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Abstract

Background: The PII protein family comprises homotrimeric proteins which act as transducers of the cellular
nitrogen and carbon status in prokaryotes and plants. In Herbaspirillum seropedicae, two PII-like proteins (GlnB and
GlnK), encoded by the genes glnB and glnK, were identified. The glnB gene is monocistronic and its expression is
constitutive, while glnK is located in the nlmAglnKamtB operon and is expressed under nitrogen-limiting conditions.

Results: In order to determine the involvement of the H. seropedicae glnB and glnK gene products in nitrogen
fixation, a series of mutant strains were constructed and characterized. The glnK- mutants were deficient in
nitrogen fixation and they were complemented by plasmids expressing the GlnK protein or an N-truncated form of
NifA. The nitrogenase post-translational control by ammonium was studied and the results showed that the glnK
mutant is partially defective in nitrogenase inactivation upon addition of ammonium while the glnB mutant has a
wild-type phenotype.

Conclusions: Our results indicate that GlnK is mainly responsible for NifA activity regulation and ammonium-
dependent post-translational regulation of nitrogenase in H. seropedicae.

Background
The PII family comprises homotrimeric proteins that
have important roles in the control of the central meta-
bolism in bacteria and plants, acting as transducers of
the cellular nitrogen and carbon levels [1,2]. In many
Proteobacteria studied there is a pair of PII proteins,
usually called GlnB and GlnK, and their function is to
sense the cellular levels of nitrogen, carbon and energy
by binding the effectors 2-oxoglutarate, ATP and ADP
[2,3]. These signals are then relayed to target proteins
through conformational changes triggered by interaction
with the effectors. The proteobacterial PII proteins also
undergo a cycle of uridylylation/deuridylylation cata-
lyzed by the bifunctional GlnD protein [1] in response
to the intracellular levels of nitrogen. These conforma-
tional and covalent state changes stimulate or inhibit
interactions of PII with different cellular protein targets
involved in nitrogen and carbon metabolism [2].

PII proteins are key players in the regulation of nitrogen
fixation in Proteobacteria. In Klebsiella pneumoniae and
Azotobacter vinelandii, GlnK is required to regulate the
activity of NifL, which inhibits NifA, the nif gene specific
activator, under nitrogen-excess conditions [4-6]. In
Azospirillum brasilense and Rhodospirillum rubrum GlnB
is necessary for the activation of NifA under nitrogen-lim-
iting conditions [7-9], whereas in Rhodobacter capsulatus
both PII proteins are necessary for the NH4

+-dependent
regulation of NifA activity [10]. In addition, PII proteins
are also involved in the post-translational control of nitro-
genase activity in R. rubrum [11] and in A. brasilense
through interaction with DraT, DraG and AmtB [12].
Herbaspirillum seropedicae is a nitrogen-fixing b-Pro-

teobacterium isolated from the rhizosphere and tissues
of several plants, including economically important
species [13]. In this organism two PII-like coding genes
were identified, glnB and glnK [14,15]. The glnB gene is
monocistronic and its expression is constitutive [14],
whereas glnK is apparently co-transcribed with amtB
and orf1, which encode for an ammonium transporter
and a membrane associated protein of unknown func-
tion, respectively [15]. Recently orf1 was named nlmA
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(nitrogen limitation membrane protein A) since
its product was detected in membrane extracts of
H. seropedicae grown under nitrogen-limitation condi-
tions [16]. The expression of the nlmAglnKamtB operon
is dramatically increased under nitrogen-limiting condi-
tions and is dependent on NtrC [15]. As in other
Proteobacteria, both PII proteins from H. seropedicae
are targets of covalent modification by GlnD (uridylyl-
transferase/uridylyl removing enzyme) in response to
the levels of ammonium ions [17].

