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Life without a cell membrane: Challenging the
specificity of bacterial endophytes within Bryopsis
(Bryopsidales, Chlorophyta)
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Abstract

Background: The siphonous green macroalga Bryopsis has some remarkable characteristics. Besides hosting a rich
endophytic bacterial flora, Bryopsis also displays extraordinary wound repair and propagation mechanisms. This
latter feature includes the formation of protoplasts which can survive in the absence of a cell membrane for
several minutes before regenerating into new individuals. This transient ‘life without a membrane’ state, however,
challenges the specificity of the endophytic bacterial communities present and raises the question whether these
bacteria are generalists, which are repeatedly acquired from the environment, or if there is some specificity
towards the Bryopsis host.

Results: To answer this question, we examined the temporal stability and the uniqueness of endobiotic bacterial
communities within Bryopsis samples from the Mexican west coast after prolonged cultivation. DGGE analysis
revealed that Bryopsis endophytic bacterial communities are rather stable and clearly distinct from the epiphytic
and surrounding cultivation water bacterial communities. Although these endogenous communities consist of
both facultative and obligate bacteria, results suggest that Bryopsis owns some intrinsic mechanisms to selectively
maintain and/or attract specific bacteria after repeated wounding events in culture.

Conclusions: This suggests that Bryopsis algae seem to master transient stages of life without a cell membrane
well as they harbor specific - and possibly ecological significant - endophytic bacteria.

Background
The marine green alga Bryopsis has long been suspected
to harbor endogenous bacteria. These intracellular bac-
teria have been repeatedly observed in the cytoplasm as
well as vacuolar regions of algal thalli and gametes by
electron microscopy [[1,2] and personal observations see
additional file 1], suggesting the presence of bacterial
endophytes within Bryopsis is a natural phenomenon.
Recently, the first insights were provided into the iden-
tity and diversity of these bacterial endophytes within
two Bryopsis species from the Pacific Mexican coast [3].
Full length 16S rRNA gene analysis showed that the
Bryopsis endophytic bacterial communities are quite low
in diversity (i.e. only 7 bacterial OTUs detected) but tax-
onomically wide-ranging with the presence of

Arcobacter, Bacteroidetes, Flavobacteriaceae, Myco-
plasma, Labrenzia, Phyllobacteriaceae and Xanthomona-
daceae species. Moreover, the same Bacteroidetes,
Mycoplasma, Phyllobacteriaceae, and in particular Flavo-
bacteriaceae bacteria, were detected in several Bryopsis
samples collected hundreds of kilometers apart. This
apparent spatial stability of the Bryopsis-bacterial endo-
biosis, however, raises the question whether these endo-
phytes are a subset of the free-living bacterial
community or whether there is some specificity towards
the Bryopsis host. Although the distinctiveness between
free-living and macroalgal-associated bacterial commu-
nities is well established [4-8], the extraordinary mor-
phological and physiological characteristics of the
Bryopsis host must have implications for the specificity
of its bacterial endophytes. Bryopsis is a marine sipho-
nous macroalga composed of a single, tubular shaped
cell which contains multiple nuclei and chloroplasts in a
thin cytoplasmic layer surrounding a large central
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vacuole [9]. While an organism composed of a giant,
single cell would be prone to damage, siphonous macro-
algae possess an intricate defense network that operates
at various levels [7,10]. In Bryopsis, for example, the
metabolite kahalalide F, which shows in vitro therapeu-
tic activities, protects the alga from fish predation [11].
Even if damage does occur, a complex, multistep wound
response is triggered [10,12] to which Bryopsis algae add
a surprisingly feature, i.e. the formation of protoplasts
[13]. These protoplasts are membraneless structures that
can survive in seawater for 10-20 minutes. Subsequently,
membranes and a cell wall are synthesized de novo sur-
rounding each protoplast, which then develop into new
Bryopsis plants. This not only suggests Bryopsis can
exist - at least transiently -without a cell membrane, it
also questions the nature of the association between the
algal host and the endophytic bacterial communities
present. Are these bacteria Bryopsis-specific, obligate
endophytes (specialists) or are they rather generalists
(facultative endogenous bacteria) which are repeatedly
acquired from the local environment (epiphytic commu-
nities and/or surrounding sea water)?
To address this issue, we evaluated the temporal stabi-

lity of the endobiotic bacterial communities after pro-
longed cultivation of Bryopsis isolates. We also
examined the diversity of the epiphytic and surrounding
water bacterial communities of five Bryopsis isolates in
culture using the DGGE technique and subsequently
compared these DGGE profiles with previously obtained
DGGE banding patterns of Bryopsis endophytic bacterial
communities [3].

