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Abstract

Background: B. cereus are of particular interest in food safety and public health because of their capacity to cause
food spoilage and disease through the production of various toxins. The aim of this study was to determine the
prevalence, virulence factor genes and antibiotic resistance profile of B. cereus sensu lato isolated from cattle grazing
soils and dairy products in Ghana. A total of 114 samples made up of 25 soil collected from cattle grazing farm land,
30 raw milk, 28 nunu (yoghurt-like product) and 31 woagashie (West African soft cheese). Ninety-six B. cereus sensu lato
isolates from 54 positive samples were screened by PCR for the presence of 8 enterotoxigenic genes (hblA, hblC, hbiD,
nheA, nheB, nheC, cytK and entFM), and one emetic gene (ces). Phenotypic resistance to 15 antibiotics were also
determined for 96 B. cereus sensu lato isolates.

Results: About 72% (18 of 25 soil), 47% (14 of 30 raw milk), 35% (10 of 28 nunu) and 39% (12 of 31 woagashi)
were positive for B. cereus sensu lato with mean counts (logq cfu/g) of 42+18,33+20,1.8+14and 26+ 18
respectively. The distribution of enterotoxigenic genes revealed that 13% (12/96 isolates) harboured all three
gene encoding for haemolytic enterotoxin HBL complex genes (hblA, hblC and hblD), 25% (24/96 isolates) possessed
no HBL gene, whereas 63% (60/96 isolates) possessed at least one of the three HBL genes. All three genes encoding
for non-haemolytic enterotoxin (nheA, nheB and nheC) were detected in 60% (57/96) isolates, 14% (13/96) harboured
only one gene, 19% (18/96) whereas 8% possessed none of the NHE genes. The detection rates of cytk, entFM, and ces
genes were 75, 67 and 9% respectively. Bacillus cereus s. . isolates were generally resistant to B-lactam antibiotics such
as ampicillin (98%), oxacillin (92%), penicillin (100%), amoxicillin (100%), and cefepime (100%) but susceptible to other
antibiotics tested.

Conclusions: Bacillus cereus s. I. is prevalent in soil, raw milk and dairy products in Ghana. However, loads are at levels
considered to be safe for consumption. Various enterotoxin genes associated with virulence of B. cereus are widespread
among the isolates.
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Background

The Bacillus cereus group, also known as B. cereus sensu
lato, is a species complex which shows high degree of
phenotypic and genotypic similarity. The group classically
consists of Gram-positive, rod-shaped, spore-forming
aerobic bacteria that are widespread in natural environ-
ments. The genetic similarity within the B. cereus group
has been widely studied [1-6].

Bacillus cereus s. I. has been found to have significant
impact on human health, agriculture, and food processing
[5]. B. cereus commonly cause spoilage in food products
[7]. Additionally, it is an opportunistic pathogen which
can cause two types of food poisoning in humans, charac-
terized by either nausea and vomiting or abdominal pain
and diarrhea [8, 9].

The virulence of B. cereus sensu lato is attributed to
different factors. Diarrheal disease is associated with the
production of enterotoxins such as hemolysin BL (HBL),
non-hemolytic enterotoxin (NHE), cytotoxin K, and
enterotoxin FM [10-15], whiles the virulence of emetic
strains is attributed to the production of a heat stable
cereulide, synthesized by a non-ribosomal peptide syn-
thetase encoded by ces genes [16]. The emetic toxin,
usually preformed in food, is not inactivated during food
processing or gastrointestinal passage because it is highly
resistant to heat treatments, extreme pH conditions and
protease activities [17—19]. Therefore, ingestion of living
B. cereus is not necessary for illness of this type to occur.
On the other hand, diarrheal food poisoning is not
caused by preformed toxins in food, but by viable vege-
tative B. cereus cells (not spores) producing enterotoxins
in the small intestine, because spores do not produce
enterotoxins. Additionally, spores are easily degraded
under gastrointestinal conditions by the host’s digestive
enzymes [20-22].