Results and Discussion
To analyze the role of GlnK and GlnB in the control of
nitrogen fixation in H. seropedicae, glnB (LNglnB) and
glnK (LNglnK) insertional mutants and a glnK in-frame
deletion mutant strain (LNglnKdel) were constructed
and their phenotypes analyzed under different physiolo-
gical conditions. These mutant strains were able to grow
using nitrate as sole nitrogen source (data not shown).
The effect of glnB and glnK disruption on the NtrC-

dependent expression of the nlmAglnKamtB operon [15]
was determined using chromosomal amtB::lacZ transcrip-
tional fusions of strains LNamtBlacZ, LNglnBamtBlacZ
and LNglnKamtBlacZ. These strains were grown under
N-limiting (5 mmol/L glutamate or 2 mmol/L NH4Cl) or
N-excess (20 mmol/L NH4Cl) conditions and assayed for
b-galactosidase. The LNamtBlacZ strain grown under
N-limiting conditions showed b-galactosidase activity 21
times higher than in high ammonium (Table 1), confirm-
ing that nlmAglnKamtB is highly expressed under
N-limiting conditions [15]. Strains LNglnKamtBlacZ and
LNglnBamtBlacZ revealed a similar pattern of amtB
expression, indicating that the mutation of either glnK or
glnB does not affect nlmAglnKamtB expression. Since
nlmAglnKamtB transcription is NtrC-dependent,
these results suggest that GlnB and GlnK can substitute
for each other in control of the NtrC/NtrB system in
H. seropedicae. In agreement with this suggestion, ntrC
[18] and glnD (unpublished results) mutants strains of
H. seropedicae are unable to grow on nitrate, whereas
the glnB and glnK mutant strains can use nitrate as sole
nitrogen source.

In Escherichia coli both GlnB and GlnK are involved
in the regulation of NtrC phosphorylation by NtrB,
although GlnB is more effective [19]. Although several
attempts were made, we failed to construct a double
glnBglnK mutant suggesting that an essential role is
shared by these proteins in H. seropedicae.
The effect of glnK or glnB mutation on nitrogenase

activity of H. seropedicae was determined in cultures
grown in NH4

+-free semi-solid NFbHP medium
(Figure 1). Nitrogenase activity was reduced by approxi-
mately 95% in both glnK strains (LNglnKdel and
LNglnK) indicating that GlnK is required for nitrogen-
ase activity in H. seropedicae. On the other hand, the
glnB strain (LNglnB) showed activity similar to that of
the wild-type. These results contrast with those reported
by Benelli et al [14] who constructed a H. seropedicae
glnB::Tn5-20B mutant (strain B12-27) that was unable
to fix nitrogen. Immunoblot assays did not detect GlnK
in the B12-27 strain [Additional file 1: Supplemental
Figure S1], suggesting that a secondary recombination
event may have happened in this strain resulting in loss
of GlnK not observed by Benelli et al [14].
The nitrogenase phenotype of the glnK mutants was

complemented by pLNOGA (nlmAglnKamtB) and also
partially restored (about 50%) by a plasmid expressing
glnB under control of its own promoter (pACB210)
suggesting that a higher copy number of glnB can sub-
stitute for glnK under N-limitation. The lower nitrogen-
ase activity of the glnK strains could be due to lack of
nif expression or inhibition of nitrogenase. We therefore
analyzed the effect of the glnK mutation on the
NtrC-dependent nifA promoter [20] and on the NifA-
dependent nifB promoter of H. seropedicae [21] by
using plasmids carrying nifA::lacZ (pRW1) or nifB::lacZ
(pEMS140) fusions (Table 2). The b-galactosidase activ-
ity was the same in both wild-type (SmR1) and glnK
(LNglnK) strains containing nifA::lacZ, supporting the
view that GlnK is not strictly necessary for NtrC regula-
tion in H. seropedicae in the presence of a functional
glnB gene. On the other hand, expression of the nifB::
lacZ fusion was reduced 10-fold in the glnK mutant
compared to the wild-type, indicating that GlnK is

Table 1 Effect of glnB and glnK mutations on nlmAglnKamtB expression

Growth Conditions b-galactosidase Activity [nmol o-nitrophenol/(min.mg protein)]

Strains

LNamtBlacZ
(SmR1, amtB::lacZ)

LNglnKamtBlacZ
(ΔglnK, amtB::lacZ)

LNglnBamtBlacZ
(glnB-TcR, amtB::lacZ)

