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Abstract 

Background  Pseudomonas aeruginosa is a common cause of nosocomial infections. However, the emergence 
of multidrug-resistant strains has complicated the treatment of P. aeruginosa infections. While polymyxins have been 
the mainstay for treatment, there is a global increase in resistance to these antibiotics. Therefore, our study aimed 
to determine the prevalence and molecular details of colistin resistance in P. aeruginosa clinical isolates collected 
between June 2019 and May 2023, as well as the genetic linkage of colistin-resistant P. aeruginosa isolates.

Results  The resistance rate to colistin was 9% (n = 18) among P. aeruginosa isolates. All 18 colistin-resistant isolates 
were biofilm producers and carried genes associated with biofilm formation. Furthermore, the presence of genes 
encoding efflux pumps, TCSs, and outer membrane porin was observed in all colistin-resistant P. aeruginosa strains, 
while the mcr-1 gene was not detected. Amino acid substitutions were identified only in the PmrB protein of multi‑
drug- and colistin-resistant strains. The expression levels of mexA, mexC, mexE, mexY, phoP, and pmrA genes in the 18 
colistin-resistant P. aeruginosa strains were as follows: 88.8%, 94.4%, 11.1%, 83.3%, 83.3%, and 38.8%, respectively. Addi‑
tionally, down-regulation of the oprD gene was observed in 44.4% of colistin-resistant P. aeruginosa strains.

Conclusion  This study reports the emergence of colistin resistance with various mechanisms among P. aeruginosa 
strains in Ardabil hospitals. We recommend avoiding unnecessary use of colistin to prevent potential future increases 
in colistin resistance.
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Background
Pseudomonas aeruginosa is a Gram-negative opportunis-
tic pathogen commonly found in hospital environments, 
particularly in intensive care units (ICUs). It is responsi-
ble for various nosocomial infections, including pulmo-
nary, bloodstream, urinary tract, surgical site, and skin 
and soft tissue infections [1–4]. The treatment of P. aer-
uginosa infections typically involves the use of β-lactam, 
fluoroquinolone, and aminoglycoside antibiotics either 
alone or in combination [5, 6]. However, the misuse and 
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overuse of antibiotics have led to the emergence of antibi-
otic resistance in P. aeruginosa strains, making it difficult 
to effectively treat these infections. The rise in antibiotic 
resistance among Gram-negative bacteria, which began 
in the 1970s, continues to be a significant challenge [7–9]. 
In 2017, the World Health Organization (WHO) declared 
antimicrobial resistance a global crisis. The organiza-
tion listed 12 bacterial families as the greatest threats to 
human health, with carbapenem-resistant P. aeruginosa 
strains being one of the most important [10]. Carbapenem 
antibiotics are commonly recommended for the treat-
ment of multidrug-resistant (MDR) P. aeruginosa strains 
[8]. However, in line with the WHO report, our previous 
studies have confirmed the high prevalence of carbape-
nem-resistant P. aeruginosa isolates in various cities of 
Iran, particularly in Ardabil in the northwest of the coun-
try [3, 11]. This challenging situation has increased the 
reliance on polymyxins, such as polymyxin B and colistin, 
which are cationic lipopeptide antibiotics and consid-
ered as the last resort for treating Gram-negative bacte-
ria, including carbapenem-resistant P. aeruginosa strains 
that are resistant to all other available antibiotics [12]. 
While colistin (also known as polymyxin E) resistance 
has not been observed in clinical isolates of P. aeruginosa 
in Ardabil city thus far, colistin-resistant P. aeruginosa 
has been reported in other cities in Iran and worldwide. 
Therefore, one of the aims of this study was to investigate 
the resistance of P. aeruginosa clinical strains to colistin 
in Ardabil, as well as their genetic linkage. The mecha-
nisms of polymyxin resistance in Gram-negative bacteria 
are not fully understood. However, they can be mediated 
through plasmid-encoded genes, such as the acquisition 
of the mobilized colistin resistance-1 (mcr-1) gene, or 
through chromosomally encoded genes, including 1) cati-
onic modification of lipid A in lipopolysaccharides (LPS) 
via two-component systems (TCSs: PhoPQ and PmrAB), 
2) loss of LPS, 3) overexpression of efflux pump systems 
and capsular polysaccharides, 4) down-regulation of porin 
(OprD), and 5) enzymatic inactivation of colistin [7]. 
Therefore, another objective of this study was to deter-
mine the most common mechanisms of colistin resistance 
among drug-resistant P. aeruginosa clinical isolates col-
lected from patients referred to hospitals in Ardabil, Iran.

