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requirement in the uridylylation of the signal
transduction proteins GlnJ and GlnB from
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Abstract

Background: PII proteins have a fundamental role in the control of nitrogen metabolism in bacteria, through
interactions with different PII targets, controlled by metabolite binding and post-translational modification,
uridylylation in most organisms. In the photosynthetic bacterium Rhodospirillum rubrum, the PII proteins GlnB and
GlnJ were shown, in spite of their high degree of similarity, to have different requirements for post-translational
uridylylation, with respect to the divalent cations, Mg2+ and Mn2+.

Results: Given the importance of uridylylation in the functional interactions of PII proteins, we have hypothesized
that the difference in the divalent cation requirement for the uridylylation is related to efficient binding of Mg/Mn-ATP to
the PII proteins. We concluded that the amino acids at positions 42 and 85 in GlnJ and GlnB (in the vicinity of the ATP
binding site) influence the divalent cation requirement for uridylylation catalyzed by GlnD.

Conclusions: Efficient binding of Mg/Mn-ATP to the PII proteins is required for uridylylation by GlnD. Our results show
that by simply exchanging two amino acid residues, we could modulate the divalent cation requirement in the
uridylylation of GlnJ and GlnB.
Considering that post-translational uridylylation of PII proteins modulates their signaling properties, a different
requirement for divalent cations in the modification of GlnB and GlnJ adds an extra regulatory layer to the already
intricate control of PII function.
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Background
Members of the PII family of signal transduction pro-
teins are fundamental molecular messengers involved in
the regulation of nitrogen metabolism in bacteria, ar-
chaea and eukarya (plants) [1,2]. These proteins exert
their role at different levels: they regulate gene expres-
sion by modulating the activity of several transcription
factors [3], they control the flux through an ammonium
transport protein [4] and influence the activity of key
metabolic enzymes, e.g. glutamine synthetase (GS) and
nitrogenase [5,6].
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PII proteins are trimers of about 37 kDa, with each
monomer containing a double βαβ ferredoxin fold. It
has been previously shown that each trimer can bind up
to three molecules of 2-oxoglutarate (2-OG) and ATP/
ADP allowing the sensing of the carbon/nitrogen and
energy status in the cell [7,8]. In the different structures
of PII proteins solved so far, one of the most striking
characteristics is the existence of three surface exposed
loops per monomer, the B, C and T-loops [2]. The three
nucleotide-binding sites (where ATP and ADP bind) are
located in the inter-subunit clefts formed by the inter-
action of the B and C loops. The binding of ATP dis-
plays negative cooperativity (as does 2-OG binding),
with ADP competing for the same binding site, as was
shown for GlnB from Escherichia coli [7]. Recent
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structures of Synechococcos elongatus GlnB and Azospir-
illum brasilense GlnZ have convincingly elucidated the
2-OG binding sites within PII proteins and established
that this binding influences protein conformation, par-
ticularly of the T-loop region [9,10]. Moreover, the struc-
ture of S. elongatus GlnB also provided an explanation
for the negative cooperativity observed in the binding of
2-OG, considering that binding of the first 2-OG mol-
ecule generates unequal binding sites in the other two
subunits [9].
In most proteobacteria, including the photosynthetic

nitrogen-fixing bacterium Rhodospirillum rubrum, PII
proteins are covalently modified by reversible uridylyla-
tion at tyrosine 51 in the T-loop, yielding 0–3 subunits
modified with UMP per trimer. The uridylyltransferase
and uridylylremoving activities are catalyzed by the
bifunctional enzyme uridylyltransferase GlnD, with the
reactions being regulated by the concentration of 2-oxo-
glutarate, through binding to the PII proteins [11]. The
two activities of R. rubrum GlnD occur at distinct active
sites, with the N-terminal nucleotidyltransferase domain
involved in PII uridylylation and the central HD domain
responsible for PII-UMP deuridylylation [12].
In R. rubrum, three PII proteins have been identified

and named GlnB, GlnJ and GlnK [6]. However, only
GlnB and GlnJ have been extensively studied and found
to have both unique and overlapping functions in the
regulation of gene transcription (two-component system
NtrBC), ammonium transport (AmtB) and activity of
metabolic enzymes GS and nitrogenase (by regulating
the DRAT/DRAG system). While both proteins can
regulate the activity of the adenylyltransferase GlnE (and
thereby controling GS activity), GlnB specifically regu-
lates NtrB and DRAT and GlnJ has a preferential role in
the regulation of AmtB and possibly DRAG [5,6,13-15].
Even though GlnB and GlnJ share 68% sequence iden-

