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Global gene expression under nitrogen starvation
in Xylella fastidiosa: contribution of the s54

regulon
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Abstract

Background: Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing
diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and
other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat.

Results: In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation
response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen
starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation,
amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a
decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways
was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant
allowed the identification of genes directly or indirectly induced by nitrogen starvation in a s54-dependent
manner. A more complete picture of the s54 regulon was achieved by combining the transcriptome data with an
in silico search for potential s54-dependent promoters, using a position weight matrix approach. One of these s54-
predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by
primer extension assays, confirming that this gene has a s54-dependent promoter.

Conclusions: Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa
transcriptome and some of these differentially expressed genes belong to the s54 regulon.

Background
Xylella fastidiosa colonizes the xylem elements of many
plants, causing diseases in economically important
crops, such as citrus variegated chlorosis in citrus spe-
cies and Pierce’s disease in grapevines [1]. This Gram-
negative fastidious bacterium, transmitted by sap-feeding
insect vectors, utilizes a plethora of virulence determi-
nants such as adhesins, type IV pili, gum and extracellu-
lar cell wall-degrading enzymes to efficiently colonize
the plant xylem [2].
It has been shown that the xylem fluid affects plank-

tonic growth, biofilm formation and aggregation of X.
fastidiosa [3,4]. Xylem is a nutrient-poor environment

that contains low concentrations of diverse compounds
such as amino acids, organic acids, and inorganic nutri-
ents. Amino acids are the main nitrogen source in
xylem fluid of plants, predominantly glutamine and
asparagine [5]. Recently, it was determined that gluta-
mine predominates in the xylem sap of grapevine (Vitis
vinifera) [3] while asparagine and glutamine are found
in larger quantity in the xylem sap of citrus (Citrus
sinensis) [6]. In infected plants, X. fastidiosa grows
exclusively in the xylem vessels, where it must cope
with nitrogen limitation and be able to utilize amino
acids as nitrogen source. Although it has been deter-
mined that X. fastidiosa disturbs nitrogen metabolism of
infected orange trees [6], no aspect of the nitrogen
metabolism has been investigated in this phytopathogen.
The global response to nitrogen starvation has been

studied at the transcriptional level in several bacteria,
such as Corynebacterium glutamicum [7], Synechocystis
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sp. [8], Prochlorococcus [9] and Anabaena sp. [10]. The
regulation of nitrogen metabolism is well-established in
several model organisms, such as Escherichia coli, Bacil-
lus subtilis and Corynebacterium glutamicum [11]. In E.
coli and other enterobacteria, nitrogen limitation causes
changes in expression of about 100 genes, whose pro-
ducts are involved in ammonium assimilation and
scavenging for nitrogen-containing compounds [12].
Most of these genes are transcribed by the RNA poly-
merase containing the sigma factor RpoN (s54) and acti-
vated by the nitrogen regulatory protein C (NtrC). The
NtrC-RpoN regulon includes at least 14 operons, among
them glnAntrBC (glutamine synthetase and the two-
component system NtrB-NtrC), glnK-amtB (PII signal
transduction protein and ammonium transporter), ast-
CADBE (arginine catabolism), glnHPQ (glutamine trans-
port) and nac (s70-dependent transcriptional activator)
[12,13]. On the other hand, in the oligotrophic alpha-
proteobacterium Caulobacter crescentus s54 does not
regulate the majority of genes induced under nitrogen
limitation [14].
Although the most prevalent RpoN-regulated function

in bacteria is nitrogen assimilation, this alternative
sigma factor controls many distinctive and unrelated
cellular functions, such as pili and flagella biosynthesis,
plant pathogenicity, catabolism of aromatic compounds
and nitrogen fixation [15]. This is possible because s54

utilizes diverse transcription activators called enhancer-
binding proteins (EBPs), all governed by their own sig-
nal pathways, for initiation of transcription [16]. Besides
the absolute dependence of EBPs and ATP hydrolysis
for the formation of the RNA polymerase open complex
on the promoters, another unique feature of s54 is the
recognition of -24/-12-type promoters with consensus
sequence TGGCACG-N4-TTGC [17,18]. The s54 regu-
lon was estimated in several organisms, such as E. coli
[19], Pseudomonas putida [20] and several species of
Rhizobiaceae [21] by use of powerful computational
methods that took advantage of the high conservation of
s54 promoter sequences throughout diverse bacterial
groups.
Alternative sigma factors provide effective mechanisms

for regulating a large numbers of genes in response to
several environmental stresses. In the genome of X. fas-
tidiosa there are genes encoding each of the sigma fac-
tors RpoD, RpoH, RpoE and RpoN [22]. Large-scale
studies using microarrays and in silico analyses have
permitted to determine the RpoH and RpoE regulons
and their contribution to the heat shock response
[23,24]. Recently, we have established that RpoN con-
trols cell-cell aggregation and biofilm formation in X.
fastidiosa by means of differential regulation of genes
involved in type I and type IV fimbrial biogenesis. We
have also characterized the first s54-dependent promoter

in X. fastidiosa, controlling expression of the pilA1 gene
[25].
Here, we analyzed the global transcriptional profile of

X. fastidiosa under nitrogen starvation conditions using
DNA microarrays. A more complete description of the
X. fastidiosa s54 regulon was achieved using microarray
data from an rpoN mutant integrated with an in silico
analysis of RpoN-binding sites. The regulatory region of
the glnA gene that encodes the enzyme glutamine
synthetase was further characterized, and confirmed to
have a s54-dependent promoter, suggesting an impor-
tant role of ammonium assimilation mediated by s54 in
X. fastidiosa.