Materials and methods
P. aeruginosa clinical isolates, materials, and equipment
In this cross-sectional study conducted in Iran, a country 
located southwest of the Asian continent, a total of 200 
P. aeruginosa clinical isolates were utilized. These strains 
were collected from various specimens, including urine 
(n = 90), sputum (n = 55), wound (n = 28), blood (n = 26), 
and cerebrospinal fluid (CSF) (n = 1), obtained from 
patients referred to hospitals in Ardabil city, northwest 

of Iran. The hospitals included Imam Khomeini (n = 105), 
Alavi (n = 55), Imam Reza (n = 25), Bu-Ali (n = 6), Sabalan 
(n = 6), Fatemi (n = 2), and Ghaem (n = 1). The data col-
lection period spanned from June 2019 to May 2023.

The initial identification of P. aeruginosa clinical iso-
lates was performed using phenotypic standard labo-
ratory tests, which included assessments of pigment 
production, colony morphology, oxidase, catalase, IMViC 
pattern, and Gram staining. Confirmation of the species 
was subsequently achieved using the polymerase chain 
reaction (PCR) with a specific species primer [3].

The most important materials used in our study were 
the Master Mix for PCR/ERIC-PCR and real-time PCR 
(Ampliqon, Denmark), primers (Metabion, Germany), 
TRIzol™ Reagent (Bio Basic, Ontario, Canada), cDNA 
synthesis kit (Yekta Tajhiz Azma, Tehran, Iran), Mueller 
Hinton agar (Conda, Pronasida, Spain), colistin sulfate 
salt powder (Sigma-Aldrich co, St. Louis, MO, ≥ 15,000 
U/mg), antibiotic disks (Padtan Teb, Iran), Cetrimide 
agar (Conda, Pronasida, Spain), and Trypticase Soy Broth 
(TSB) (QUELAB/UK). Additionally, the following equip-
ment was used: Eppendorf thermal cycler (Germany), 
LightCycler® System (Roche Diagnostics), NanoDrop 
2000c Spectrophotometer (Thermo Scientific, USA), 
Agarose Gel Electrophoresis (Padideh Nojen Pars, Iran), 
and ELISA microplate reader (BioTek, USA).

Colistin agar test
The susceptibility pattern of P. aeruginosa clinical iso-
lates to colistin was determined based on the agar dilu-
tion MIC (minimum inhibitory concentration) method 
on Mueller–Hinton agar as suggested by the Clinical 
and Laboratory Standards Institute (CLSI) [13]. For this 
purpose, 3–5 fresh P. aeruginosa colonies from Muel-
ler Hinton agar plates were picked and transferred to 
4–5 mL sterile saline to prepare 0.5 McFarland turbidity 
standards. Bacterial standard suspensions were diluted in 
saline (1:10). A 10 μL of each diluted bacterial suspension 
was poured onto a colistin agar plate. Colistin agar plates 
were prepared in required dilutions, i.e., 0.5–16  μg/mL. 
Incubation condition and length were maintained at 
37 °C for 16–18 h. P. aeruginosa clinical isolates with MIC 
values ≥ 4 μg/mL were considered as resistant strains. A 
colistin-resistant Acinetobacter baumannii clinical isolate 
was used as the positive control (MIC = 16 μg/mL) (Eth-
ics ID: IR.ARUMS.REC.1400.071).