tity, the conditions for in vitro uridylylation by GlnD are
different [11]. In the uridylylation assays with purified R.
rubrum GlnD and PII proteins, efficient uridylylation
requires the presence of ATP, 2-OG and a divalent cat-
ion. However, the uridylylation of GlnJ only occurred
when Mn2+ was present, while the uridylylation of GlnB
occurred with either Mg2+ or Mn2+ [11]. Although the
structure of neither of the R. rubrum PII proteins has
been determined, it is possible that their T-loop assumes
different conformations, by analogy with the recent
structural data from PII proteins from A. brasilense and
S. elongatus [9,10]. Considering these probably different
conformations, it can be hypothesized that the correct
conformation of the T-loop in GlnJ required for the
interaction with GlnD is only achieved in the presence
of Mn2+ (or Mn-ATP).
Considering that these differences in the divalent cat-

ion required to promote uridylylation of the PII proteins
might be of functional significance, we have aimed at
elucidating the molecular basis for this difference.

Results and discussion
Preliminary considerations
It was previously shown that the in vitro uridylylation of
GlnJ catalyzed by purified GlnD requires the presence of
Mn2+ ions, in addition to ATP and 2-OG [11]. Moreover,
this functional connection between GlnJ and Mn2+ is
supported by additional studies. We have shown that
dissociation of the complex formed between GlnJ and
the membrane embedded ammonium transport protein
AmtB1 is favored by 2-OG and ATP but only in the
presence of Mn2+ [13]. Also, in the same study it was
observed that the uridylylation of endogenous R. rubrum
GlnJ recovered from the membrane fraction was only
possible in the presence of Mn2+. In contrast to GlnJ,
GlnB was efficiently uridylylated in the presence of ei-
ther Mg2+ or Mn2+ [11].
Although GlnD itself is known to bind both Mg2+ and

Mn2+ [16], the fact that uridylylation of GlnB occurs
with either of the divalent cations present lead us to
hypothesize that the reason for the different response to
divalent cations in the uridylylation of GlnB and GlnJ is
related to the PII protein and not to GlnD itself. Based
on this premise we assumed that exchanging specific
amino acid residues in GlnJ to the ones in GlnB might
enable GlnJ to also be modified in the presence of Mg2+

as the only cation present.
The deuridylylation of both GlnB-UMP and GlnJ-

UMP (also catalyzed by GlnD) was shown previously to
require Mn2+, but Mg2+ did not support this activity in
the R. rubrum enzyme [11], in contrast to E. coli GlnD
[16].

Sequence analysis
The R. rubrum GlnB and GlnJ proteins are composed
of 112 amino acids with 68% sequence identity. Figure 1
represents an alignment of the amino acid sequences
of GlnB and GlnJ. In this alignment it is clear that
these proteins contain large stretches of almost com-
pletely conserved residues, alternating with regions
with lower conservation. We have focused on the
regions of higher conservation, hypothesizing that even
small differences in these areas might have an import-
ant structural/functional effect. Using this criterion we
constructed GlnJ variants with the following substitu-
tions: R17K, Q42H, N54D, K85R, V100M and E109G
(in each position the residue in GlnJ was replaced by
the corresponding one in GlnB). These variants were
expressed and purified as N-terminal histidine tagged
fusions.
Although not all the residues selected are located in

regions of the PII protein that have previously been



Figure 1 Alignment of the amino acid sequence of the R. rubrum GlnB and GlnJ proteins, constructed using ClustalW (http://www.ebi.
ac.uk/Tools/clustalw2/ index.html). The loop regions are highlighted and the positions of the amino acid substitutions used in this study are
marked with a star.
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shown to be involved in metabolite binding, we decided
to analyze amino acids occurring in areas of high con-
servation as, due to the considerable flexibility of the PII
structure, they may also play a role in this response to
divalent cations. An example of this high flexibility
comes from the recent structure of S. elongatus GlnB,
where the very C-terminal portion of the protein dis-
plays a large conformational change upon binding of the
ligands to the T-loop region [9].

