TY - STD TI - Karlsson AS, Weihermüller L, Tappe W, Mukherjee S, Spielvogel S. Field scale boscalid residues and dissipation half-life estimation in a sandy soil. Chemosphere. 2016. https://doi.org/10.1016/j.chemosphere.2015.11.026. ID - ref1 ER - TY - STD TI - Kolekar PD, Patil SM, Suryavanshi MV, Suryawanshi SS, Khandare RV, et al. Microcosm study of atrazine bioremediation by indigenous microorganisms and cytotoxicity of biodegraded metabolites. J Hazard Mater. 2019. https://doi.org/10.1016/j.jhazmat.2019.01.023. ID - ref2 ER - TY - STD TI - Singh S, Kumar V, Chauhn A, Datta S, Wani AB, Singh N, et al. Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett. 2018. https://doi.org/10.1080/03601230701735227. ID - ref3 ER - TY - STD TI - Lopes RDO, Pereira PM, Pereira ARB, Fernandes KV, Carvalho JF, França ADSD, et al. Atrazine, desethylatrazine (DEA) and desisopropylatrazine (DIA) degradation by Pleurotus ostreatus INCQS 40310. Biocatal Biotransformation. 2020. https://doi.org/10.1080/10242422.2020.1754805. ID - ref4 ER - TY - STD TI - Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011. https://doi.org/10.1038/nrmicro2519. ID - ref5 ER - TY - STD TI - Serbent MP, Guimarães DKS, Drechsler-Santos ER, Helm CV, Giongo A, Tavares LBB. Growth, enzymatic production and morphology of the white-rot fungi Lentinus crinitus (L.) Fr. Upon 2,4-D herbicide exposition. Int J environ Sci Technol. 2020. 2020. https://doi.org/10.1007/s13762-020-02693-1. ID - ref6 ER - TY - STD TI - Moody SC, Dudley E, Hiscox J, Boddy L, Eastwood DC. Interdependence of primary metabolism and xenobiotic mitigation characterizes the proteome of Bjerkandera adusta during wood decomposition. Appl Environ Microbiol. 2018. https://doi.org/10.1128/AEM.01401-17. ID - ref7 ER - TY - STD TI - Ijoma GN, Tekere M. Potential microbial applications of co-cultures involving ligninolytic fungi in the bioremediation of recalcitrant xenobiotic compounds. Int J Environ Sci Technol. 2017. https://doi.org/10.1007/s13762-017-1269-3. ID - ref8 ER - TY - STD TI - Cameron MD, Timofeevski S, Aust SD. Enzimology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol. 2000. https://doi.org/10.1007/s002530000459. ID - ref9 ER - TY - STD TI - Cupul WC, Abarca GH, Vázquez RR, Salmones D, Hernández RG, Gutiérrez EA. Response of ligninolytic macrofungi to the herbicide atrazine: dose-response bioassays. Rev Argent Microbiol. 2014. https://doi.org/10.1016/S0325-7541(14)70094-X. ID - ref10 ER - TY - STD TI - Gomes E, Aguiar AP, Carvalho CC, Bonfá MRL, Da Silva R, Boscolo M. Ligninases production by basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes. Braz J Microbiol. 2009. https://doi.org/10.1590/S1517-83822009000100005. ID - ref11 ER - TY - STD TI - Pereira PM, Teixeira RSS, Oliveira MAL, Silva M, Ferreira-Leitão VS. Optimized atrazine degradation by Pleurotus ostreatus INCQS 40310: an alternative for impact reduction of herbicides used in sugarcane crops. J Microb Biochem Technol. 2013. https://doi.org/10.4172/1948-5948.S12-006. ID - ref12 ER - TY - STD TI - Rabinovich ML, Bolobova AV, Vasil’chenko LG. Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl Biochem Microbiol. 2004. https://doi.org/10.1023/B:ABIM.0000010343.73266.08. ID - ref13 ER - TY - STD TI - Fan X, Song F. Bioremediation of atrazine: recent advances and promises. J Soils Sediments. 