The disk diffusion method was used to determine 
multiple drug resistance patterns (multidrug-resistant 
(MDR), extremely drug-resistant (XDR), and pandrug-
resistant (PDR) strains) among colistin-resistant P. aer-
uginosa clinical isolates [14]. Furthermore, this method 
was employed to assess the resistance rates of colistin-
resistant P. aeruginosa isolates against various antibiotics, 
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including piperacillin (100  μg), piperacillin-tazobactam 
(100/10 μg), ceftazidime (30 μg), cefepime (30 μg), aztre-
onam (30  μg), imipenem (10  μg), meropenem (10  μg), 
gentamicin (10 μg), tobramycin (10 μg), amikacin (30 μg), 
ciprofloxacin (5  μg), levofloxacin (5  μg), norfloxacin 
(10  μg), and ofloxacin (5  μg), as per our previous study 
[3]. P. aeruginosa ATCC 27853 was used as a reference 
strain.

Biofilm formation assay
Evaluation of biofilm production among colistin-resistant 
P. aeruginosa isolates was performed by a colorimetric 
assay [15]. For this aim, of the 1:100 diluted suspensions 
of P. aeruginosa isolates which had grown in TSB medi-
ums, 150 μL were inoculated into a sterile 96-well flat bot-
tom plate and incubated at 37 °C for 24 h. The plate was 
washed with 200 μL of phosphate-buffered saline (PBS) 
(pH ~ 7.4) three times. Biofilm fixation was done with 100 
μL of methanol (99%) for 15 min and then the wells were 
air-dried. 150 μL of crystal violet stain (1%) was added to 
wells for 20 min, unbound stain washed with water, and 
then bound stain released through 150 μL of acetic acid 
(33%). ELISA microplate reader was used to measure the 
optical density (OD) of wells at 590 nm. Colistin-resistant 
P. aeruginosa isolates were divided into four categories 
including no biofilm producer if the OD of a strain (ODs) 
was less or equal to the OD negative control (ODc), weak 
biofilm producer if ODc < ODs < 2 × ODc, moderate bio-
film producer if 2 × ODc < ODs < 4 × ODc, and strong 
biofilm producer if 4 × ODc < ODs. P. aeruginosa ATCC 
27853 and sterile TSB medium were used as positive and 
negative controls, respectively. All experiments are per-
formed in triplicate.

Detection of colistin resistance genes
Molecular identification of the genes encoding efflux 
pumps (i.e., mexA, mexC, mexE, and mexY genes), 
TCSs (i.e., phoP, phoQ, pmrA, and pmrB genes), outer 
membrane porin (oprD gene), and mcr-1 gene, as well 
as genes involved in biofilm formation of P. aeruginosa 
(i.e., algD, pslD, pelF, Ppgl, and PAPI-1 genes) were per-
formed by the PCR method. Used primers along with 
the PCR program for the detection of each gene were 
listed in Table  1. In brief, genomic DNA was extracted 
from the 200 P. aeruginosa clinical isolates by the boil-
ing method [3] and confirmed by a spectrophotometer. 
Amplification of the genes was performed in a final vol-
ume of 15 μL (10 μL of Master Mix, with 3 μL of tem-
plate DNA (50 ng/µL), and 2 μL of primers (10 μmol/L)) 
and then their presence was confirmed using the agarose 
gel electrophoresis and sequencing (Sanger method, 
Pishgam, Iran) techniques. It is worth mentioning that 
for some genes with non-specific bands on agarose gel, 

the values mentioned above along with the PCR condi-
tions were changed. Finally, we employed the entero-
bacterial repetitive intergenic consensus (ERIC)-PCR 
method to assess the genetic relatedness among colistin-
resistant P. aeruginosa isolates. In pursuit of this, ampli-
fication reactions were conducted in a final volume of 50 
μL using the primers and ERIC-PCR program outlined 
in Table  1. Subsequently, the ERIC-PCR products were 
electrophoresed on a 2% agarose gel, and the resulting 
band patterns were analyzed using the Dice distance 
method for similarity and the UPGMA analysis method 
for clustering (GelQuest software version 3.3.5.0). ERIC-
PCR band patterns exhibiting > 80% similarity were cat-
egorized as belonging to the same cluster [5].