Uridylylation of GlnJ variants in the presence of Mn2+ and
Mg2+

Using purified GlnD and GlnJ variants we analysed the
uridylylation profile in the conditions that were previ-
ously determined [11] and described in the Materials
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Figure 2 Uridylylation of GlnJ (A) and GlnB (B) variants. The reactions
presence of Mn2+, Mg2+ or without either divalent cation (control - C), and
M3- modified (fully modified trimmers).
and methods, with either Mg2+ or Mn2+ present in the
assays.
As shown in Figure 2, GlnJ is only extensively modi-

fied in the presence of Mn2+ (A) while GlnB is modified
with both Mn2+ and Mg2+ (B), as analyzed by native
PAGE, with a slower migrating band converted to a fas-
ter migrating band (all 3 subunits modified). The iden-
tity (and uridylylation status) of the two forms was also
confirmed by mass spectrometry (results not shown).
The GlnJ variants R17K, V100I and E109G showed the
same pattern as GlnJ (Figure 2A). The GlnJN54D variant
can still be modified in the presence of Mn2+ albeit to a
lower extent, but there was also no modification in the
presence of Mg2+. The variants GlnJQ42H and GlnJK85R

show normal uridylylation in the presence of Mn2+ but
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enhanced with Mg2+(Figure 2A). Given the fact that only
the GlnJQ42H and GlnJK85R substitutions supported
modification with Mg2+, we combined them and con-
structed the GlnJQ42HK85R variant. In this case, the modi-
fication in the presence of Mn2+ was identical to GlnJ,
but substantially improved with Mg2+ (Figure 2A).
The results shown in Figure 2 reflect the modification

pattern of GlnJ and variants after 30 minutes of reaction.
To better understand the modification ability of the
GlnJQ42H, GlnJK85R and GlnJQ42HK85R variants we per-
formed a time-course experiment (Figure 3). On a
longer time scale the modification in the presence of
Mg2+ is even more evident in these variants when com-
pared with GlnJ.
Considering the results in Figure 2A and Figure 3, it is

clear that the amino acid residues at position 42 and 85
influence the activity with respect to divalent cation
added in the uridylylation reaction. It could be hypothe-
sized that these residues are either involved in the direct
binding of the divalent cation or influence the architec-
ture of its binding site in the R. rubrum PII proteins.
Even though there is no structural information available
Figure 3 Time-course uridylylation of GlnJ, GlnJQ42H, GlnJK85R

and GlnJQ42HK85R. At the time points indicated samples were
withdrawn and analyzed by native PAGE. The number of uridylylated
subunits (0–3) is indicated.
for either GlnB or GlnJ from R. rubrum, a direct binding
of the divalent cation by the residues at positions 42 and
85 is unlikely, based on the recent structural information
for the homologous proteins from A. brasilense and S.
elongatus [9,10]. In these structures, the residues at posi-
tions 42 and 85 are not directly involved in the coordin-
ation of the divalent cation, which occurs through the
ATP phosphates, the 2-oxo acid moiety of 2-OG and the
carboxamide oxygen of the Q39 side chain. Even though
these residues (Q42, K85) do not participate directly in
the binding of the divalent cation, they are certainly in
the vicinity of the binding site, and can influence this
binding by changing the conformation of the binding
site or affecting binding of ATP (that could subsequently
affect divalent cation binding). This is visible in the
structural model of GlnJ constructed based on the struc-
ture determined for A. brasilense GlnZ in the presence
of ligands (Figure 4). Even though a sequence identity of
74% between GlnJ and GlnZ allows the construction of a
reliable model (specially for the backbone trace), the
specific side chain rotamers cannot be predicted, and
only a structural determination by x-ray crystallography
would correctly address the influence of these two resi-
dues in the properties of the divalent cation binding site.

GlnB variants H42Q and R85K show reduced uridylylation
in the presence of Mg2+

Considering the influence of the residues at positions 42
and 85 we hypothesized that exchanging these residues
in GlnB for the corresponding residues in GlnJ could
affect Mg2+-dependent uridylylation. That was indeed
the case, as shown in Figure 2B. The GlnBH42Q,
GlnBR85K and GlnBH42QR85K variants show normal uridy-
lylation in the presence of Mn2+, but that it is clearly
reduced in the presence of Mg2+, when compared to wt
GlnB.