Methods
Bacterial strains and growth conditions
The citrus strain J1a12 of Xylella fastidiosa [26] was cul-
tivated in PW medium [27] without bovine serum albu-
min and phenol red and supplemented with 0.5%
glucose (w/v) (PWG) at 25°C with no agitation. Cultures
were also grown in defined XDM2 medium [28] or
XDM2 medium lacking all nitrogen sources (XDM0) at
the same conditions. For the rpoN mutant strain [25],
10 μg ampicillin ml-1 was supplemented to the PWG
medium.

Growth of Xylella cells in nitrogen starvation
For time course studies, late-exponential phase cells in
PWG medium were used to inoculate a culture in 100
ml XDM2 medium to an optical density at 600 nm
(OD600 nm) of 0.1. Cells were grown during 12 days in
the XDM2 medium (mid-log phase) and harvested by
centrifugation. Then, the culture was divided into two
portions: in one the cells were washed with XDM2 med-
ium, collected by centrifugation and rapidly frozen in
dry ice (this aliquot was considered the time zero of the
experiment). The second portion was washed with
XDM0 medium and the cultivation was continued for
2 h, 8 h and 12 h in XDM0 medium to establish nitro-
gen starvation conditions. For each time point, cells in a
25-ml culture were collected by centrifugation and
rapidly frozen in dry ice, until RNA isolation.

Preparation of RNA for DNA microarray
Total RNA was isolated from X. fastidiosa wild type and
rpoN mutant cells, grown under nitrogen excess or
nitrogen starvation conditions as described above, using
the TRIZOL reagent (Invitrogen), according to the man-
ufacturer’s instructions. DNA was removed using RQ1
DNase I (Promega). RNA samples were evaluated by
electrophoresis on formaldehyde-agarose gels and stored
at -80°C. Microarray slides covering more than 94% of
all X. fastidiosa genes, spotted at least in duplicate, were
prepared as previously described [29]. Fluorescent-
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labeled cDNA preparation, microarray hybridization,
washing and scanning were performed as previously
described [25]. The ArrayVision version 6.0 software
(Imaging Research, Inc.) was used for spot finding and
signal-intensity quantification. Three RNA samples iso-
lated from independently grown cultures of the cells at
each starvation period (2 h, 8 h and 12 h) were exam-
ined, and each preparation was subjected to microarray
analysis. As the genes were spotted at least in duplicate,
we obtained six replicates for each gene from three
independent data sets per gene per starvation period.
Normalization was carried out using the LOWESS algo-
rithm [30]. Differentially expressed genes were identified
using intensity-dependent cutoff values based on self-
self hybridization experiments [31]. A gene was classi-
fied as upregulated or downregulated if at least four of
six replicates were outside of the intensity-dependent
cutoff curves. Microarray data are available at the NCBI
GEO (Gene Expression Omnibus) database http://www.
ncbi.nlm.nih.gov/geo, with accession number GSE21647.

Primer extension analysis
Primer extension assays were performed as previously
described [25], using 50 μg of RNA as template isolated
from J1a12 or rpoN cells grown in PWG. Total RNA
was hybridized to the [g-32P]ATP-labeled primer
XF1842EXT (5’-AACAAAGCGCAAATCGACGAAT
TCG-3’) and extended with the Superscript III reverse
transcriptase (Invitrogen). The sequencing ladder was
generated with the Thermo Sequenase cycle sequencing
kit (USB), using the [g-32P]ATP-labeled primer M13For-
ward (5’-GTAAAACGACGGCCAGT -3’) and M13
DNA template.

Computational prediction of s54-dependent promoter
sequences
A position weight-matrix was constructed using a set of
186 RpoN-dependent promoters from different bacterial
species [18]. This matrix was used to perform a gen-
ome-wide screening for putative RpoN-binding sites in
the X. fastidiosa genome sequence [22] with the PAT-
SER module [32] from the Regulatory Sequence Analysis
Tools (RSAT) website [33]. The search for putative
RpoN-binding sites was restricted to intergenic regions
(non-coding region between two genes) on the coding
strand of all annotated genes. Sequence logos were gen-
erated using the WebLogo package [34].