Mutational analysis of the PhoPQ and PmrAB
Detection of colistin resistance-associated mutations 
among P. aeruginosa clinical isolates with multiple drug 
resistance was performed using the sequencing method. 
The PCR products of the phoQ and pmrB genes from 
P. aeruginosa clinical isolates MDR, XDR, and resist-
ant to colistin were sent for sequencing. The nucleo-
tide sequences were compared with colistin-susceptible 
P. aeruginosa reference strain ATCC 27853 using the 
BioEdit software (version 7.2.5). Additionally, an online 
data analysis service (available at https://​web.​expasy.​org/​
trans​late/) was utilized to assess amino acid alterations.

Expression of the genes encoding efflux pumps, TCSs, 
and outer membrane porin
Expression levels of the mexA, mexC, mexE, mexY, phoP, 
pmrA, and oprD genes were determined among resistant 
isolates using the quantitative reverse transcription PCR 
(qRT-PCR) and specific sets of primers (Table 1). In brief, 
the total RNA of colistin-resistant P. aeruginosa isolates 
was extracted using the TRIzol™ Reagent. After confirm-
ing the quality and quantity of extracted RNAs (1  μg), 
cDNA synthesis was done according to the manufactur-
er’s instructions. The qRT-PCR of the genes was carried 
out under conditions presented in Table 1 and in a final 
volume of 15 μL (SYBR Green PCR Master Mix (7 μL), 
primers (2 μL, 10 μmol/L), cDNA (1 μg/μL), and DEPC-
treated water (5 μL)). The 30S ribosomal rpsL gene was 
used as the normalizing gene. The expression levels of 
genes in colistin-resistant P. aeruginosa isolates were 
determined relative to their expression levels in P. aerugi-
nosa ATCC 27853 using the 2−ΔΔCt method. Expression 
for each gene was assessed in duplicate.

Interpretation of the results of qRT-PCR was per-
formed as follows: for the mexA and mexC genes; two-
fold, for the mexE gene; tenfold, and for the mexY gene; 
fourfold expression rates compared with the reference 
strain of P. aeruginosa ATCC 27853 were considered as 

https://web.expasy.org/translate/
https://web.expasy.org/translate/
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overexpression [16]. For the oprD gene, the expression 
rate ≤ 30% relative to the reference strain was considered 
as down-regulation [17]. In addition, for the phoP and 
pmrA genes, expression levels higher than those of P. aer-
uginosa ATCC 27853 were considered as increased gene 
expression [12].

Result
Among 200 P. aeruginosa clinical isolates obtained from 
hospitalized patients, 18 isolates (9%) were resistant to 
colistin antibiotic according to the agar dilution method. 
Characteristics of these 18 colistin-resistant P. aerugi-
nosa isolates were presented in Table 2. In addition, MIC 
values of colistin for clinical isolates of P. aeruginosa are 
reported in Fig. 1. Among 200 P. aeruginosa strains, MIC 
values of 0.5, 1, 2, and 4 μg/mL were found in 2 (1%), 125 
(62.5%), 55 (27.5%), and 18 (9%) isolates, respectively. All 
colistin-resistant isolates showed MIC = 4 μg/mL.

Of the 18 colistin-resistant P. aeruginosa strains, 6 
strains showed multiple drug resistance patterns (4 MDR 
and 2 XDR) in the disk diffusion method. The suscepti-
bility patterns of colistin-resistant P. aeruginosa strains to 
various antibiotics along with their virulence gene pro-
files are presented in Table 3. The resistance rates of 18 
colistin-resistant P. aeruginosa isolates to different anti-
biotics were as follows: piperacillin 11.1%, piperacillin-
tazobactam 5.5%, ceftazidime 11.1%, cefepime 11.1%, 
aztreonam 0%, imipenem 38.9%, meropenem 11.1%, 
gentamicin 11.1%, tobramycin 11.1%, amikacin 5.5%, cip-
rofloxacin 50%, levofloxacin 50%, norfloxacin 50%, and 
ofloxacin 55.5%.

A high genetic diversity was observed among the 
18 colistin-resistant P. aeruginosa clinical isolates by 
detecting 15 different ERIC-PCR band patterns (Fig. 2). 
Among tested strains, 15 colistin-resistant P. aeruginosa 
exhibited unique genotypes (subgroup), while genotype 
subgroup 6 comprised three isolates. Details of band 
patterns for each species are depicted in Supplementary 
Figure S1.