MnATP (but not MgATP) induces a conformational
change in GlnJ
We hypothesized that, in the case of GlnJ, only the bind-
ing of MnATP would stabilize a protein conformation
that allows the correct positioning of the T-loop for
interaction with GlnD, resulting in uridylylation. To
analyze this possbility we used circular dichroism (CD)
spectroscopy to evaluate changes in the secondary struc-
ture of GlnJ/GlnB upon incubation with either MgATP
or MnATP. It is visible from our results that only
MnATP induced a conformational change in GlnJ, trans-
lated as a significant change in the CD spectrum
(Figure 5A), while both Mg2+ and Mn2+ elicited a similar
conformational change in GlnB (Figure 5B). These
observations of divalent cation-induced conformational
changes in the PII proteins correlate well with the condi-
tions required for efficient uridylylation by GlnD.
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Figure 4 Cartoon representation of the structural model for GlnJ, constructed based on the determined structure of A. brasilense GlnZ,
with ligands (PDB 3MHY). ATP is shown in gray, Magnesium ion in yellow, 2-OG in red and the residues K85 and Q42 are highlighted in blue
and green respectively.
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Figure 5 CD spectra for GlnJ (A) and GlnB (B); protein only (dashed), protein + MnATP (solid) and protein + MgATP (dotted). Proteins
were at 100 μM trimer concentration, ATP at 10 mM and MgCl2/MnCl2 at 10 mM. Spectra were recorded at 24°C.
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The GlnJ and GlnB variants retain functionality
To determine if the substitutions affected protein func-
tion we analyzed the functionality of the GlnJ and GlnB
variants using an assay based on one of the cellular tar-
gets of PII proteins, the adenylyltransferase GlnE. We
have previously used this assay as means to determine
whether PII variants are still able to perform a PII
dependent function [13]. GlnE is responsible for the
regulation of GS activity by post-translational adenylyla-
tion [5]. PII proteins (in the unmodified form) interact
with GlnE promoting adenylylation of GS, leading to
lower GS activity (Figure 6A).
To analyze the functionality of all variants constructed,

we tested the ability to activate GS adenylylation by
GlnE, resulting in reduced GS activity. As shown in
Figure 6B, all variants tested were able to activate the
adenylylation activity of GlnE.

Conclusions
The two PII proteins GlnJ and GlnB from R. rubrum
show different requirements in terms of divalent cations
(Mg2+/Mn2+) for efficient uridylylation by GlnD. Specif-
ically, the uridylylation of GlnJ requires the presence of
Mn2+, with Mg2+ not being able to support this
Figure 6 Analysis of PII protein function in the activation of GlnE. (A)
activity, through GlnE in R. rubrum. (B) Glutamine synthetase activity after 3
Results are the average of three experiments and are shown as mean ± SD
modification. Most likely this is due to the fact that only
Mn2+ (or MnATP) is able to bind and induce a conform-
ational change in GlnJ, as demonstrated here with CD
spectroscopy.
We have shown that it is possible to influence the di-

valent cation response in the uridylylation of the PII pro-
teins, catalyzed by GlnD, by simply exchanging two
amino acid residues in the PII proteins (at positions 42
and 85, located in the T and B loops respectively). Al-
though the substitutions constructed (Q to H and K to
R) do not represent dramatic changes in the amino acid
properties, these changes have a clear effect on the role
of Mg2+ (the Mn2+ dependent uridylylation is retained in
all variants studied). Moreover, we have also confirmed
that these variants retain functionality in the GlnE-
activation assay, suggesting that these substitutions do
not greatly perturb the overall structure.
It is presently unclear from the structural point of view,

which conformations of either GlnJ or GlnB (particularly
of the T-loop) are interacting with GlnD and how these
conformations are affected by the binding of different di-
valent cations (Mg2+ and Mn2+). Additionally, a direct
translation of the present results obtained with purified
proteins to an in vivo physiological situation is not linear
Model representing the role of PII proteins in the regulation of GS
0 minutes of incubation with GlnE and PII proteins (as indicated).
.
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as there is presently no information concerning the con-
centrations of either Mg2+ or Mn2+ in R. rubrum, and if
these concentrations vary in response to the nitrogen sta-
tus (transitions that require changes in the uridylylation
of the PII proteins). Nevertheless, it is certainly possible
that Mn2+ has an important role, as we found this diva-
lent cation to be always required in all reactions involving
GlnJ. In addition to the Mn2+ requirement for in vitro uri-
dylylation of GlnJ by GlnD, we have also demonstrated
that the dissociation of the GlnJ-AmtB1 complex only
occurs with Mn2+, ATP and 2-oxoglutarate, and that
Mg2+ can not substitute for Mn2+ [11,13]. In addition,
Mn2+ ions are essential for the activity of DRAG (the
activating enzyme for nitrogenase) [14,17], a protein
that has been suggested to interact with GlnJ [14,15].
Considering that GlnJ is only expressed under nitrogen
fixing conditions [6,15], all factors that affect uridylyla-
tion of GlnJ can be of importance in the regulation of
the DRAT/DRAG system and ultimately of nitrogenase.
In summary, considering that GlnJ and GlnB are re-

markably similar yet retaining functional specificity, it is
possible that differences in divalent cation binding and
consequently in the uridylylation status of the proteins
can result in different target interaction and ultimately
in different physiological roles. This study adds on to the
Table 1 Bacterial strains and plasmids used in the present stu