2014. https://doi.org/10.1007/s11368-014-0921-5. ID - ref14 ER - TY - STD TI - Mougin C, Laugero C, Asther M, Chaplain V. Biotransformation of s-triazine herbicides and related degradation products in liquid cultures by the white-rot fungus Phanerochaete chrysosporium. Pestic Sci. 1997. https://doi.org/10.1002/(SICI)1096-9063(199702)49:2<169::AID-PS520>3.0.CO;2-0. ID - ref15 ER - TY - JOUR AU - Mougin, C. AU - Laugero, C. AU - Asther, M. AU - Dobroca, J. AU - Frasse, P. AU - Asther, M. PY - 1994 DA - 1994// TI - Biotransformation of the herbicide atrazine by the white-rot fungus Phanerochaete chrysosporium JO - Appl Environ Microbiol VL - 60 UR - https://doi.org/10.1128/AEM.60.2.705-708.1994 DO - 10.1128/AEM.60.2.705-708.1994 ID - Mougin1994 ER - TY - STD TI - Masaphy S, Levanon D, Henis Y. Degradation of atrazine by the lignocellulolytic fungus Pleurotus pulmonarius during solid-state fermentation. Bioresour Technol. 1996. https://doi.org/10.1016/0960-8524(96)00026-0. ID - ref17 ER - TY - STD TI - Chan-Cupul W, Heredia-Abarca G, Rodríguez R. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. J Environ Sci Health B. 2016. https://doi.org/10.1080/03601234.2015.1128742. ID - ref18 ER - TY - STD TI - Jin X, Yu X, Zhu G, Zheng Z, Feng F, Zhang Z. Conditions optimizing and application of laccase-mediator system (LMS) for the laccase-catalyzed pesticide degradation. Sci Rep. 2016. https://doi.org/10.1038/srep35787. ID - ref19 ER - TY - STD TI - Elgueta S, Santos C, Lima N, Diez MC. Atrazine dissipation in a biobed system inoculated with immobilized white-rot fungi. Arch Agron Soil Sci. 2016. https://doi.org/10.1080/03650340.2016.1155699. ID - ref20 ER - TY - STD TI - Buswell JA, Cai Y, Chang S. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiol Lett. 1995. https://doi.org/10.1111/j.1574-6968.1995.tb07504.x. ID - ref21 ER - TY - STD TI - Kameshwar AKS, Qin W. Gene expression metadata analysis reveals molecular mechanismsemployed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives. Curr Genet. 2017. https://doi.org/10.1007/s00294-017-0686-7. ID - ref22 ER - TY - STD TI - Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol. 1978. https://doi.org/10.1007/BF00738547. ID - ref23 ER - TY - CHAP AU - Hawksworth, D. L. AU - Lücking, R. ED - Heitman, J. ED - Howlett, B. J. ED - Crous, P. W. ED - Stukenbrock, E. H. ED - James, T. Y. ED - Gow, N. A. R. PY - 2018 DA - 2018// TI - Fungal diversity revisited: 2.2 to 3.8 million species BT - The fungal kingdom PB - ASM Press CY - Washington ID - Hawksworth2018 ER - TY - STD TI - Bisht J, Harsh NSK, Palni LMS, Agnihotri V, Kumar A. Biodegradation of chlorinated organic pesticids endosulfan and chlorpyrifos in soil extract broth using fungi. Remediation. 2019. https://doi.org/10.1002/rem.21599. ID - ref25 ER - TY - STD TI - Xiao P, Kondo R. Potency of Phlebia species of white rot fungi for the aerobic degradation, transformation and mineralization of lindane. J Microbiol. 2020. https://doi.org/10.1007/s12275-020-9492-x. ID - ref26 ER - TY - STD TI - Périgon S, Massier M, Germain J, Binet MN, Legay N, Mouhamadou B. Metabolic adaptation of fungal strains in response to contamination by polychlorinated biphenyls. Environ Sci Pol Res. 2019. https://doi.org/10.1007/s11356-019-04701-5. ID - ref27 ER - TY - STD TI - Carvalho MB, Martins I, Medeiros J, Tavares S, Planchon S, Ranaut J, et al. The response of Mucor plumbeus to pentachlorophenol: a toxicoproteomics study. J Proteome. 2015. https://doi.org/10.1016/j.jprot.2012.11.006. ID - ref28 ER - TY - STD TI - Marinho G, Barbosa BCA, Rodrigues K, Aquino M, Pereira L. Potential of the filamentous fungus Aspergilus niger AN400 to degrade atrazine in wastewaters. Biocatal Agric Biotechnol. 2017. https://doi.org/10.1016/j.bcab.2016.12.013. ID - ref29 ER - TY - STD TI - Xiao P, Mori P, Kamei I, Kiyota H, Takagi K, Kondo R. Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere. 2011. https://doi.org/10.1016/j.chemosphere.2011.06.028. ID - ref30 ER - TY - STD TI - Gorbatova ON, Koroleva OV, Lanesman EO, Stepanova EV, Zherdev AV. Increase of detoxification potential of basidiomycetes by induction of laccase biosynthesis. Appl Biochem Microbiol. 