As shown in Table  3, colistin-resistant P. aeruginosa 
strains were carrying the genes encoding resistance 
to other antibiotics such as metallo-β-lactamase (IMP 
gene), AmpC cephalosporinase, extended-spectrum 
β-lactamase (TEM and PSE genes), oxacillinase (oxa-
2 and oxa-23 genes), and efflux pumps (qacEΔ1, qacE, 
qacG, and cepA genes). These genes are involved in the 
emergence of MDR and XDR P. aeruginosa strains.

Biofilm formation was identified in all 18 colistin-
resistant P. aeruginosa isolates in the colorimetric assay. 
Among them, 7 (38.9%) isolates were weak biofilm pro-
ducers, 8 (44.4%) isolates were moderate biofilm produc-
ers, and 3 (16.7%) isolates were strong biofilm producers. 

In addition, the presence of genes encoding biofilm (i.e., 
algD, pslD, pelF, Ppgl, and PAPI-1 genes) was detected in 
all 18 colistin-resistant P. aeruginosa isolates in the PCR 
and confirmed by sequencing. The GenBank accession 
numbers for our nucleotide sequences of detected genes 
in this study are OR855380 to OR855387.

The role of the phoQ and pmrB gene mutations in the 
emergence of colistin-resistant P. aeruginosa was evalu-
ated in 6 MDR and XDR clinical isolates. Analysis of 
the phoQ gene revealed the following nucleotide substi-
tutions: at positions 473 C → T, 495 G → A, 552  T → C, 
583  T → C, 675  T → G, 702 A → G, 1110 C → T, 1146 
C → T, and 1155 C → T. None of these nucleotide sub-
stitutions led to amino acid alterations. Furthermore, 
similar results were observed for the pmrB gene and 
nucleotide changes did not result in amino acid substi-
tutions except for Tyr345His. Nucleotide substitutions of 
the pmrB gene were as follows: G at position 507 to A, G 
at position 639 to A, A at position 645 to G, G at position 
690 to C, T at position 696 to C, A at position 750 to G, A 
at position 762 to G, C at position 891 to T, and T at posi-
tion 1033 to C.

Expression levels of the mexA, mexC, mexE, mexY, 
phoP, and pmrA genes in 18 colistin-resistant P. aer-
uginosa strains were as follows: 88.8% (n = 16), 94.4% 
(n = 17), 11.1% (n = 2), 83.3% (n = 15), 83.3% (n = 15), and 
38.8% (n = 7), respectively. In addition, down-regulation 
of the oprD gene was observed in 44.4% (n = 8) of colis-
tin-resistant P. aeruginosa strains. The presence of a plas-
mid-borne mcr-1 gene and its association with colistin 
resistance in P. aeruginosa strains was not confirmed in 
this study.

Discussion
In recent years, there has been a significant reduction in 
the susceptibility of P. aeruginosa to polymyxins, despite 
its inherent sensitivity to these antibiotics [21]. The cur-
rent study reported, for the first time, a prevalence of 9% 
for colistin-resistant P. aeruginosa in Ardabil city. Other 
studies conducted in different regions of Iran and abroad 
have reported varying rates of colistin resistance among 
P. aeruginosa isolates. These include studies by Abd El-
Baky et  al. in Egypt (21.3%) [22], Rossi et  al. in Brazil 
(6.3%) [23], Wi et al. in South Korea (7.4%) [24], Zarate 
et al. in Peru (7.2%) [25], Farajzadeh Sheikh et al. in Iran 
(Ahvaz, Tehran, and Isfahan) (1.3%) [26], Goli et  al. in 
Iran (Tabriz) (2%) [27], Heidari et al. in Iran (Isfahan and 
Shiraz) (7%) [28], Malekzadegan et  al. in Iran (Shiraz) 
(0%) [29], Tahmasebi et al. in Iran (Hamadan) (3.9%) [30], 
and Talebi et al. in Iran (Tehran) (0%) [19].