Strain or plasmid Relevant characteristic

Strains

R. rubrum

S1 Wild type

E. coli

BL21 (DE3) pLysS Host for expression of PII p

BL21 Star (DE3) Host for expression of GlnE

RB9040 ΔglnD; host for expression

Plasmids

pETGlnE pET101 derivative containin

pGEXGlnD pGEX6P-3 derivative contain

pMJET pET15b derivative containin

pETGlnJ pET15b derivative containin

pETGlnJR17K pETGlnJ derivative encodin

pETGlnJQ42H pETGlnJ derivative encodin

pETGlnJN54D pETGlnJ derivative encodin

pETGlnJK85R pETGlnJ derivative encodin

pETGlnJV100I pETGlnJ derivative encodin

pETGlnJE109G pETGlnJ derivative encodin

pETGlnJQ42HK85R pETGlnJ derivative encodin

pETGlnBH42Q pMJET derivative encoding

pETGlnBR85K pMJET derivative encoding

pETGlnBH42QR85K pMJET derivative encoding

Ap ampicillin; Tc tetracycline; Cm chloramphenicol.
understanding of the complexity of the PII signaling sys-
tem in bacteria.

Methods
Bacterial strains and plasmids
All plasmids and bacterial strains used in this study are
listed in Table 1. E. coli strains were grown on selective
Luria-Bertani medium containing antibiotics at the fol-
lowing final concentrations: 50 μg ml-1 ampicillin, 15 μg
ml-1 tetracycline and 34 μg ml-1 chloramphenicol. R.
rubrum S1 was grown in the medium previously
described [18] under an atmosphere of 95%N2/ 5% CO2

at 30°C.

Site-directed mutagenesis
All GlnJ and GlnB variants were generated by standard
PCR-mediated site-directed mutagenesis using the Quik-
Change kit (Stratagene) and according to the manufac-
turer’s instruction. The templates used were pETGlnJ [5]
and pMJET [20].

Purification of R. rubrum PII proteins
All constructs used to express PII proteins were pET15b
derivatives, generating proteins with an N-terminal poly-
dy

Reference or source

roteins, Cmr Invitrogen

Invitrogen

of GlnD, Tcr [19]

g glnE, Apr [5]

ing glnD, Apr [11]

g glnB, Apr [20]

g glnJ, Apr [5]

g GlnJR17K, Apr This study

g GlnJQ42H, Apr This study

g GlnJN54D, Apr This study

g GlnJK85R, Apr This study

g GlnJV100I, Apr This study

g GlnJE109G, Apr This study

g GlnJQ42HK85R, Apr This study

GlnBH42Q, Apr This study

GlnBR85K, Apr This study

GlnBH42QR85K, Apr This study
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histidine tag. All PII proteins were purified using HiTrap
1 ml columns (GE Healthcare) according to [5].

Purification of R. rubrum glutamine synthetase, GlnE and
GlnD proteins
GlnD was purified as a GST fusion-protein according to
[11]. Glutamine synthetase was purified from wild type
R. rubrum and GlnE was purified with a C-terminal
poly-histidine tag as previously described [5].

Uridylylation assays
Each reaction (final volume 50 μl) contained 50 mM
Tris–HCl pH 7.6, 3.5 μM PII protein (GlnJ, GlnB or a
variant), 0.2 μM GlnD, 100 mM KCl, 1 mM ATP, 1 mM
dithiothreitol, 0.5 mM UTP and either 3 mM MnCl2
and 60 μM 2-OG or 25 mM MgCl2 and 250 μM 2-OG
(in the control reactions the divalent cations were omit-
ted and 2-OG was at 250 μM). After 30 min (or as indi-
cated) the reaction was stopped by the addition of 5X
native loading buffer (125 mM Tris–HCl pH 6.8, 50 mM
EDTA, 50% glycerol, 5% sorbitol) and a 20 μl sample
was loaded onto a 12.5% native PAGE prepared accord-
ing to [21]. After electrophoresis the gels were stained
with Coomassie brilliant blue R250.

Adenylylation assays
Adenylylation reactions were performed as previously
described [13] and GS activity measured using the γ-
glutamyl transferase reaction [5,22].

Circular dichroism spectroscopy
Far-UV CD measurements were performed on an Ap-
plied photophysics chirascan CD spectropolarimeter
using a 50 μm quartz cuvette. Wavelengths in the range
190–250 nm were scanned using 0.5 nm step resolution
and 100 nm/min scan speed. The spectra recorded were
collected and averaged over 1–6 scans. Measurements
were recorded with the temperature kept constant at
24°C using a quantum northwest TC125 temperature
controller.

Abbreviations
GS: Glutamine synthetase; 2-OG: 2-oxoglutarate.
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