Results and Discussion
Transcriptome of Xylella cells grown under nitrogen
starvation
In this work, DNA microarray experiments were used to
reveal the global transcriptional profile of X. fastidiosa
under nitrogen starvation conditions. The experiments

compared changes in the expression profile of cells
growing in the absence of nitrogen (XDM0 medium) for
2, 8 and 12 hours compared to cells maintained in
defined medium containing amino acids serine, methio-
nine, asparagine and glutamine as nitrogen source
(XDM2 medium, zero-time). The relative ratio was cal-
culated for the zero-time sample compared with each
time-point sample and data from each point correspond
to three independent biological replicates. The complete
list of differentially expressed genes is provided in Addi-
tional file 1: Table S1 and Additional file 2: Table S2.
We identified 448 differentially expressed genes at one

or more time-points following nitrogen starvation and
among them, 252 genes were upregulated, whereas 196
genes were downregulated (Additional file 1: Table S1
and Additional file 2: Table S2). Very few genes were
up- or down-regulated during all three time-points of
nitrogen starvation: 7 genes were induced and 9 genes
were repressed (intersection of the three circles in Fig-
ure 1). The cumulative number of induced genes in cells
exposed to 2 h, 8 h and 12 h of nitrogen starvation were
77, 156 and 132, respectively, while the number of
repressed genes were 19, 139 and 128, respectively
(numbers in gray ovals; Figure 1). These data indicate
that the number of differentially expressed genes
increased substantially from 2 h to 8 h and began to
decline at the 12 h time point, indicating that the tem-
poral series covered a wide range of genes with altered
expression in response to nitrogen starvation.
The genes differentially expressed under nitrogen star-

vation were classified into functional classes according
to the categories defined in the original annotation of
the X. fastidiosa genome [22] based on the annotation
of E. coli genes [35] (Table 1). There are genes belong-
ing to all categories, but some categories are overrepre-
sented, such as RNA metabolism (30 genes),
biosynthesis of amino acids (23 genes), energy and car-
bon metabolism (20 genes), transport (20 genes) and
protein metabolism (19 genes) (Table 1). Categories
with predominance of induced genes include regulatory
functions and phage-related functions and prophages.
On the other hand, categories with prevalence of
repressed genes compared to induced genes are mainly
related to metabolism, such as central intermediary
metabolism, energy metabolism and protein metabolism
(Table 1). Putative functions of some of these differen-
tially expressed genes in response to nitrogen starvation
are described below.
Transport
Changes in expression of 20 genes encoding proteins
related to transport (8 induced genes and 12 repressed
genes) seem to indicate that adjustment of the transport
capacity is an important cellular response to nitrogen
starvation. There is a predominance of ATP-Binding
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Cassette (ABC) transporters, possibly involved in the
transport of sugars, amino acids and iron, based on
sequence annotation (Additional file 1: Table S1 and
Additional file 2: Table S2). In E. coli [13] and Coryne-
bacterium glutamicum [11] the induction of transport
systems of various alternative nitrogen sources is one of
the main responses to nitrogen starvation. The repres-
sion of genes encoding transporters in X. fastidiosa
seems to be an adaptation to long time nitrogen starva-
tion, since most of the 12 downregulated genes were
repressed only at the 12 h time point (Table 1 and
Additional file 2: Table S2).
Carbon and energy metabolism
In this category, 17 of the 20 differentially expressed genes
under nitrogen starvation were repressed, most of them in
the 8 h and 12 h periods (Table 1 and Additional file 2:
Table S2). Genes of the major pathways of carbon and
energy metabolism were repressed, including three genes
of glycolysis (pfkA, gapA and fbaB), a gene of the enzyme
pyruvate dehydrogenase (aceE), seven genes of the Krebs
cycle (acnB, sdhB, lpd, sucB, odhA, sucC and sucD), four
genes of the electron-transport chain (etfA, etfB, etf-QO
and cyoC) and two genes of the enzyme ATP synthase
(atpA and atpD). Downregulation of many genes related
to carbon and energy metabolism was also observed when
X. fastidiosa cells were exposed to prolonged high tem-
perature [23] suggesting that this is a common response to
long time stress conditions. However, genes for sugar cata-
bolic pathways are induced by nitrogen depletion in the
cyanobacterium Synechocystis sp. [8] and genes encoding
glycolytic enzymes and respiratory chain components are
upregulated during ammonium limitation in C. glutami-
cum, maybe due to the necessity of an increased ATP pro-
duction during nitrogen starvation for ammonium
assimilation via the GS/GOGAT pathway [36].

Nitrogen metabolism and biosynthesis of amino acids
After two hours of nitrogen starvation, we observed an
increase in transcript levels of genes gltD (XF2709) and
gltB (XF2710), encoding the two subunits of the enzyme
glutamate synthase (GOGAT), while the expression levels
of the glnA gene (XF1842), encoding the enzyme gluta-
mine synthetase (GS), was not altered (Additional file 1:
Table S1). Assimilation of ammonium by means of the
high-affinity GS/GOGAT pathway is more effective than
assimilation by the enzyme glutamate dehydrogenase
(GDH), under nitrogen limitation. In fact, the genes
encoding GS/GOGAT are upregulated under nitrogen
limitation in several bacteria [12,7]. We observed induc-
tion of only few genes encoding enzymes involved in cat-
abolism of amino acids or proteins, such as rocF
(arginine deaminase), tdcB (threonine dehydratase), pip
(proline iminopeptidase) and pepQ (proline dipeptidase)
(Additional file 1: Table S1), suggesting that X. fastidiosa
might scavenge nitrogen compounds as a secondary
mechanism to ameliorate nitrogen starvation. The bio-
synthesis of amino acids was significantly affected, with
13 genes being induced and 10 genes being repressed
(Table 1). However, this may reflect the fact that nitrogen
starvation experiments were carried out in XMD2 med-
ium, that contain amino acids (Ser, Met, Asp and Gln).
The induced genes encode enzymes that are part of bio-
synthesis pathways of glutamate, methionine and
cysteine, and their induction is probably not related to
nitrogen starvation per se, but instead by the removal of
these particular amino acids from the medium.
Additionally, the genes encoding RelA and SpoT,