The variations in colistin resistance rates among P. 
aeruginosa isolates in different regions can be attributed 
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to several factors. These include differences in sample 
size, methods used for antimicrobial susceptibility test-
ing, and specific local factors. In the case of Ardabil, 
the higher rate of colistin resistance compared to other 
cities in Iran may be attributed to three main factors. 
Firstly, the use of colistin in veterinary medicine for the 
growth promotion of food-producing animals, as Ard-
abil is an agricultural and animal husbandry province 
[31]. This practice can contribute to the selection and 
spread of colistin-resistant strains. Secondly, the mis-
use of antibiotics in intensive care units, which can lead 
to the emergence of resistant strains [22]. It’s worth 
noting that Iran has been reported to have the second-
highest antibiotic consumption rate in the world, with 
antibiotic consumption 16 times higher than the global 
standard (mehrnews.com/xYQDx), as stated by the sec-
retary of the Infectious Diseases Association of Iran. 
Thirdly, while the transmission of colistin-resistant P. 
aeruginosa within hospitals or across the entire health-
care system has been a concern [32], our investigation 
revealed no genetic correlation among colistin-resist-
ant strains collected from different hospitals in Ardabil 
city. However, we did observe three strains in genotype 
subgroup 6 that were shared between two distinct hos-
pitals (Fig. 2). A similar finding was reported by Khos-
ravi et al. for MDR P. aeruginosa isolates in Ahvaz [33]. 
In contrast, Zarei et  al. identified clonal relatedness 
between clinical and environmental P. aeruginosa iso-
lates [20].

Regarding the emergence of colistin-resistant P. aerugi-
nosa strains in Ardabil hospitals, various bacterial factors 

may be involved. One such factor is biofilm formation. A 
biofilm is a bacterial population encased in an outer poly-
mer layer, consisting of host immune system products 
or bacterial secreted polymers like exopolysaccharides 
(EPS), extracellular DNA, and proteins. Biofilms play a 
role in acute burn wound infections [1, 34]. Studies have 
shown that extracellular DNA within the biofilm, along 
with factors such as magnesium or calcium starvation, 
low pH, and antimicrobial peptides (including colistin), 
can contribute to polymyxin resistance through modi-
fications in LPS via the activation of TCSs like PmrAB 
and PhoPQ [34, 35]. Our study’s findings are consistent 
with the previous research discussed above. We observed 
that all colistin-resistant strains of P. aeruginosa in our 
study were capable of producing biofilms, as indicated in 
Table  2. This ability poses a significant challenge in the 
treatment of P. aeruginosa infections, particularly those 
affecting wounds. Furthermore, the presence and exces-
sive production of alginate EPS within the biofilm pro-
vide P. aeruginosa with protection against phagocytic 
cells and antibiotic treatments [34]. Apart from the algD 
gene, which encodes alginate, we identified the presence 
of other genes associated with biofilm formation (pslD, 
pelF, Ppgl, and PAPI-1) in all colistin-resistant P. aerugi-
nosa isolates. However, the prevalence of these chromo-
somal genes differed from a study conducted by Rajabi in 
Iran, where the respective prevalence rates were as fol-
lows: algD 78.6%, pelF 70.5%, pslD 36.6%, Ppgl 0%, and 
PAPI-1 77.6% [18]. Notably, the presence of the PAPI-1 
gene in all P. aeruginosa isolates in our study supports the 
findings of Qiu et al., which suggest that this large patho-
genicity island can be transmitted between P. aeruginosa 
strains [36].

Modifications of the negatively charged phosphate 
groups of lipid A through adding phosphoethanolamine 
mediated by the mcr gene can lead to polymyxins resist-
ance [35]. However, our study did not find evidence of the 
involvement of this plasmid-borne gene in the emergence 
of colistin-resistant P. aeruginosa strains. Similar results 
were obtained in Tabriz, Iran, where all colistin-resistant 
Gram-negative isolates, including P. aeruginosa strains, 
tested negative for mcr genes [37]. Additionally, another 
study conducted in Ardabil on clinical isolates of colistin-
resistant A. baumannii also demonstrated the absence of 
this gene (data not published). One possible explanation 
for the 0% prevalence of the mcr-1 gene in our study is its 
association with Enterobacteriaceae, particularly Escheri-
chia coli, which are resistant to colistin and commonly 
isolated from animal sources [37].