Ghanaian traditional milk products including nunu
(yoghurt-like) and woagashie (cheese-like) are produced
mainly by spontaneous fermentations of raw cow milk
[23, 24]. These products are consumed widely through-
out Ghana. However, there has been increasing public
concern about the safety of consuming the Ghanaian
milk products due to the crude methods of milk produc-
tion, handling and processing which expose the products
to possible contamination with various potential food-
borne pathogens such as B. cereus. To ensure consumer
safety and increase patronage of the Ghanaian traditional
dairy products, attempts have been made to characterize
the dominant microorganisms and to select starter
cultures for the production of quality and safe products
[24, 25]. The incidence of Bacillus cereus on dairy farms
and in milk products has been reported elsewhere, par-
ticularly in Scandinavia, the Netherlands, Australia and
Brazil [26-29]. However, there is currently no reported
study on the prevalence of Bacillus cereus in dairy farms
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and milk products in Ghana, and their associated viru-
lence and antibiotic resistance profile. This study there-
fore sought to assess the prevalence, virulence factor
genes and phenotypic antibiotic resistance of Bacillus
cereus sensu lato isolated from cattle grazing farms, raw
milk, and traditional dairy products in Ghana.

Methods

Sampling

A total of 114 samples made up of 25 soil collected from
cattle grazing farm land, 30 raw milk, 28 nunu (yoghurt-
like product) and 31 woagashie (West African soft
cheese) were used for the isolation of B. cereus. Raw
milk, nunu and woagashie samples were purchased from
retail markets in Tamale in the Northern region of
Ghana. Raw unpasteurized milk and its products sam-
pled were originally sourced from dairy farms which do
not rely on supplementary feeding or routine antibiotics
use. There was also no record of B. cereus infection
among the cattle herds. Soil samples were collected from
cattle grazing fields located within 10 mile radius in
farming communities in the Northern Region of Ghana.
Soil samples were taken from sites at least 500 m apart
with a sterilized spatula down to a depth of about 20 cm
from the ground surface into sterile stomacher bags and
transferred to the laboratory for analysis. Sampling was
done between January and October, 2015.

Isolation of and identification of B. cereus s. I.

For the isolation of Bacillus cereus s. I, 25 g of each
sample was transferred into 225 ml of sterile phosphate
buffered saline (PBS) in a sterile stomacher and homog-
enized for 2 min using BagMixer stomacher (Inter
science, St Nom, France). The homogenate was serially
diluted (10-fold) in sterile PBS and 0.1 mL of each dilu-
tion was inoculated onto duplicated agar plates con-
taining B. cereus agar base (Oxoid, UK) supplemented
with 100 ml/l of Egg Yolk Emulsion (Oxoid,) and 5 ml/I
of Polymyxin B Selective Supplement (Oxoid). Plates
were incubated at 30 °C for 24 h and observed for
growth. Suspected B. cereus colonies with blue appearance
(typically mannitol-negative) and lecithinase positive (zone
of precipitation around colonies) were selected from each
plate and sub-cultured on nutrient agar (Oxoid). Sus-
pected colonies were further identified by phenotypic
and biochemical tests [30] including cell shape and mo-
tility, hemolysis, production of catalase, oxidase, urease
and lecithinase, nitrate reduction, fermentation of D-
glucose, maltose, D-xylose, lactose and D-mannitol, and
growth at a temperature of 10 °C. Bacillus cereus ATCC
11778 and B. cereus ATCC 14579 were used as refer-
ence strains for phenotypic tests.
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PCR detection of virulence factor genes in B. cereus s. I.
Prior to DNA extraction, bacterial cultures were grown
by streaking on nutrient agar and incubating at 30 °C
for 24 h for preparation of template DNA for PCR
screening. The bacterial genomic DNA of was extracted
using the InstaGene Matrix DNA extraction kit following
the instructions of the manufacturer (Bio-Rad, Hercules,
CA, USA).