5 mmol/L glutamate (2.5 ± 0.2) × 103 (2.4 ± 0.2) × 103 (2.3 ± 0.2) × 103

2 mmol/L NH4Cl (2.1 ± 0.1) × 103 (2.29 ± 0.08) × 103 (2.2 ± 0.1) × 103

20 mmol/L NH4Cl (1.1 ± 0.2) × 102 (1.4 ± 0.4) × 102 (1.6 ± 0.3) × 102

Indicated strains of H. seropedicae were grown in the presence of glutamate or NH4Cl. b-galactosidase activity was determined as described. Values are the mean
of at least three independent experiments ± standard deviation.
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required for nifB expression in H. seropedicae, even in
the presence of wild type glnB. These results indicate
that the lower nitrogenase activity in the glnK mutants
was the result of lack of nif expression, most likely due
to impaired NifA activity.
Previous results showed that the N-terminal domain

of H. seropedicae NifA is required for controlling its
activity in response to NH4

+, and that an N-truncated
form of NifA is transcriptionally active, but not respon-
sive to NH4

+ levels [22,23]. Thus, the nitrogenase activ-
ity was determined in the glnK mutants carrying
pRAMM1 or pLNΔNifA which express a full NifA and
an N-truncated form of NifA, respectively (Figure 1).
The nitrogenase activity of the glnK mutants was
restored only by the N-truncated-NifA protein, reinfor-
cing the indication that the nitrogenase negative pheno-
type of glnK strain is due to the presence of an inactive
NifA.
Nitrogenase activity is reversibly inhibited by addition

of ammonium or energy depletion in several diazotrophs,

a phenomenon called nitrogenase switch-off. The best
studied process is the reversible NifH ADP-ribosylation
carried out by the DraT and DraG enzymes whose activ-
ities are controlled by processes involving PII proteins at
least in some diazotrophs [11,12,24,25]. A PII protein has
also been implicated in the control of nitrogenase by
direct interaction with NifH in the methanogenic
archaeon Methanococcus maripaludis [26]. In H. serope-
dicae reversible ADP-ribosylation of NifH by the DraT/
DraG does not occur since draTG genes are absent [27]
[GenBank:CP002039]. Although the mechanism of NH4
+-dependent nitrogenase control in this organism is not
known, it is thought to be due to change in prevailing
physiological conditions leading to nitrogenase inhibition.
Since the glnK mutant is Nif-, we used strain LNglnKdel
carrying plasmid pLNΔNifA for the switch-off experi-
ments. Addition of low concentrations of NH4Cl (300
μmol/L) to derepressed cells caused an inactivation of
nitrogenase (Figure 2A). Wild-type and glnB strains
retained less than 20% of initial nitrogenase activity 25
minutes after ammonium addition, which was restored to
60-70% of initial activity 60 minutes after ammonium
addition. This effect does not involve protein synthesis
since the presence of chloramphenicol or tetracycline
had no effect on this behavior [28]. Although nitrogenase
of strain LNglnKdel/pLNΔNifA was partially inhibited by
ammonium addition, the strain retained about 50% of its
initial activity, indicating only a partial nitrogenase
switch-off (Figure 2A). After addition of 1 mmol/L of
NH4Cl (Figure 2B) the activity of the wild-type and glnB
strains dropped sharply to less than 30% and did not
recover even 120 minutes after ammonium addition. In
contrast, 40% of the initial nitrogenase activity was still
present in the glnK strain 120 minutes after ammonium
addition and the decrease in nitrogenase activity was
slower: 20 minutes after ammonium addition the wild-
type had only 25% activity, whereas the glnK strain had
about 65% of the original nitrogenase activity. These
results indicate that GlnK is involved in the nitrogenase
inactivation by NH4

+ in H. seropedicae, and that GlnB
cannot fully replace GlnK in triggering nitrogenase
switch-off. It is interesting to note that there was also a
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Figure 1 Nitrogenase activity of H. seropedicae wild-type, glnB
and glnK strains. Nitrogenase activity was determined as described
using strains SmR1 (wild-type), LNglnB (glnB-TcR), LNglnK (glnK-KmR),
LNglnKdel (ΔglnK) grown in semi-solid medium. The glnK mutants
carrying plasmids pLNOGA, pACB210, pLNΔNifA or pRAMM1, which
respectively express NmlA-GlnK-AmtB, GlnB, ΔN-NifA and NifA were
also evaluated. Data represent the average of at least three
independent experiments and bars indicate the standard deviations.