two different ppGpp synthetases that produce the
nucleotide alarmone ppGpp in response to amino acids
or carbon starvation [37], were induced after 2 h and
8 h of starvation. This upregulation seems to be a sign

2 h 8 h

12 h

32 52

62

36

2 61
7

77 156

132

Upregulated

2 h 8 h

12 h

9 58

48

1

0 71
9

19 139

128

Downregulated

Figure 1 Diagram summarizing the number of differentially expressed genes in X. fastidiosa J1a12 under nitrogen starvation. Large
circles represent each one of the three time-points. Numbers in the circles indicate genes with differential expression at each specific time-point
and in more than one time-point (regions of intersection). Numbers in the small gray ovals indicate the total of the differentially expressed
genes for each time-point (i.e. the sum of the genes in each large circle). The circles and regions of overlap are not drawn to scale.
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of intracellular amino acid depletion when X. fastidiosa
cells were transferred to XDM0 medium. Increase in the
levels of these enzymes might indicate that some func-
tional categories containing differentially expressed
genes (RNA metabolism, biosynthesis of amino acids
and translation) were affected by the stringent response
in addition to nitrogen starvation.
With the exception of the three genes described above

(rocF, pip and pepQ), all other differentially expressed
genes related to protein metabolism (16 genes) were
repressed under nitrogen starvation (Table 1). Among
them were genes encoding the major systems of chaper-
ones and proteases of the cell, typical of the heat shock
response, such as groEL, groES, hspA, dnaJ, dnaK, grpE,

clpB, mopA, htpX, hspA and mucD, and almost all were
repressed during the three time-points of nitrogen star-
vation (Additional file 2: Table S2). These genes are
transcribed by s32 in X. fastidiosa [23], but the rpoH
gene encoding s32 was two-fold induced in the 8 h and
12 h periods. This strong repression by nitrogen starva-
tion, at least for the groESL operon, could be mediated
by the heat-inducible transcriptional repressor HrcA,
once the hrcA gene was four-fold induced in 2 h. Severe
downregulation in the expression of genes encoding
chaperones and proteases of the heat shock response by
nitrogen starvation was previously observed in E. coli
[38]. Another interesting observation was the differential
expression of a large number of genes (23 induced

Table 1 Functional classification of differentially expressed genes under nitrogen starvation in X. fastidiosa.

Functional Category* Temporal series§

2 h 8 h 12 h

Intermediary metabolism (25/34)#

Degradation (5/3) 2/0 1/3 2/2

Central intermediary metabolism (5/10) 4/0 2/7 3/6

Energy metabolism, carbon (3/17) 1/2 3/16 0/14

Regulatory functions (12/4) 4/1 9/2 5/2

Biosynthesis of small molecules (28/25)

Amino acids biosynthesis (13/10) 9/1 8/7 3/4

Nucleotides biosynthesis (2/5) 0/0 1/2 2/5

Sugars and sugar nucleotides biosynthesis (0/1) 0/0 0/1 0/0

Cofactors, prosthetic groups, carriers biosynthesis (8/5) 2/0 6/4 2/3

Fatty acid and phosphatidic acid biosynthesis (4/4) 2/0 2/2 1/3

Polyamines biosynthesis (1/0) 0/0 0/0 1/0

Macromolecule metabolism (28/37)

DNA metabolism (8/8) 1/1 5/4 7/4

RNA metabolism (17/13) 3/0 13/11 11/9

Protein metabolism (3/16) 0/6 1/15 2/13

Cell structure (12/9)

Membrane components (6/3) 2/0 1/1 3/2

Murein sacculus, peptidoglycan (2/0) 1/0 0/0 1/0

Surface polysaccharides, lipopolysaccharides, and antigens (2/1) 2/0 0/1 1/0

Surface structures (2/5) 2/0 2/4 1/5

Cellular processes (9/15)

Transport (8/12) 4/0 6/5 3/11

Cell division (1/3) 1/0 1/3 0/1

Mobile genetic elements (16/7)

Phage-related functions and prophages (8/1) 2/0 8/1 6/0

Plasmid-related functions (7/6) 3/0 6/6 3/2

Transposon- and intron-related functions (1/0) 0/0 0/0 1/0

Pathogenicity, virulence, and adaptation (9/13) 1/3 6/8 5/9

Hypothetical (122/52) 30/5 73/34 69/31

ORFs with undefined category (3/4) 1/0 2/2 0/2

Total (252/196) 77/19 156/139 132/128

* Genes were categorized into functional classes according to the categories defined in the original annotation of the X. fastidiosa genome http://www.lbi.ic.
unicamp.br/xf/.
# The number of upregulated and downregulated genes, respectively, are indicated in parenthesis.
§ Number of genes upregulated and downregulated, respectively, during time points of the nitrogen starvation temporal series.
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genes and 8 repressed genes) present in the pXF51 plas-
mid, most of them encoding proteins of the type IV
secretion system, involved in bacterial conjugation [39].

