Skip to main content

Table 2 Antimicrobial resistance profiles and acquired mechanisms of resistance of the 85 MRSA isolates

From: Nationwide molecular epidemiology of methicillin-resistant Staphylococcus aureus responsible for horse infections in France

Antibiotypea

Year of isolation (number of strains)

Antimicrobial resistance phenotypeb,c,d

Acquired resistance gene(s)

Mutations in QRDR

gyrA

parC

1

2012 (1)

OXA

mecC

  

2

2013 (1)

OXA, TE, MI

mecA, tet(M)

  

3

2011 (1)

OXA, K, T, G, CIP

mecA, aac(6′)-aph(2″)

S84L

S80F, E84K

4a

2010 (1), 2011 (2)

OXA, K, T, G, CIP, TE, MI

mecA, aac(6′)-aph(2″), tet(M)

-

-

4b

2010 (1)

OXA, K, T, G, CIP, TE, MI

mecA, aac(6′)-aph(2″), tet(M), tet(K)

-

-

5

2011 (2), 2012 (1)

OXA, K, T, G, CIP, TE, MI

mecA, aac(6′)-aph(2″), tet(M)

S84L

S80F

6

2010 (1)

OXA, K, T, G, CIP, TE, MI, RA, SXT

mecA, aac(6′)-aph(2″), tet(M)

-

-

7

2012 (1)

OXA, K, T, G, CIP, TE, MI, RA, SXT, C

mecA, aac(6′)-aph(2″), tet(M)

-

S80F

8

2012 (1)

OXA, K, T, G, CIP, TE, MI, SXT

mecA, aac(6′)-aph(2″), tet(M)

S84L

S80F, E84D

9

2010 (1)

OXA, K, T, G, CIP, TE, MI, RA, SXT

mecA, aac(6′)-aph(2″), aph(3′)-IIIa, ant(4′)-Ia, tet(M)

-

-

10

2013 (1)

OXA, K, T, G, E(c), CIP, TE, MI, SXT

mecA, aac(6′)-aph(2″), tet(M), erm(B)

-

-

11

2013 (1)

OXA, K, T, G, E(c), TE, MI, RA, SXT

mecA, aac(6′)-aph(2″), tet(M), erm(C), msr(A)

  

12a

2012 (7), 2013 (2)

OXA, K, T, G, E(i), CIP, TE, MI, RA, SXT, C

mecA, aac(6′)-aph(2″), tet(M), erm(C)

-

S80F

12b

2013 (1)

OXA, K, T, G, E(i), CIP, TE, MI, RA, SXT, C

mecA, aac(6′)-aph(2″), tet(M), erm(C), msr(A)

-

S80F

13

2013 (1)

OXA, K, T, G, E(i), TE, MI

mecA, aac(6′)-aph(2″), tet(M), erm(C)

  

14

2007 (2), 2010 (1), 2011 (1)

OXA, K, T, G, E(i), TE, MI, RA, SXT

mecA, aac(6′)-aph(2″), tet(M), erm(C)

  

15

2008 (1)

OXA, K, T, G, E(i), TE, MI, RA, SXT, C

mecA, aac(6′)-aph(2″), tet(M), erm(C)

  

16

2010 (3), 2011 (1), 2012 (1)

OXA, K, T, G, E(i), TE, MI, SXT

mecA, aac(6′)-aph(2″), tet(M), erm(C)

  

17

2008 (1), 2011 (1)

OXA, K, T, G, E(i), TE, MI, SXT, C

mecA, aac(6′)-aph(2″), tet(M), erm(C)

  

18

2010 (1)

OXA, K, T, G, E, CIP, TE, MI, RA

mecA, aac(6′)-aph(2″), aph(3′)-IIIa, tet(M), msr(A)

-

-

19a

2010 (2), 2011 (10), 2012 (11), 2013 (10)

OXA, K, T, G, TE, MI

mecA, aac(6′)-aph(2″), tet(M)

  

19b

2010 (1)

OXA, K, T, G, TE, MI

mecA, aac(6′)-aph(2″), ant(4′)-Ia, tet(M)

  

20a

2011 (1), 2012 (2), 2013 (2)

OXA, K, T, G, TE, MI, C

mecA, aac(6′)-aph(2″), tet(M)

  

20b

2013 (1)

OXA, K, T, G, TE, MI, C

mecA, aac(6′)-aph(2″), tet(M), tet(K)

  

21

2010 (1)

OXA, K, T, G, TE, MI, RA

mecA, aac(6′)-aph(2″), tet(M)

  

22

2010 (2)

OXA, K, T, G, TE, MI, RA, C

mecA, aac(6′)-aph(2″), tet(M)

  

23

2011 (1)

OXA, K, T, G, TE, MI, RA, SXT

mecA, aac(6′)-aph(2″), tet(M)

  

24

2012 (1)

OXA, K, T, G, TE, MI, SXT

mecA, aac(6′)-aph(2″), tet(M)

  
  1. aStrains were classified according to their antimicrobial resistance phenotypes (1 to 24). Strains exhibiting identical antimicrobial resistance phenotypes but different genotypes were differentiated as 4a/4b, 12a/12b, 19a/19b, and 20a/20b
  2. bResistance to: C chloramphenicol, E erythromycin, G gentamicin, K kanamycin, MI minocycline, OXA oxacillin, CIP ciprofloxacin, RA rifampin, SXT cotrimoxazole, TE tetracycline, T tobramycin
  3. cE(i), inducible MLSB resistance phenotype; E(c), constitutive MLSB resistance phenotype
  4. d CIP, fluoroquinolone resistance putatively due to an active efflux (≥2-fold decrease in MIC of ciprofloxacin in the presence of 10 μg/ml of reserpine)