Table 2 Promoter activity of nifA::lacZ and nifB::lacZ fusions in H. seropedicae wild-type (SmR1) and glnK mutant
(LNglnK) strains

Strains b-galactosidase Activity [nmol o-nitrophenol/(min.mg protein)]

Plasmids

none pPW452
(promoter-less lacZ vector)

pRW1
(nifA::lacZ)

pEMS140
(nifB::lacZ)

SmR1 (3 ± 1) × 10 (6 ± 2) × 10 (7 ± 1) × 102 (2.8 ± 0.1) × 103

LNglnK (2.0 ± 0.7) × 10 (4 ± 2) × 10 (6 ± 1) × 102 (2.5 ± 0.3) × 102

H. seropedicae strains carrying the indicated plasmids were grown in NFbHP medium supplemented with 10 mmol/L of NH4Cl under air at 30°C. The cells were
then centrifuged, resuspended in NFbHP (nitrogen-free) medium and de-repressed for 7 hours under 1.5% oxygen. b-galactosidase was determined as described.
Values are averages of at least three independent experiments ± standard deviation

Noindorf et al. BMC Microbiology 2011, 11:8
http://www.biomedcentral.com/1471-2180/11/8

Page 3 of 8

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CP002039


delay in nitrogenase reactivation in the glnK mutant
(Figure 2A), which may suggest that GlnK is involved in
both nitrogenase inactivation by NH4

+ and re-activation
upon NH4

+ depletion.
Recently results using a proteomic approach [16]

showed that H. seropedicae GlnK is associated with the
membrane at higher concentration immediately after
addition of ammonium. This membrane association was
shown to be AmtB-dependent, as shown in several bac-
teria [2,16]. Previous results also showed that an amtB
mutant has a partial NH4

+ switch off very similar to

that shown by the glnK mutant[15]. These results allow
us to propose a model for the regulation of nitrogen
fixation in H. seropedicae. Under N-limiting conditions,
NtrC-dependent promoters are activated leading to
expression of nifA and nlmAglnKamtB genes. The status
of fixed nitrogen is signaled to NtrC via the uridylylation
state of either GlnB or GlnK. Under a low ammonium
and oxygen condition, NifA activates the expression of
nif genes in a process which requires GlnK, most prob-
ably in an uridylylated form. Thus, under N-limiting
conditions the nitrogenase complex is active, AmtB is
associated with the membrane, NlmA is most probably
in the periplasm and GlnK is mainly located in the cyto-
plasm. When ammonium is added, deuridylylated GlnK
rapidly associates with the cell membrane by interacting
with AmtB to form the GlnK-AmtB complex which, in
turn, signals to nitrogenase to switch-off by a yet
unknown process.

Conclusions
In summary, our results show that both GlnB and GlnK
proteins can regulate NtrC-dependent promoters in H.
seropedicae. Under physiological conditions, GlnK is
required for NifA activity control. GlnK also controls
the nitrogenase switch-off in response to NH4

+ by a
mechanism which most probably involves the formation
of a membrane-bound GlnK-AmtB complex.

Methods
Plasmids, Bacterial strains and Growth conditions
The H. seropedicae and E. coli strains and plasmids used
in this work are listed in Table 3. E. coli strains were
grown routinely in Luria medium (Luria broth or Luria
agar) [29] at 37°C. H. seropedicae was grown at 30°C in
NFbHP medium [30] supplemented with NH4Cl (20
mmol/L) or the indicated nitrogen source. The concen-
trations of the antibiotics used were as follows: ampicil-
lin (250 μg/mL), tetracycline (10 μg/mL), kanamycin
(100 μg/mL for E. coli, 1 mg/mL for H. seropedicae),
streptomycin (80 μg/mL) and choramphenicol (30 μg/
mL for E. coli, 100 μg/mL for H. seropedicae).