Methods
Sample collection and DNA extraction
Bryopsis hypnoides (MX19 and MX263) and Bryopsis
pennata var. leprieurii individuals (MX90, MX164 and
MX344) were collected in February 2009 at five different
sites along the Mexican west coast [3]. Living algal sam-
ples were transferred to the laboratory and unialgal
Bryopsis cultures were formed by repeatedly isolating
clean apical fragments. To preserve these unialgal cul-
tures, apical fragments were monthly transferred to
fresh sterile 1 × modified Provasoli enriched seawater
[14]. All unialgal Bryopsis cultures were maintained in
the laboratory at 23°C under a 12 h:12 h light/dark cycle
with light intensities of 25-30 μE m-2s-1.
One year after the first endophytic community screen-

ing [3], all five Bryopsis MX samples were resubmitted
to a total surface sterilization [15] and DNA extraction
[16] in October 2010 to evaluate the temporal stability
of the endophytic bacterial communities after prolonged
cultivation. To address the specificity of the Bryopsis-
bacterial endobiosis in culture, 50 ml of 30 day old cul-
tivation water was collected from each Bryopsis MX

culture that had been cultivated for two years (i.e. in
February 2011). These cultivation water samples were
serially filtered over a syringe filter holder with sterile
11 μm and 0.2 μm cellulose acetate filters (Sartorius Ste-
dim Biotech GmbH, Germany) to remove small Bryopsis
fragments and to retain the planktonic microbial frac-
tion, respectively. Bacterial DNA was extracted from the
0.2 μm filters using the bead-beating method followed
by phenol extraction and ethanol precipitation as
described by Zwart et al. [17]. Parallel with these culti-
vation water samples, washing water samples were
obtained from all five MX isolates by repeatedly vortex-
ing the algae in 50 ml sterile artificial seawater (ASW).
These washing water samples, containing the loosely
Bryopsis-associated bacterial fraction, were processed as
described above. Subsequently, approximately 1 gram of
each washed Bryopsis MX sample was placed in 500 μl
cetyltrimethylammonium bromide (CTAB) lysis buffer
supplemented with 20 mg.mL-1 proteinase K and 2.5 μl
filter-sterilized Umonium Master (Huckert’s Interna-
tional, Belgium) to eliminate the epiphytic bacterial frac-
tion from the Bryopsis surface [15]. Samples were
incubated for 30 minutes at 60°C and subsequently vor-
texed in 500 μl sterile ASW for 2 minutes. Algal mate-
rial was removed by centrifugation and the
supernatants’ DNA originated from the epiphytic bacter-
ial fraction was extracted using a CTAB protocol modi-
fied from Doyle and Doyle [16].

DGGE and sequence analysis
The endophytic (EN-2010), epiphytic (EP), washing
water (WW) and cultivation water (CW) bacterial com-
munity extracts were subjected to a nested-PCR DGGE
approach. First, full length 16S rRNA gene amplification
was carried out with the universal bacterial primers
27F/1492R following the protocol outlined in Lane [18].
PCR amplicons were purified using a Nucleofast 96 PCR
clean up membrane system (Machery-Nagel, Germany)
according to the manufacturer’s instructions and subse-
quently submitted to a second PCR with primer pair
F357-GC/R518 targeting the V3 region of the 16S rRNA
gene. The latter amplification reaction and subsequent
DGGE analysis were carried out as previously described
[15], with a denaturing gradient of 45-65%. DGGE band-
ing patterns were normalized using BioNumerics 5.1
software (Applied Maths, Belgium). As standard, a mar-
ker containing the V3 16S rRNA gene fragments of all
bacterial endophyte and chloroplast OTUs formerly
obtained from the five Bryopsis MX samples [3] was
used (see additional file 2). The temporal stability of the
endophytic communities was explored by visually com-
paring the normalized endophytic community profiles of
MX sample’s DNA extracts made in October 2009 (EN-
2009) versus October 2010 (EN-2010). To study the
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specificity of the Bryopsis-bacterial endobiosis, normal-
ized EP, WW and CW bacterial community profiles of
each Bryopsis sample were comparatively clustered with
previously obtained endophytic (EN-2009) DGGE band-
ing patterns [15] using Dice similarity coefficients. A
dendrogram was composed using the Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) algo-
rithm in BioNumerics to determine the similarity
between the EP, WW, CW and EN-2009 samples. The
similarity matrix generated was also used for construct-
ing a multidimensional scaling (MDS) diagram in Bio-
Numerics. MDS is a powerful data reducing method
which reduces each complex DGGE fingerprint into one
point in a 3D space in a way that more similar samples
are plotted closer together [19]. Additionally, EP, WW
and CW DGGE bands at positions of endophytic
(including chloroplast) marker bands were excised,
sequenced and identified as described by Hollants et al.
[3]. To verify their true correspondence with Bryopsis
endophytes, excised bands’ sequences were aligned and
clustered with previously obtained endophytic bacterial
sequences [3] using BioNumerics. Excised DGGE bands’
V3 16S rRNA gene sequences were submitted to EMBL
under accession numbers :HE599189-HE599213.

Results
Temporal stability of endophytic bacterial communities
after prolonged cultivation
The endophytic bacterial communities showed little
time variability after prolonged cultivation when visually
comparing the normalized EN-2009 and EN-2010
DGGE fingerprints (Figure 1). The band patterns of the
different MX90, MX263 and MX344 endophytic extracts
were highly similar, whereas Bryopsis samples MX19
and 164 showed visible differences between the commu-
nity profiles of their EN-2009 and EN-2010 DNA
extracts. Both the MX19 and MX164 sample had lost
the DGGE band representing the Phyllobacteriaceae
endophytes (black boxes in Figure 1) after one year of
cultivation.

DGGE fingerprint cluster analysis: inside ≠ outside
DGGE cluster analysis showed that the endophytic (EN)
banding patterns were significantly different from the
epiphytic (EP), washing water (WW) and cultivation
water (CW) community profiles of all five MX Bryopsis
cultures studied. In the dendrogram (Figure 2), the clus-
ter containing the EP, WW and CW community profiles
is clearly separated from the endophytic banding pat-
terns (indicated in bold, Figure 2). Also the multidimen-
sional scaling (MDS) plot (Figure 3A), which reduces
the complex DGGE patterns to one point per sample,
shows that the EN samples (right) are clearly apart from
the epiphytic and surrounding water samples (left).

Marker

MX19 EN-2009

MX19 EN-2010

MX90 EN-2009

MX90 EN-2010

MX164 EN-2009

MX164 EN-2010

MX263 EN-2009

MX263 EN-2010

MX344 EN-2009

MX344 EN-2010

Marker

Gradient 45 - 65
M1m
M1b M2 M3 M4 M5 M6 M7 M8

M9
M10

M1m
M1b M2 M3 M4 M5 M6 M7 M8

M9
M10

Figure 1 Visual comparison of normalized endophytic DGGE
fingerprints obtained from surface sterilized Bryopsis DNA
extracts made in October 2009 (EN-2009) versus October 2010
(EN-2010). Differences are indicated with black boxes. The first and
last lanes contain a molecular marker of which the bands
correspond to known Bryopsis endophyte or chloroplast sequences
(see additional file 2). This marker was used as a normalization and
identification tool.
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Figure 2 UPGMA dendrogam showing the similarities (≥ 70%)
among the endophytic (EN-2009), epiphytic (EP), washing
water (WW) and cultivation water (CW) normalized DGGE
fingerprints. Cluster analysis was performed in BioNumerics using
the band based Dice similarity coefficient with an optimization of
0.84% and a position tolerance of 0.48%. DGGE bands in the EN-
2009 profiles identified as algal chloroplasts were excluded from the
analysis. DGGE band patterns are graphically represented and
similarity values above 70% are indicated above the branches.
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Figure 3 Three-dimensional MDS plot seen from dimension X and Y (A) and Y and Z (B) visualizing the similarities among the
endophytic (EN-2009), epiphytic (EP), washing water (WW) and cultivation water (CW) DGGE fingerprints. The MDS plot was derived
from the similarity matrix generated during the DGGE cluster analysis (Figure 2). Clusters 1 till 5 (B) surround the EP, WW and CW fingerprints
(reduced into one point in the plot) of Bryopsis samples MX19, MX90, MX164, MX263 and MX344, respectively.
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Besides this, the MDS diagram showed that the EN
samples did not cluster together and are distributed
over the y-axis of the three-dimensional plot (Figure
3A), while the EP, WW and CW samples were more or
less grouped per Bryopsis MX sample (Figure 3B).
Within one Bryopsis sample EP-WW-CW cluster (clus-
ters 1-5, Figure 3B), however, no general grouping mode
can be observed. Whereas the epiphytic community
samples within clusters 2, 3 and 4 (representing Bryopsis
samples MX90, MX164 and MX263) were more apart
from their corresponding WW and CW samples, this
was not the case for clusters 1 and 5 (i.e. Bryopsis cul-
tures MX19 and MX344). These observations corre-
sponded to the results of the cluster analysis of all
DGGE patterns (Figure 2). In addition, Figure 2 also
shows a much larger diversity of DGGE bands in all epi-
phytic and surrounding water samples in comparison
with the endophytic DGGE profiles.

DGGE band cluster analysis: inside ≈ outside
Although the community fingerprints of all EP, WW
and CW samples were distinct from the EN community
profiles, some overlap was noticeable between individual
bands from the EP, WW and CW DGGE profiles and
the EN (including chloroplast) marker bands. To exam-
ine this potential overlap, EP, WW and CW DGGE
bands at positions of marker bands (Figure 4, bands 1-
27) were excised from the polyacrylamide gels and
sequenced. Table 1 outlines the excised bands’ taxo-
nomic identification and their phylogenetic affiliation.
The last column in Table 1 shows the correlation (posi-
tive+ or negative-) between the position of a certain EP,
WW or CW DGGE band towards the marker bands
and its sequence identification. From this column we
can deduce that most bands at positions of marker
bands M1m, M2, M8 and M10 showed sequences that
matched those of the marker bands and were thus iden-
tified as Mycoplasma, Arcobacter, Phyllobacteriaceae
and Labrenzia species, respectively. All EP, WW or CW
bands at the height of Bacteroidetes (M1b), chloroplast
(M3 and M4), Flavobacteriaceae (M5-7) and Xanthomo-
nadaceae (M9) marker bands, however, showed a mis-
match. Instead of being related to Bryopsis endophytic
bacterial sequences, these latter band sequences were
affiliated with Alphaproteobacterial (Caulobacterales,
Rhizobiales and Sneathiellales), Gammaproteobacterial
(Alteromonadales and Oceanospirillales) and Acantho-
pleuribacterales sequences (see Table 1). To validate the
true correspondence of excised EP, WW and CW bands
with endophytic sequences, band sequences were clus-
tered with previously obtained endophytic bacterial full
length 16S rRNA gene sequences [3]. The UPGMA den-
drogram (Figure 5) confirms that every one of the posi-
tively related bands (indicated with +) was highly similar

(≥ 99.2%) to endogenous sequences (indicated in bold).
This dendrogram illustrates that Arcobacter, Labrenzia,
Mycoplasma and Phyllobacteriaceae endogenous
sequences are also present in the epiphytic, washing
water and/or cultivation water bacterial communities of
Bryopsis cultures, whereas Bacteroidetes, Flavobacteria-
ceae and Xanthomonadaceae sequences were strictly
endogenous. In addition, Arcobacter and Mycoplasma
sequences were only present in the EP, WW and/or
CW bacterial communities of those Bryopsis MX sam-
ples in which they are also endogenously present. Lab-
renzia and Phyllobacteriaceae sequences, on the other
hand, were also found in the EP, WW and/or CW bac-
terial communities of algal samples in which these spe-
cies were not identified as being endophytic.

Discussion
The existence of highly specific macroalgal-bacterial
associations is no longer doubted [7]. Various studies
revealed that bacterial communities living on macroal-
gae clearly differ from those occurring in the
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Figure 4 Normalized epiphytic (EP), washing water (WW) and
cultivation water (CW) DGGE fingerprints obtained from
Bryopsis samples MX19, MX90, MX164, MX263 and MX344.
Numbers (1-27) indicate which bands were sequenced, and
correspond to band numbers in Table 1 and Figure 5. The first and
last lanes contain a molecular marker of which each band (M1m,
M1b, M2-M10) corresponds to a known Bryopsis endophyte or
chloroplast sequence (see additional file 2). This marker was used as
a normalization and identification tool.
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Table 1 Taxonomic identification and phylogenetic affiliation of the excised and sequenced epiphytic (EP), washing
water (WW) and cultivation water (CW) DGGE bands

DGGE band
number

Closest matching strain in BLAST (accession
number)
Query coverage/Maximum identity

Phylogenetic affiliation Correlation

MX19 EP 1 Uncultured Mycoplasma sp. clone MX19.9 (JF521606)
100/100

Tenericutes; Mollicutes; Mycoplasmatales;
Mycoplasmataceae

M1m +
M1b -

MX19 EP 2 Uncultured bacterium clone Del10081H12 (JF262029)
100/100

Proteobacteria; Alphaproteobacteria; Caulobacterales;
Hyphomonadaceae

M4 -

MX19 EP 3 Uncultured Phyllobacteriaceae bacterium clone MX19.12
(JF521607) 100/100

Proteobacteria; Alphaproteobacteria; Rhizobiales;
Phyllobacteriaceae

M8 +

MX19 EP 4 Uncultured bacterium isolate TTGE gel band N68
(JN185170) 100/100

Proteobacteria; Alphaproteobacteria; Rhizobiales;
Rhizobiaceae

M9 -

MX19 EP 5 Uncultured Labrenzia sp. clone DGGE band C (HE599215)
100/100

Proteobacteria; Alphaproteobacteria; Rhodobacterales;
Rhodobacteraceae

M10 +

MX90 EP 6 Uncultured bacterium clone CD02003D03 (HM768522)
100/96

Proteobacteria; Gammaproteobacteria; Alteromonadales;
Alteromonadaceae

M5 -

MX90 EP 7 Uncultured Phyllobacteriaceae bacterium clone MX19.12
(JF521607) 100/100

Proteobacteria; Alphaproteobacteria; Rhizobiales;
Phyllobacteriaceae

M8 +

MX90 EP 8 Uncultured alphaproteobacterium clone TH_d327
(EU272970) 100/98

Proteobacteria; Alphaproteobacteria; Rhizobiales,
Hyphomicrobiaceae

M9 -

MX90 WW 9 Uncultured bacterium clone OTU017 (GU174663) 100/
100

Proteobacteria; Alphaproteobacteria; Rhizobiales;
Bartonellaceae

M2 -

MX164 EP 10 Uncultured Mycoplasma sp. clone MX19.9 (JF521606)
100/96

Tenericutes; Mollicutes; Mycoplasmatales;
Mycoplasmataceae

M1m +
M1b -

MX164 EP 11 Uncultured Arcobacter sp. clone MX164.20 (JF521610)
100/100

Proteobacteria; Epsilonproteobacteria; Campylobacterales;
Campylobacteraceae

M2 +

MX164 EP 12 Uncultured proteobacterium clone Marsh_0_33
(JF980756) 100/100

Proteobacteria; Alphaproteobacteria; Caulobacterales;
Hyphomonadaceae

M3 -

MX164 EP 13 Acanthopleuribacter pedis type strain NBRC 101209
(AB303221) 100/93

Acidobacteria; Holophagae; Acanthopleuribacterales M5 -

MX164 EP 14 Hyphomicrobiaceae bacterium WPS10 (HQ638980) 100/
98

Proteobacteria; Alphaproteobacteria; Rhizobiales;
Bartonellaceae

M8 -

MX164 EP 15 Uncultured bacterium clone I3A_12H (EU352599) 100/98 Proteobacteria; Alphaproteobacteria; Rhizobiales;
Methylobacteriaceae

M9 -

MX164 EP 16 Stappia sp. enrichment culture clone NKiNSO2
(EU983274) 100/95

Proteobacteria; Alphaproteobacteria; Rhodobacterales;
Rhodobacteraceae

M10 -

MX164 WW 17 Uncultured Sneathiella sp. clone w-G7 (HQ727092) 100/
97

Proteobacteria; Alphaproteobacteria; Sneathiellales;
Sneathiellaceae

M7 -

MX263 EP 18 Thalassomonas sp. UST061013-012 (EF587959) 100/100 Proteobacteria; Gammaproteobacteria; Alteromonadales;
Colwelliaceae

M7 -

MX263 EP 19 Uncultured Phyllobacteriaceae bacterium clone MX19.12
(JF521607) 100/100

Proteobacteria; Alphaproteobacteria; Rhizobiales;
Phyllobacteriaceae

M8 +

MX263 EP 20 Uncultured Labrenzia sp. clone DGGE band C (HE599215)
100/100

Proteobacteria; Alphaproteobacteria; Rhodobacterales;
Rhodobacteraceae

M10 +

MX263 WW 21 Uncultured Mycoplasma sp. clone MX263.1 (JF521605)
100/100

Tenericutes; Mollicutes; Mycoplasmatales;
Mycoplasmataceae

M1m +
M1b -

MX263 CW 22 Uncultured bacterium isolate DGGE gel band B12
(HQ875697) 100/93

Proteobacteria; Gammaproteobacteria; Alteromonadales;
Alteromonadaceae

M3 -

MX263 CW 23 Alcanivorax dieselolei strain PM07 (HM596594) 100/100 Proteobacteria; Gammaproteobacteria; Oceanospirillales;
Alcanivoracaceae

M6 -

MX344 EP 24 Uncultured Labrenzia sp. clone DGGE band C (HE599215)
100/100

Proteobacteria; Alphaproteobacteria; Rhodobacterales;
Rhodobacteraceae

M10 +

MX344 WW 25 Ruegeria mobilis strain F4122 (HQ338148) 100/99 Proteobacteria; Alphaproteobacteria; Rhodobacterales;
Rhodobacteraceae

M8 -

MX344 CW 26 Uncultured bacterium clone EMar8 (FR667032) 100/94 Proteobacteria; Gammaproteobacteria; Alteromonadales M4 -

MX344 CW 27 Uncultured bacterium clone W2-97 (HQ322761) 100/90 Proteobacteria; Alphaproteobacteria M7 -

The band numbers correspond to the numbers (1-27) in Figure 4. The last column shows the correlation (positive + or negative -) between the identification of a
band and the sequence information of the marker band (M1m, M1b, M2-M10) at the same position.
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surrounding seawater [4,5,8,20]. These studies, however,
focused on the distinctiveness of the epiphytic bacterial
communities from the free-living environmental com-
munities and never studied the specificity of the endo-
phytic bacteria associated with macroalgae. To our
knowledge, this is the first study to address the temporal
variability of the endogenous (EN) bacterial commu-
nities of Bryopsis isolates and their distinctiveness from
the epiphytic (EP) and surrounding water (WW and
CW) bacterial communities after prolonged cultivation
using the DGGE technique. Taken the inherent limita-
tions of the DGGE technique into account [21], we
observed that the endophytic bacterial community pro-
files were notably different from the fingerprints of bac-
terial communities on and surrounding Bryopsis
cultures. DGGE fingerprint cluster analysis (Figure 2)
and MDS (Figure 3) clearly indicate that the epiphytic
and surrounding water samples in all Bryopsis cultures
were more similar to each other than to their corre-
sponding endophytic community profile. This suggests
the existence of specialized endophytic bacterial com-
munities within Bryopsis algae which are clearly distinct
from the outer surface and environmental bacterial
communities. This apparent specificity is supported by
the observation that Bryopsis harbors rather stable endo-
phytic bacterial communities, which showed little time
variability after one year cultivation of the algal samples
(Figure 1). However, examination of individual DGGE
bands did reveal some similarities between intra- and
extracellular bacteria. While Bacteroidetes, Flavobacter-
iaceae and Xanthomonadaceae species seemed exclu-
sively endobiotic, sequence cluster analysis confirmed
that Arcobacter, Labrenzia, Mycoplasma and Phyllobac-
teriaceae endophytes were also present in the epiphytic,
washing water and/or cultivation water extracts. This
latter observation is consistent with the outcome of a
study conducted by Maki et al. [22] which revealed
similar intracellular and extracellular bacterial popula-
tions in and on the harmful marine microalga Hetero-
capsa circularisquama in culture.
Although the Bryopsis cultures used in this study have

been kept in the laboratory for almost three years due
to experimental restrictions [3], our data allow us to put
forward some hypotheses regarding the nature of the
endophytic communities within natural Bryopsis popula-
tions. Whereas we cannot rule out selection by artificial
laboratory growth conditions, Arcobacter, Labrenzia,
Mycoplasma and Phyllobacteriaceae endophytes can at
least survive without the Bryopsis host, suggesting they
might be facultative endogenous bacteria which are
acquired from the local environment. This is consistent
with the general perception that most plant endophytes
originate from the surrounding environment and the
outer plant surface [23,24]. Bacteroidetes,