Identifying the RpoN regulon using DNA microarrays and
in silico analysis
In a previous work we have demonstrated, using micro-
array data, that few genes are downregulated in the
rpoN mutant strain, when the experiments were per-
formed in complex PWG medium. Under those experi-
mental conditions, only the pilA1 gene (XF2542)
seemed to be directly activated by s54, and probably in
association with the two component system PilR/PilS
[25]. To determine the effect of rpoN inactivation on
gene expression after nitrogen starvation, the transcrip-
tomes of the wild type and the rpoN strains were com-
pared using DNA microarrays, with both strains grown
on XDM2 medium and submitted to nitrogen starvation
during 2 hours. Seven of the 22 differentially expressed
genes were repressed, whereas 15 were induced in the
rpoN mutant compared to the wild-type strain (Table
2). All seven genes positively regulated by s54 were

differentially expressed under nitrogen starvation (Addi-
tional file 1: Table S1 and Additional file 2: Table S2).
Among them, five (XF0180, XF1121, XF1819, XF2272
and XF2542) were induced in at least one point of the
temporal series (Table 2 and Additional file 1: Table
S1), indicating that these genes are induced under nitro-
gen starvation in a s54-dependent manner. Functional
classification indicated four genes as related to amino
acid metabolism. With the exception of the pilA1,
which showed the highest decrease in expression in the
rpoN mutant, all other genes were not detected in our
previous microarray analysis as s54-regulated genes [25].
Given that sigma factors are activators of transcription,
the overexpression of 15 genes in the rpoN mutant com-
pared to the wild type strain might be the consequence
of secondary regulatory effects originating from the
rpoN mutation.
To potentially discriminate between genes directly and

indirectly regulated by RpoN and to identify other mem-
bers of the s54 regulon undetected by microarray analy-
sis, we carried out an in silico search to locate potential
RpoN-binding sites in X. fastidiosa genome. The

Table 2 Differentially expressed genes under nitrogen starvation in the rpoN mutant compared to the wild-type strain.

Gene ID Product§ Ratio (log2)
#

Downregulated genes (positively regulated by RpoN)

XF2542* fimbrial protein -3.79

XF2272* 5-methyltetrahydropteroyltriglutamate homocysteine methyltransferase -2.21

XF1819* threonine dehydratase catabolic -1.62

XF1121* 5,10-methylenetetrahydrofolate reductase -1.51

XF2699 transcription termination factor Rho -1.37

XF0180* hypothetical protein -1.03

XF2207 cationic amino acid transporter -0.80

Upregulated genes (negatively regulated by RpoN)

XF1109 hypothetical protein 1.89

XF2343 recombination protein N 1.63

XF0887 mannosyltransferase 1.61

XF1830 nitrile hydratase activator 1.52

XF2551 conserved hypothetical protein 1.46

XF1658 phage-related repressor protein 1.30

XF1781 hypothetical protein 1.29

XF1117 hypothetical protein 1.24

XF2555 lysyl-tRNA synthetase 1.23

XF1469 conserved hypothetical protein 1.17

XF1078 DNA uptake protein 1.16

XF0412 nitrate ABC transporter ATP-binding protein 1.14

XF0318 NADH-ubiquinone oxidoreductase, NQO14 subunit 1.08

XF0221 hypothetical protein 0.94

XF2377 hypothetical protein 0.81
§ Predicted function based on sequence similarity.
# Log ratio of fluorescence intensity in strain rpoN compared to the J1a12 strain [log2(IrpoN/IJ1a12)], both grown up under nitrogen starvation during two hours.
Microarray analyses were carried out for three independent biological samples and a gene was classified as differentially expressed if at least four of its six
replicates were outside the intensity-dependent cutoff curves.

* Genes induced under nitrogen starvation in at least one point of the temporal series.
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intergenic regions of the complete genome sequence of
X. fastidiosa were scored against a strong position-speci-
fic weight matrix derived from 186 known s54-binding
sites of 44 different bacterial species [18]. Considering
only predicted sites with scores above the numerically
calculated cutoff score (7.95), we were able to find 44
putative s54-binding sites or s54-dependent promoters
that could potentially direct the transcription of a gene
in the correct orientation. Their sequences with the
associated genes or putative operons are summarized in
Table 3. DNA sequence logo derived from these 44 pre-
dicted RpoN-binding sites shows two blocks of con-
served sequences containing the highly frequent GG and
GC dinucleotides (Figure 2), consistent with -24/-12-
type promoters recognized by RpoN in most of bacterial
groups [18].
Functional classification of the genes associated to

predicted RpoN-binding sites reveals the involvement of
s54 with several cellular functions, such as motility,
transcription regulation, transport, carbon metabolism
and protein degradation among others. However, a large
number of genes (50%) encode proteins that have no
attributed function (Table 3). The highest scoring
RpoN-regulated promoter was located upstream of the
pilA1 gene (XF2542), confirming a promoter previously
characterized by primer extension analysis and the role
of s54 in pili biogenesis [25]. The next best hit was
found in front of a gene encoding a MarR transcrip-
tional regulator (XF1354), the only regulatory gene asso-
ciated with RpoN-binding site in our in silico analysis.
MarR-like regulators control a variety of biological func-
tions, including resistance to multiple antibiotics,
organic solvents, sensing of aromatic compounds and
regulation of virulence [40]. A regulatory gene belonging
to s54 regulon could explain how RpoN might indirectly
control the expression of genes that are not associated
with RpoN-binding sites.
Predicted RpoN-binding sites were identified upstream

of four putative operons encoding transport systems:
two operons encoding translocases of the major facilita-
tor superfamily (MSF) (XF1749-48-47-46 and XF1609-
10-11), one operon encoding resistance-nodulation-cell
division (RND) family efflux pump (XF2093-94) and the
exbB-exbD-exbD2-XF0013 operon. Genes encoding
transporters are regulated by sigma 54 in various bac-
teria such as E. coli [19], P. putida [20] and Rhizobia-
ceae [21], although most of these transporters are of the
ATP-Binding Cassette (ABC) type. Other functional
categories identified were carbon and energy metabolism
(nuo operon encoding NADH dehydrogenase and acnA
encoding aconitase hydratase), biosynthesis of small
molecules (XF1121, XF2677 and XF1315-relA-XF1317-
18), DNA metabolism and translation. Possible RpoN-
binding sites were also found upstream of two genes

encoding putative peptidases (XF0220 and XF2260). In
E. coli the ddpXABCDE operon (DdpX is a D-alanyl-D-
alanine dipeptidase) is induced under nitrogen limita-
tion, possesses a potential s54-dependent promoter and
seems to work scavenging D-alanyl-D-alanine from pep-
tidoglycan [13,19]. These results suggest that scavenging
of nitrogen compounds could also be a mechanism con-
trolled by s54 in X. fastidiosa.
To compare microarray data with in silico predictions,

the genes and/or operons associated with the 44 pre-
dicted s54-binding sites were cross-examined with the
list of genes induced under nitrogen starvation (Addi-
tional file 1: Table S1) and the genes with decreased
expression levels in the wild type compared to its rpoN
derivative mutant (Table 2). Genes encoding the pilin
protein of the type IV pili (XF2542) and methylenetetra-
hydrofolate reductase (XF1121), an enzyme that cata-
lyzes the conversion of methylenetetrahydrofolate to
methyltetrahydrofolate, the major methyl donor for con-
version of homocysteine to methionine were induced
under nitrogen starvation, downregulated in the rpoN
mutant and were preceded by s54-dependent promoters.
A set of six genes possessing s54-dependent promoters
(XF0220, XF0308, XF0318, XF0159, XF0567 and
XF1316) was induced under nitrogen starvation, but
they were not differentially expressed in the rpoN
mutant. All other genes showed no consistent correla-
tion between the transcriptome analysis and the compu-
tational promoter prediction. These apparent
divergences can be attributable to low expression of
RpoN- regulated genes unless under specific conditions
that activate the enhancer binding proteins, suggesting
that both methods are necessary to achieve a more com-
plete description of the X. fastidiosa s54 regulon. These
combined strategies have been applied to determine
RpoN regulon in several bacteria, such as Listeria mono-
cytogenes [41], Geobacter sulfurreducens [42] and Bra-
dyrhizobium japonicum [43].

Detection and validation of a s54-dependent promoter in
the glnA gene
Analysis of genomic context indicates that Xylella pos-
sesses a conserved gene cluster predicted to encode pro-
teins related to nitrogen metabolism including
glutamine synthetase (XF1842), nitrogen regulatory pro-
tein P-II (XF1843), ammonium transporter (XF1844)
and NtrB/NtrC two-component system (XF1848/
XF1849) (Figure 3A), all genes known to be part of the
NtrC-RpoN regulon in E. coli [13,19]. In our original
analysis using the PATSER program, only one RpoN-
binding site was predicted in this region. It is located
upstream of the XF1850 gene that encodes a hypotheti-
cal protein containing a conserved region of a probable
transposase family (Table 3). It seems unlikely that this
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Table 3 Predicted RpoN-binding sites in X. fastidiosa genome.

Gene ID Position* Sequence Score Product

XF2542 -76 TGGCACACCTTCTGCT 12.38 fimbrial protein

XF1354 -122 TGGTACGGTATTTGCT 11.58 MarR family transcriptional regulator

XF0158 -127 CGGCACGTGTGTTGCT 11.32 hypothetical protein (XF0158-59-60)

XF1842# -46 TGGTATGCCAATTGCT 10.52 glutamine synthetase

XF0623 -246 TGGCACGGGAATTGAA 10.62 hypothetical protein

XF0220 -129 TGGGATGGTTCTTGCT 10.46 proline dipeptidase

XF0178 -177 TGGCATGCCAAATGCA 10.39 conserved hypothetical protein (XF0178-79)

XF0414 -189 TGGCGAGCATCTTGCA 10.29 hypothetical protein (XF0414-15)

XF1850 -7 CGGCACATGCGTTGCT 10.26 hypothetical protein (probable transposase)

XF1471 -230 CGGCACGGAATTCGCA 10.22 hypothetical protein

XF1315 -116 AGGCACTGCGGTTGCA 10.10 hypothetical protein (XF1315-relA-XF1317-18)

XF0746 -227 TGGCACTGCCAATGCA 9.93 hypothetical protein

XF1121 -82 CGGCACGACCCCTGCC 9.42 5,10-methylenetetrahydrofolate reductase

XF0010 -63 TGGTCCGGCCAGTGCA 9.36 biopolymer transport ExbB protein (exbB-exbD-exbD2-XF0013)

XF0507 -213 CGGCGCGGGTTTCGCT 9.29 hypothetical protein (XF0507-08)

XF1784 -151 TGGCACGTCAAGCGCA 9.26 hypothetical protein (ParB-like nuclease domain) (XF1784-83-82-81)

XF1943 -342 CGGCACGCTGATGGCA 9.20 histone-like protein

XF0305 -65 GGGCACCATATTTGCT 9.14 NADH dehydrogenase subunit A (nuoABCDEFGHIJKLMN)

XF1249 -207 CGGCCCGCAGCATGCT 8.97 hypothetical protein

XF1749 -27 TGGCGCGGCGTTTCCT 8.92 MFS transporter (XF1749-48-47-46)

XF0290 -30 CGGCACTGCCACTGCA 8.90 aconitate hydratase

XF2580 -109 CGGCACGGAGGCGGCA 8.81 30S ribosomal protein S2

XF2639 -43 TGGCGCGCCACTTTCT 8.79 preprotein translocase subunit SecE (secE-nusG)

XF0177 -161 TGGCCTGCATTTGGCA 8.79 hypothetical protein

XF2260 -305 TGGAACAGAAGGTGCT 8.75 alanyl dipeptidyl peptidase

XF1213 -151 CGGCTCCCCTCTTGCT 8.74 GTP-binding elongation factor protein

XF2724 -28 TGGCACAGTGCCAGCA 8.69 type I restriction-modification system (XF2724-23-22-21)

XF2677 -164 GGGCGTGATGCTTGCA 8.65 L-ascorbate oxidase

XF1609 -164 TGGCAGGTGTTGTGCT 8.60 MFS glucose/galactose transporter (XF1609-10-11)

XF2745 -15 CGGCGTGGCCGGTGCA 8.59 hypothetical protein

XF0695 -50 AGGCGCGCCGTTCGCA 8.59 hypothetical protein

XF1355 -223 TGGCAGTGCCGGTGCA 8.51 hypothetical protein

XF2501 -183 CGGCACGGAGGGGGCA 8.44 hypothetical protein (phage-related protein)

XF0710 -183 CGGCACGGAGGGGGCA 8.44 hypothetical protein (phage-related protein)

XF2093 -263 TGGCATCCAAAGTGCA 8.40 HlyD family secretion protein (XF2093-94)

XF1640 -56 TGGCAGTGCTACTGCA 8.40 ankyrin-like protein

XF2008 -44 CGGCACGCAACACGCA 8.30 hypothetical protein

XF2733 -86 TGGCAACCGCATTGCG 8.28 hypothetical protein

XF2408 -25 AGGCCCCGCAGTTGCG 8.28 hypothetical protein (XF2408-09-10)

XF0567 -16 TGGAGCACTCTTTGCA 8.22 hypothetical protein

XF2358 -36 TGGAACGCAATCTGCG 8.17 23S rRNA 5-methyluridine methyltransferase

XF0726 -255 TGGCGTGGTGGCCGCA 8.14 hypothetical protein (XF0726-27-28-29)

XF2202 -80 GGGGATGGGTGTTGCT 8.11 hypothetical protein

XF0625 -46 TGGAATTGCTATTGCT 8.11 hypothetical protein

XF0641 -179 TGGCAAAGCGGTTGAA 8.07 DNA methyltransferase (XF0641-40)

* Distance between the -12 region of the promoter relative to the initiation codon.
# Predicted RpoN-binding site detected upstream of the re-annotated initiation codon of XF1842 (glnA).
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site regulates the ntrB-ntrC operon, since there is a 376
bp-intergenic region between the two genes. Surpris-
ingly, our global in silico prediction failed to detect
RpoN-binding site upstream of the glnA gene (XF1842),
a well-known and widespread member of the s54 regu-
lon [19]. However, a more detailed analysis, using Clus-
talW alignment, indicated that XF1842 ORF was
annotated incorrectly and the coding sequence should
be 108 bp shorter than previously proposed. In silico
analysis using the PATSER program in this new inter-
genic region detected a strong RpoN-binding site (score
10.52, Table 3).
To identify the 5’ end of the glnA transcript, primer