Enzyme assays
b-galactosidase activity was determined in cells carrying
a lacZ fusion as described [31]. To study the amtB-
lacZ-KmR chromosomal fusion expression, H. seropedi-
cae strains carrying chromosomal transcriptional fusions
were grown for 14 hours in NFbHP medium containing
glutamate (5 mmol/L) or NH4Cl (2 mmol/L or 20
mmol/L), and assayed for b-galactosidase activity. To
study the nifA and nifB expression, H. seropedicae
strains carrying plasmid-borne transcriptional fusions
nifA::lacZ or nifB::lacZ were grown for 14 hours in
NFbHP medium containing NH4Cl (10 mmol/L) under
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Figure 2 Effect of ammonium ions on nitrogenase activity in H.
seropedicae wild-type, glnB and glnK strains. Nitrogenase switch-
off/on of H. seropedicae wild-type, glnB and glnK carrying plasmid
pLNΔNifA was performed as described. Cells were grown under
nitrogenase de-repressing conditions when NH4Cl was added
(arrow). Samples were analyzed 10, 20 and 30 minutes after
acetylene injection to confirm linear nitrogenase activity. Panel A:
addition of NH4Cl (0.3 mmol.L-1). Panel B: addition of NH4Cl (1
mmol.L-1). The results represent the average of experiments with
three independent cultures and bars indicate the standard
deviation.
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air at 30°C. The cells were then centrifuged, resus-
pended in 3 mL of NFbHP medium (O.D.600 = 0.2) and
incubated in 25 mL flasks, at 30°C for 7 hours under
1.5% oxygen. The results are reported as nmol of
o-nitrophenol (NP) produced per min per mg protein.

Protein concentration was determined by the Bradford
method [32] using bovine serum albumin as standard.
Nitrogenase activity was determined using cells grown

in semi-solid NFbHP medium containing glutamate (0.5
mmol/L). For nitrogenase switch-off/on assays cells

Table 3 Herbaspirillum seropedicae strains and plasmids

Strains Phenotype/genotype Reference

Herbaspirillum seropedicae

SmR1 Wild type, Nif+, SmR [38]

LNglnK SmR1 containing glnK::sacB- KmR this work

LNglnKdel SmR1 containing ΔglnK this work

LNglnB SmR1 containing glnB::TcR this work

LNamtBlacZ SmR1 containing amtB::lacZ-KmR this work

LNglnKamtBlacZ LNglnKdel containing amtB::lacZ-KmR this work

LNglnBamtBlacZ LNglnB containing amtB::lacZ-KmR this work

B12-27 SmR1 containing glnB::Tn5-20B [14]

Escherichia coli

DH10B Smr; F’ [proAB+ lacZΔM15] Life
Technologies

S17.1 SmR, Tra+ pro thi recA hsdR (RP4-2 kan::Tn7 tet::Mu) [39]

Plasmids Relevant characteristics Reference

pACB192 1.7 kb DNA fragment containing the glnB gene of H. seropedicae in pSUP202 This work

pACB194 glnB gene of H. seropedicae with a tetracycline resistance transposon EZ::TN™ < TET-1 > (Epicentre) in pSUP202 this work

pACB210 glnB gene of H. seropedicae in pLAFR3.18Cm this work

pDK6 Expression vector/tac promoter, KmR [37]

pDK6nifACT H. seropedicae nifA deleted of 606 bp in the 5’coding region cloned into pDK6 carrying the nifA promoter this work

pDK6pnifA nifA gene promoter region of H. seropedicae in pDK6 this work

pEMS140 nifB-lacZ transcriptional fusion of H. seropedicae in pPW452 [21]

pEMS301 1.7 kb EcoRI fragment that contains the promoter region and part of the nifA gene of H. seropedicae in pTZ19R [40]

pLAFR3.18Cm TcR, CmR, IncP cosmid with the pTZ18R cloning nest [15]

pLNΔNifA Expresses ΔN-NifA of H. seropedicae with its own promoter in pLAFR3.18Cm this work

pLNOGA 5.1 kb fragment that contains the nlmAglnKamtB operon of H. seropedicae in pLAFR3.18Cm
(former named pLARF3.18OGA)

[15]

pLNglnK 0.9 kb BamHI/HindIII fragment that contains the 3’ terminal of the nlmA gene,
the complete glnK gene and 5’ terminal of the amtB gene of H. seropedicae in pTZ18R

this work

pMH1701 KmR, contains a sacB-KmR cassette [35]

pPW452 TcR, transcriptional lacZ gene fusion [41]

pRAM2T7 contains H. seropedicae nifA deleted of 606 bp in the 5’end, encoding
an N-truncated form of NifA deleted of its N-terminal domain and Q-linker

this work

pRAMM1 nifA of H. seropedicae in pLAFR3.18Cm this work

pRW1 nifA-lacZ transcriptional fusion of H. seropedicae in pPW452 [20]

pSUP202 ApR, CmR, TcR, Mob [39]

pSUPamtBClacZ Central region of the amtB gene with a lacZ-KmR cassette insertion in pSUP202 [15]

pSUPglnK 0.9 kb BamHI/HindIII fragment that contains the 3’ terminal of the nlmA gene, the complete glnK gene and 5’
terminal of the amtB gene of H. seropedicae in pSUP202

this work

pSUPglnKdel ΔglnK (192bp) gene of H. seropedicae in pSUP202 this work

pSUPglnKdelsacB contains ΔglnK and a sacB-KmR cassette (from pMH1701) cloned into the vector pSUP202 this work

pSUPglnKsacB 0.9 kb fragment spanning from the 3’end of nlmA to the 5’end of amtB
with a sacB-KmR (from pMH1701) inserted into the glnK gene

this work

pTZ19R ApR lacZ f1 IG [42]

pUC18 ApR, lacZ, f1 Invitrogen

pUCG08del 0.8 kb DNA fragment that contains the 3’ terminal of the nlmA gene,
the complete glnK gene and the 5’ terminal of the amtB gene of H. seropedicae in pUC18.

this work

pUCglnKdel ΔglnK gene of H. seropedicae in pUC18 this work
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were grown in liquid NFbHP medium with glutamate
(4 mmol/L) at 30°C and 120 rpm [28]. Nitrogenase
activity was determined by acetylene reduction [33,34].

Construction of the LNglnB mutant of H. seropedicae
Plasmid HS26-FP-00-000-021-E03 (Genopar consortium,
http://www.genopar.org), which contains the H. serope-
dicae glnB gene in pUC18, was linearized with EcoRI
and treated with T4DNA polymerase. It was then
digested with HindIII to release a 1.7 kb fragment con-
taining the glnB gene. This fragment was subcloned into
the vector pSUP202 previously linearized with BamHI,
treated with T4DNA polymerase and digested with Hin-
dIII to produce plasmid pACB192.
In vitro transposon mutagenesis of the glnB gene car-

ried by plasmid pACB192 was performed using the EZ::
TN™ <TET-1> Insertion Kit (Epicentre Technologies) fol-
lowing the manufacturer’s instructions. A plasmid con-
taining the transposon insertion in the glnB coding
region was selected and named pACB194. This plasmid
was introduced by conjugation to H. seropedicae SmR1
using E. coli strain S17.1 as the donor. Recombinant colo-
nies were selected for tetracycline resistance and
screened for the loss of chloramphenicol resistance (vec-
tor marker). Southern blot of restriction enzyme digested
genomic DNA was used to confirm the presence of the
transposon in the glnB gene (data not shown). This H.
seropedicae glnB-TcR strain was named LNglnB.

Construction of the LNglnK mutant of H. seropedicae
To clone the glnK gene, chromosomal DNA of H. serope-
dicae was amplified using the primers glnKD (5’-GACT-
GAAAGGATCCGCGTGTCC-3’, BamHI restriction site
is underlined) and glnKR (5’-CGAGGGCAAAGCTT
CTTCGGTGG-3’, HindIII restriction site is underlined).
The amplified fragment was then ligated into BamHI/
HindIII-cut pTZ18R, generating the plasmid pLNglnK.
This BamHI/HindIII fragment containing the glnK gene
was then subcloned into pSUP202, yielding plasmid
pSUPglnK. A sacB-KmR cassette excised with BamHI
from pMH1701 [35] was inserted into the BglII site of
the glnK gene. The resulting plasmid (pSUPglnKsacB)
was transferred into H. seropedicae SmR1 by conjugation
using E. coli strain S17.1 as the donor. Mutant colonies
were selected for kanamycin resistance and screened for
the loss of chloramphenicol resistance, as before. Hybri-
dization of genomic DNA was used to confirm the pre-
sence of the cassette in the glnK gene (data not shown).
This glnK-KmR mutant was named LNglnK.

