii. Genome Announc 2013, 1:e00032-13. doi:10.1128/genomeA.00032-13.
- Kent BN, Salichos L, Gibbons JG, Rokas A, Newton IL, Clark ME, Bordenstein SR: Complete bacteriophage transfer in a bacterial endosymbiont (*Wolbachia*) determined by targeted genome capture. *Genome Biol Evol* 2011, 3:209–218.
- Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O'Neill SL, Thomson N, Sinkins SP, Parkhill J: Genome evolution of *Wolbachia* strain wPip from the *Culex pipiens* group. *Mol Biol Evol* 2008, 25:1877–1887.
- Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Koldkjær P, Rainbow L, Radford AD, Blaxter ML, Tanya VN, Trees AJ, Cordaux R, Wastling JM, Makepeace BL: Analysis of gene expression from the *Wolbachia* genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. *Genome Res* 2012, 22:2467–2477.
- Desjardins CA, Cerqueira GC, Goldberg JM, Chandler M, Mahillon J: Insertion sequences revisited. In *Edited by Craig NL, Craigie R, Gellert M, Lambowitz AM*. Edited by Mobile DNA II. Washington, DC: American Society of Microbiology; 2002:305–366.
- 30. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B: The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005, 3:E121.
- 31. Ehrman L, Powell JR: **The Drosophila willistoni species group**. In *Ashburner, Carson, Thompson*; 1981-1986:193–225.
- Miller WJ, Riegler M: Evolutionary dynamics of wAu-like Wolbachia variants in Neotropical Drosophila species. Appl Environ Microbiol 2006, 72:826–835.
- Kidwell MG, Novy JB: Hybrid dysgenesis in Drosophila melanogaster: sterility resulting from gonadal dysgenesis in the P-M system. *Genetics* 1979, 92:1127–1140.
- Poinsot D, Montchamp-Moreau C, Merçot H: Wolbachia segregation rate in Drosophila simulans naturally bi-infected cytoplasmic lineages. *Heredity* (Edinb) 2000, 85(Pt 2):191–198.

doi:10.1186/1471-2180-14-121

Cite this article as: Schneider *et al.*: More than fishing in the dark: PCR of a dispersed sequence produces simple but ultrasensitive *Wolbachia* detection. *BMC Microbiology* 2014 14:121.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit