Skip to main content
Fig. 2 | BMC Microbiology

Fig. 2

From: Bacterial microcompartments for isethionate desulfonationĀ in the taurine-degrading human-gut bacterium Bilophila wadsworthia

Fig. 2

Excerpts of the total transcriptomic and proteomic data for B. wadsworthia in respect to the expression of BMC shell proteins during taurine degradationĀ (A): Proteomic (blue) and transcriptomic (green) identification of produced or induced proteins/genes in B. wadsworthia during growth with taurine as electron acceptor. Values are normalized to the DsrB signal to enable comparison between the two methods. Note that the transcription of the genes for the small BMC shell proteins such as (IMG locus tag prefix HMPREF0179_) genes 00641, 00642 (both annotated as EutN) and 00646 (CcmK-like shell protein) appeared to be higher relative to the proteomic scores in comparison to the data for larger genes/proteins (e.g. for IslA, GroEL, PFOR), and that this observation may be attributed to the proteomic analysis, where smaller proteins are detected with lower sensitivity than larger proteins. Error bars: standard deviation of n = 3 (B) Excerpt of total proteomic data for B. wadsworthia grown with taurine (dark blue) in comparison to 3-sulfolactate (light blue) as electron acceptor. For taurine respiration, a higher expression of IslAB was confirmed, as well as of other BMC-associated proteins from the gene cluster represented in Fig.Ā 1B, such as the shell proteins EutN (00641), a CcmK-like shell protein (00646) and CcmL/PduT (00647). Sulfolactate respiration on the other hand led to much higher expression of the corresponding desulfonating enzyme, SuyAB (see text), in comparison to taurine respiration. Data for constitutively expressed proteins is also shown for comparison (e.g. GroEL, ATP synthase subunits). Data represents the mean Ā± standard error from the analysis of three biological replicates (cultures) for taurine- and of two biological replicates for sulfolactate-grown B. wadsworthia 3.1.6

Back to article page