extension assays were performed with total RNA iso-
lated from the wild-type and rpoN mutant strains. One
major cDNA product was observed corresponding to a
single transcriptional start site at a cytosine located 35
bp upstream of the glnA re-annotated initiation codon
in the wild type strain, but no cDNA product was
observed when primer extension experiments were per-
formed with the rpoN mutant (Figure 3B). Upstream of
the glnA transcription start site we found the predicted
RpoN-binding site, a sequence (TGGTATG-N4-TTGC)
that is correctly positioned and matched 9 of 11 nucleo-
tides to the s54 consensus sequence (TGGCACG-N4-
TTGC) (Figure 3C). In other bacteria, glnA has a s54-
dependent promoter and its transcription is regulated by
the enhancer-binding protein NtrC [44]. Contact
between the activator and the s54-RNA polymerase
complex is achieved by DNA looping, facilitated either
by the integration host factor (IHF) protein or by intrin-
sic DNA topology [45]. In fact, analysis of the regulatory
region of the glnA gene revealed the presence of AT-
rich sequences with perfect match for the IHF binding
site (AATCAA-N4-TTG) besides two putative NtrC-
binding sites (Figure 3C).
In conclusion, primer extension data indicate that X.

fastidiosa glnA gene has a single canonical s54-depen-
dent promoter, confirming experimentally the in silico

prediction. The fact that sequences related to the NtrC
and IHF binding sites exist at appropriate positions
upstream of the glnA gene suggested that these factors
act in concert with s54 to initiate glnA transcription.
Therefore, ammonium assimilation is a cellular process
controlled by s54 in X. fastidiosa, similarly to that
observed in enteric bacteria [12]. Although at high con-
centrations ammonium is toxic to many plants [46] and
the main source of nitrogen in the xylem sap are amino
acids [5], studies using more precise analytical techni-
ques have detected significant amounts of ammonium in
the xylem sap, showing that root-to-shoot ammonium
translocation does indeed occur in plants [47]. The
ammonium translocated by xylem vessels and that
derived from protein catabolism should be used as
nitrogen source by X. fastidiosa, through its incorpora-
tion into glutamine by glutamine synthetase.

Conclusions
In the present study, we used DNA microarrays to iden-
tify global gene expression changes during nitrogen star-
vation in X. fastidiosa. Nitrogen depletion in XDM2, a
defined medium that contains amino acids as nitrogen
source similarly to the xylem sap, resulted in major
alterations in Xylella transcriptome. Changes in the
expression were observed for several genes related to
transport, RNA metabolism, biosynthesis of amino acids
and translation, as well as a severe downregulation in
the expression of genes related to heat shock response
and carbon and energy metabolism. However, the func-
tion of several genes differentially expressed under nitro-
gen starvation remains unknown. In addition, we have
also obtained a more detailed appreciation of the X. fas-
tidiosa s54 regulon by combining computational predic-
tion, microarray data and primer extension analysis.
Among other cellular processes, RpoN controls pili bio-
genesis (pilA1) and ammonium assimilation (glnA),
consistent with the fact that X. fastidiosa has only two
EBPs proteins encoding NtrC and PilR ortologues.

Figure 2 Sequence logo for Xylella RpoN-binding site. RpoN-binding sites predicted by PATSER (44 sites with score >7.95 shown in Table 3)
were used to create the logo with the WebLogo generator http://weblogo.berkeley.edu/.
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Figure 3 Characterization of a s54-dependent promoter in the glnA gene. (A). Genomic context of glnA gene in the X. fastidiosa
chromosome indicating other genes associated with nitrogen metabolism. (B). Determination of the transcription start site of glnA by primer
extension assay. Reactions were performed using total RNA from J1a12 and rpoN strains and the [g-32P]ATP-labeled primer XF1842EXT. A DNA
sequencing ladder of phage M13mp18 was used as molecular size marker. The arrow indicates the band corresponding to the extended
fragment. (C). Nucleotide sequence of X. fastidiosa glnA promoter region. The transcriptional start site determined by primer extension analysis
and the -12 and -24 conserved sequence elements of the s54-dependent promoter are boxed. The re-annotated initiation codon (ATG) and the
putative IHF binding site are underlined. The predicted Shine-Dalgarno sequence is double underlined. The putative NtrC binding sites are
indicated by dashed lines.
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Experimental conditions that activate additional genes
possessing true RpoN-binding sites remain to be
determined.

Additional material

Additional file 1: Table S1: Upregulated genes under nitrogen
starvation in X. fastidiosa J1a12 strain. The genes are ordered by the
pattern of induction in the temporal series. M = log ratio of fluorescence
intensity in nitrogen starvation (XDM0) compared to the control
condition (XDM2). The values of M considered upregulated are
highlighted in bold.

Additional file 2: Table S2: Downregulated genes under nitrogen
starvation in X. fastidiosa J1a12 strain. The genes are ordered by the
pattern of repression in the temporal series. M = log ratio of
fluorescence intensity in nitrogen starvation (XDM0) compared to the
control condition (XDM2). The values of M considered downregulated are
highlighted in bold.
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