Flavobacteriaceae and Xanthomonadaceae endophytes,
on the other hand, appear well adapted to an endobiotic
lifestyle as they persist within the Bryopsis interior after
prolonged cultivation. Especially Flavobacteriaceae endo-
phytes, which are present in all five MX samples col-
lected hundreds of kilometres apart, might be obligate
endophytes which are strictly dependent on the Bryopsis
host for their growth and survival. This co-occurrence
of multiple facultative and obligate bacterial endophytes
is also well documented in many land plant and insect
hosts [23,25].
Furthermore, the Bryopsis endophytic communities

seem also rather specific as the EP, WW and CW
extracts contained numerous Alphaproteobacterial,
Gammaproteobacterial and Acanthopleuribacterales spe-
cies which are not present in the EN samples. This
apparent specificity is confirmed by our observations
that EP, WW, CW (data not shown) and EN (see Figure
1) extracts made at different time points revealed largely
consistent banding patterns even after the algal speci-
mens were repeatedly wounded and transferred to fresh,
sterile cultivation medium (see material and methods
section). Consequently, the Bryopsis host seems able to
selectively maintain its endophytic flora and/or to attract
specific facultative endophytes after wounding. Although
this may be the result of more general physiological and
biochemical processes [7], the characteristic properties
of Bryopsis might also contribute to this selectiveness.
An interesting characteristic of Bryopsis is that following
cell wounding, the protoplasm can aggregate and regen-
erate into a mature individual. This process involves a
transient state of membrane-free protoplasts in seawater
[13]. Although this transient ‘life without a membrane’
state might seem anything but selective, Klotchkova and
coworkers [26] showed that an incompatibility barrier is
present during protoplast formation to exclude foreign
inorganic particles or alien cell components. Only some
chosen cells or particles could be incorporated into
Bryopsis protoplasts. Moreover, the lectins which play a
key role in the aggregation process during protoplast
formation [27-30] might actually be ‘specificity media-
tors’. The description of the Bryopsis specific lectin
Bryohealin by Kim et al. [29], which contains an antibio-
tic domain that protects the newly generated protoplasts
from bacterial contamination [30], supports this hypoth-
esis. Lectins are known symbiosis mediators in, for
example, legume-rhizobia and sponge-bacterial sym-
bioses [31,32].
Besides the endophytic bacterial communities, also the

epiphytic and the surrounding cultivation water bacterial
communities seemed unique to each Bryopsis culture as
the EP, WW and CW fingerprints of a given Bryopsis
sample clearly clustered together. This is consistent with
the general perception of highly specific macroalgal-
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bacterial interactions as discussed above [7]. Addition-
ally, since all five Bryopsis cultures were maintained
under similar laboratory conditions, the above observa-
tion suggests that factors other than cultivation condi-
tions contributed to the observed specificity (see
Material and methods section).

Conclusion
Our results indicate that Bryopsis samples harbor speci-
fic and rather stable endophytic bacterial communities
after prolonged cultivation which are clearly distinct
from the epiphytic and surrounding cultivation water
bacterial communities. Even though Bryopsis algae are
repeatedly being exposed to a mix of marine bacteria,
they seem to selectively maintain and/or attract their
endophytes after repeated wounding events in culture.
Despite the limitations of the experimental design, this
indicates that Bryopsis has some intrinsic mechanisms
to favour the entry of certain bacteria of possible ecolo-
gical importance within its cell, suggesting macroalgal-
bacterial endobioses might be as or even more specific
than macroalgal-epiphytic bacterial associations. The use
of species-specific primers and probes may open the
way to investigate the specificity, both spatially and tem-
porally, of the endophytic communities in natural
Bryopsis populations.

Additional material

Additional file 1: Transmission electron micrograph of vegetative
Bryopsis thallus in longisection. Figure A: the outer cytoplasmic layer
(ol) adjacent to the Bryopsis cell wall (cw) contains most of the organelles
excluding only the chloroplasts (chl), which are present in the inner layer
next to the central vacuole (cv). Magnification: × 8000, Scale bar: 3 μm.
Figure B (detail of Figure A): besides mitochondria (m), endoplasmic
reticulum and vacuolar evaginations (v), endogenous bacteria (ba) are
present in the outer cytoplasmic layer. Magnification: × 25000, Scale bar:
1 μm.

Additional file 2: The marker used as a normalization and
identification tool in all DGGE analyses. This marker covers the full
range of endophytic (including chloroplast) sequences previously
obtained from Bryopsis samples MX19, MX90, MX164, MX263 and MX344
[3]. For each marker band, the band name (M1m, M1b, M2-M10),
taxonomic identification, clone reference and accession number are
represented.
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