Construction of the LNglnKdel mutant of H. seropedicae
To construct a mutant containing an in-frame 192 bp
deletion of the glnK gene, plasmid pUCG08del contain-
ing the 3’ terminus of the nlmA gene, the glnK gene and

the 5’ terminus of the amtB gene was used as a template
in two distinct PCR reactions. Primers M13universal
and GlnKdelR (5’ AAGCCCTCGAGTTCAGTCACGGT
3’, XhoI restriction site is underlined) were used to
amplify a 180 bp region upstream of glnK and the first
107 bp of the glnK gene. The primers M13reverse and
GlnKdelD (5’ GGACCTGCTCGAGGTGATCCGT 3’,
XhoI restriction site is underlined) were used to amplify
the last 58 bp of the glnK gene and the first 180 bp of
amtB. The amplified fragments were joined by the XhoI
sites. This fragment containing glnK deleted of 192 bp
was then used as template for a PCR reaction with the
primers M13reverse and M13universal. The resulting
PCR product was digested with BamHI and PstI and
inserted into pUC18 to give pUCglnKdel. This fragment
was then subcloned into pSUP202, yielding the plasmid
pSUPglnKdel. A sacB-KmR cassette excised with BamHI
from pMH1701 [35] was inserted into the vector region
of the BamHI-cut pSUPglnKdel plasmid. The resulting
plasmid (pSUPglnKdelsacB) was conjugated into H. sero-
pedicae SmR1 using E. coli strain S17.1 as the donor.
Recombinant colonies were selected for kanamycin and
chloramphenicol resistance. One mutant strain was
selected, and grown overnight in liquid NFbHP medium
supplemented with ammonium chloride (20 mmol/L)
and 80 μg/mL streptomycin. One microliter of the cul-
ture was plated on solid NFbHP medium supplemented
with 20 mmol/L NH4Cl, 5% sucrose and 80 μg/mL
streptomycin. Sucrose is toxic to bacteria containing the
sacB gene in the chromosome, therefore only strains
that lost the sacB-KmR cassette by a second homologous
recombination event would grow. The selected strains
were analyzed by PCR with the primers GlnKF1
(5’TGTCCAAGACCTTCGACG3’) and GlnKR1
(5’CATGCTCATTAGAGTTCC3’) which were homolo-
gous to the glnK flanking 5’- and 3’- regions, confirming
the deletion of the 192 bp glnK fragment (data not
shown). This in-frame glnK strain (ΔglnK) was named
LNglnKdel.

Construction of plasmid pLNΔNifA
An Eco47III/SacI DNA fragment containing the nifA
gene promoter region of H. seropedicae was excised
from the plasmid pEMS301[36] and sub-cloned into the
SmaI/SacI-cut vector pDK6 [37], yielding plasmid
pDK6pnifA. An XbaI DNA fragment encoding for the
central and C-terminal region of NifA protein
(ΔN-NifA) of H. seropedicae was excised from the plas-
mid pRAM2T7 and sub-cloned into the XbaI-cut
pDK6pnifA, in the same orientation as the nifA promo-
ter, yielding plasmid pDK6nifACT. Finally, a SacI/Hin-
dIII DNA fragment containing the nifA 5’-truncated
gene was excised from pDK6nifACT and sub-cloned
into pLAFR3.18Cm digested with SacI and HindIII. The
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generated plasmid was named pLNΔNifA and encodes
for the central and C-terminal domains of NifA under
control of the nifA promoter.

Construction of the plasmid pACB210
A 1.7 kb EcoRI-HindIII fragment containing the glnB
gene with its promoter region was excised from the
plasmid HS10-MP-00-000-014-E08 (Genopar consor-
tium, http://www.genopar.org), and sub-cloned into the
vector pLAFR3.18 digested with EcoRI-HindIII to yield
plasmid pACB210.

Construction of chromosomal amtB::lacZ transcriptional
fusions
To construct amtB-lacZ transcriptional fusions, the
suicide plasmid pSUPamtBClacZ was introduced by
conjugation, using E. coli strain S17.1 as the donor, into
H. seropedicae strains SmR1, LNglnKdel and LNglnB
resulting in the strains LNamtBlacZ, LNglnKamtBlacZ
and LNglnBamtBlacZ, respectively. Genomic DNA
hybridization confirmed the presence of the cassette
lacZ-KmR in the amtB gene (data not shown).

Additional material

Additional file 1: Immunoblot analysis of H. seropedicae PII proteins.
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