2006. https://doi.org/10.1134/S0003683806040132. ID - ref31 ER - TY - STD TI - Lee H, Jang Y, Choi YS, Kim MJ, Lee J, Lee H, et al. Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Methods. 2014. https://doi.org/10.1016/j.mimet.2013.12.007. ID - ref32 ER - TY - STD TI - Tsujiyama S, Muraoka T, Takada N. Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett. 2013. https://doi.org/10.1007/s10529-013-1179-5. ID - ref33 ER - TY - STD TI - Yadav M, Yadav HS. Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers. Environ Chem Lett. 2015. https://doi.org/10.1007/s10311-015-0516-4. ID - ref34 ER - TY - STD TI - Furukawa T, Bello FO, Horsfall L. Microbial enzyme systems for lignin degradation and their transcriptional regulation. Front Biol. 2014. https://doi.org/10.1007/s11515-014-1336-9. ID - ref35 ER - TY - STD TI - Song F, Li J, Fan X, Zhang Q, Chang W, Yang F, et al. Transcriptome analysis of Glomus mossae/Medicago sativa mycorrhiza on atrazine stress. Sci Rep. 2016. https://doi.org/10.1038/srep20245. ID - ref36 ER - TY - STD TI - Sui X, Wu Q, Chang W, Fan X, Song F. Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress. BMC Plant Biol. 2018. https://doi.org/10.1186/s12870-018-1492-1. ID - ref37 ER - TY - STD TI - Nguyen LN, Hai FI, Yang S, Kang J, Leusch FDL, Roddick F, et al. Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: role of biosorption and biodegradation. Int Biodeterior Biodeg. 2013. https://doi.org/10.1016/j.ibiod.2013.12.017. ID - ref38 ER - TY - STD TI - Santos SX, Carvalho CC, Bonfá MRL, Da Silva R, Gomes E. Screening for pectinolytic activity of wood-rotting Basidiomycetes and characterization of the enzymes. Folia Microbiol. 2004. https://doi.org/10.1007/BF02931645. ID - ref39 ER - TY - STD TI - Abrahão MC, Gugliotta AM, Da Silva R, Fujieda RJY, Boscolo M, Gomes E. Ligninolytic activity from newly isolated basidiomycete strains and effect of these enzymes on the azo dye orange II decolourisation. Ann Microbiol. 2008. https://doi.org/10.1007/BF03175538. ID - ref40 ER - TY - JOUR AU - Castellani, A. PY - 1969 DA - 1969// TI - The “water cultivation” of pathogenic fungi JO - Ann Soc Belg Med Trop VL - 44 ID - Castellani1969 ER - TY - STD TI - Tixier C, Bogaerts P, Sancelme M, Bonnemoy F, Twagilimana L, Cuer A, et al. Fungal biodegradation of a phenylurea herbicide, diurom: structure and toxicity of metabolite. Pest Manag Sci. 2000. https://doi.org/10.1002/(SICI)1526-4998(200005)56:5<455::AID-PS152>3.0.CO;2-Z. ID - ref42 ER - TY - STD TI - Coelho JS, Oliveira AL, Souza CGM, Bracht A, Peralta RM. Effect of the herbicides bentazon and diuron on the production of ligninolytic enzymes by Ganoderma lucidum. Int Biodeterior Biodegradation. 2010. https://doi.org/10.1016/j.ibiod.2009.12.006. ID - ref43 ER - TY - STD TI - Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod JL, Khadrani A. Biodegradation of three substituted phenylurea herbicides (chlortoluron, diuron, and isoproturon) by soil fungi. A comparative study. Chemosphere. 1996. https://doi.org/10.1016/0045-6535(96)00318-9. ID - ref44 ER - TY - STD TI - Gianfreda L, Mora ML, Diez MC. Restoration of polluted soils by means of microbial and enzymatic processes. R C Suelo Nutric Veg. 2006. https://doi.org/10.4067/s0718-27912006000100004. ID - ref45 ER - TY - STD TI - Aitken MD, Irvine LR. Characterization of reactions catalyzed by manganese peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys. 1990. https://doi.org/10.1016/0003-9861(90)90739-L. ID - ref46 ER - TY - STD TI - Tien M, Kirk TK. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 1988. https://doi.org/10.1016/0076-6879(88)61025-1. ID - ref47 ER - TY - BOOK PY - 2013 DA - 2013// TI - R: A language and environment for statistical computing ID - ref48 ER -