Multiple studies have confirmed that mutations in the 
components of TCSs, namely PmrB and PhoQ proteins, 
play a significant role in the development of polymyxin 
resistance in P. aeruginosa strains. These mutations result 

Fig. 1  MIC values of colistin for 200 clinical isolates of P. aeruginosa 
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in the upregulation of the arnBCADTEF operon, lead-
ing to the substitution of phosphate groups of lipid A 
with the cationic 4-amino-4-deoxy-L-arabinose in the 
LPS structure [38]. Several different mutations have been 
reported in various studies; however, in our study, we 
observed only the amino acid alteration Tyr345His in the 
sensor kinase protein PmrB, a component of the PmrAB 
TCS. This amino acid alteration has also been reported 
in other studies conducted by Barrow et  al. [39], Sell-
era et  al. [40], Lee et  al. [41], and Schurek et  al. [42]. It 
appears that the Tyr345His substitution in the PmrB pro-
tein is not involved in the activation of the response regu-
lator PmrA through phosphorylation in colistin-resistant 
P. aeruginosa strains isolated from hospitals in Ardabil. 
As shown in Table 2, except for strain 141, colistin-resist-
ant P. aeruginosa strains containing the Tyr345His muta-
tion did not exhibit overproduction of the pmrA gene. In 
our study, nucleotide substitutions in the phoQ gene did 
not result in amino acid alterations. Therefore, similar 
to the pmrB gene, there is no association between muta-
tions in the phoQ gene and subsequent overproduction 
of the phoP gene in the emergence of colistin-resistant 

P. aeruginosa strains. The overproduction of PmrB and 
PhoP genes among colistin-resistant P. aeruginosa strains 
may be attributed to factors other than mutations, such 
as low levels of magnesium or calcium, low pH, and anti-
microbial peptides [34, 35].

Table  2 provides evidence that the development of 
colistin resistance in P. aeruginosa strains in Ardabil hos-
pitals is a result of multiple factors. Previous reports have 
suggested that the ParRS TCS in P. aeruginosa is also 
involved in the emergence of polymyxin-resistant strains 
by down-regulating the expression of the porin protein 
OprD [43]. In this study, this resistance mechanism was 
confirmed in 44.4% of colistin-resistant P. aeruginosa 
strains. Furthermore, mutations in the ParRS TCS lead 
to low to moderate levels of resistance to polymyxins by 
enhancing the production of the MexXY/OprM efflux 
pump [44]. It is noteworthy that a significant production 
of efflux pumps, compared to other resistance mecha-
nisms, was observed in 18 colistin-resistant P. aerugi-
nosa strains in the current study: MexAB-OprM 88.8%, 
MexCD-OprJ 94.4%, MexEF-OprN 11.1%, and MexXY-
OprM 83.3%. Goli et  al. also demonstrated increased 

Fig. 2  Dendrogram of colistin-resistant P. aeruginosa clinical isolates based on the ERIC-PCR band patterns
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expression of genes encoding the MexAB-OprM and 
MexXY-OprM efflux pumps in two colistin-resistant P. 
aeruginosa strains [27].

Limitation of the study
In the current research, there were the following limita-
tions due to insufficient resources: 1) the mutations in 
the pmrB and phoQ genes were not assessed in all colis-
tin-resistant P. aeruginosa isolates, 2) the role of other 
TCSs (such as ParRS) in the emergence of polymyxin-
resistant strains was not studied. And, 3) all variants of 
mcr (including mcr-2 to -9) gene were not investigated.

Conclusion
The detection of colistin resistance among clinical iso-
lates of P. aeruginosa in Ardabil hospitals, higher than 
in other cities in Iran, is a significant finding. Our study 
suggests that this resistance can be attributed to various 
mechanisms, including amino acid alterations in TCSs, 
overproduction of TCSs, down-regulation of porin, and 
overproduction of efflux pumps. These results indicate 
that there may be insufficient infection control meas-
ures in Ardabil hospitals and a potential issue with the 
indiscriminate use of colistin in both humans and ani-
mals, which can complicate the treatment of P. aerugi-
nosa infections. Therefore, it is recommended to avoid 
the unnecessary use of this antibiotic to prevent the 
potential increase in colistin resistance in the future.
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