PCR screening was done to detect the presence of 8
enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB,
nheC, cytK and entFM), and one emetic gene (ces). The
primer pair sequences used for the amplification of viru-
lence factor genes of B. cereus in this study are shown in
Table 1. The PCR reaction was carried out as described
by Kim et al. [31]. Briefly, the PCR reaction mixture con-
tained 25 ng of template DNA, 0.5 U dreamTaq DNA
polymerase (Fermentas GmbH, St. Leon-Rot, Germany),
10 mM Tris-HCl (pH 8.3), 10 mM KCI, 0.2 mM each
deoxynucleoside triphosphate (dANTPs), 2.5 mM MgCl,,
and 1 pM each primer. Sterile MilliQ water was used for
the preparation of the PCR mixture and for all negative
control reactions. The reaction was performed in an auto-
matic thermal cycler (Biotron, Géttingen, Germany) under
the following optimized cycling program: an initial de-
naturation step of 3 min at 95 °C; 35 cycles of denatur-
ation at 94 °C for 30 s, annealing at 58 °C for 45 s,
extension at 72 °C for 1.5 min; and a final extension at
72 °C for 5 min.

The amplified PCR fragments were analysed by sub-
merged 1.5% agarose gel electrophoresis in 1x buffer
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(108 g Trisbase/l, 55 g boric acid/l and 40 ml of 0.5 M
EDTA, pH 8.0). Following electrophoresis, gels were
stained with ethidium bromide, photographed under UV
illumination. A reaction mixture without DNA template
served as a general control for extraneous nucleic acid
contamination. Other controls including sterile MilliQ
water and template DNA were used to detect false-
positive and false-negative reactions. PCR amplification
and electrophoresis experiments were all carried out in
triplicates.

Antibiotics susceptibility testing

Resistance/susceptibility to antimicrobials by B. cereus
sesu lato isolates were determined in Mueller-Hinton
(MH) broth using the broth dilution method recom-
mended by the standard criteria of the Clinical and
Laboratory Standards Institute (CLSI) guide [32-35].
The 15 antibiotics including Amoxicillin, Ampicillin,
Cefepime, Chloramphenicol, Ciprofloxacin, Clindamycin,
Erythromycin, Gentamycin, Oxacillin, Penicillin, Quinu-
pristin/Dalfopristin, Rifampin, Tetracycline, Trimetho-
prim /sulfumethoxazole and Vancomycin were each
diluted in two-fold in the range of 64 to 0.015 mg/L of
MH-broth. The final inoculum of B. cereus sesu lato sus-
pension in the broth media were equivalent to approxi-
mately 1 x 10> CFU/ml. Growth was carried out at 35 +
2 °C for 18-20 h incubation period and examined in a
microplate reader (OD at 610 nm). The breakpoints
against B. cereus in the CLSI guideline M45A2E (2010)
and M45-P (2005) were used for all antimicrobial agents

Table 1 Sequences of PCR primers targeting various targeting various virulent factor genes in this study

Target gene Primer Primer sequence (5" - 3) Amplicon size (bp) Reference

nheA nheA 344 S TACGCTAAGGAGGGGCA 480 [11]
nheA 843 A GTTTTTATTGCTTCATCGGCT

nheB nheB 1500 S CTATCAGCACTTATGGCAG 754 [11]
nheB 2269 A ACTCCTAGCGGTGTTCC

nheC nheC 2820 S CGGTAGTGATTGCTGGG 564 [11]
nheC 3401 A CAGCATTCGTACTTGCCAA

hblA HBLA1 GTGCAGATGTTGATGCCGAT 301 [11]
HBLA2 ATGCCACTGCGTGGACATAT

hblC L2A AATGGTCATCGGAACTCTAT 731 [11]
L2B CTCGCTGTTCTGCTGTTAAT

hblD LT1A AATCAAGAGCTGTCACGAAT 411 [11]
L1B CACCAATTGACCATGCTAAT

cytk CK-F-1859 ACAGATATCGG(GT)CAAAATGC 809 [46]
CK-R-2668 TCCAACCCAGTT(AT(GOCAGTTC

entFM ENTA ATGAAAAAAGTAATTTGCAGG 1,269 [63]
ENTB TTAGTATGCTTTTGTGTAACC

Ces cesF1 GGTGACACATTATCATATAAGGTG 1,271 [16]

cesR2

GTAAGCGAACCTGTCTGTAACAACA
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except oxacillin and quinupristin/dalfopristin for which
the breakpoints for Staphylococcus spp. in the CLSI
guideline M 100-S22 (2012) and S24 (2014) were used
according to Luna et al. [35].

Results and discussion

Prevalence and phenotypic characteristics of Bacillus
cereus s. I.

The prevalence of B. cereus sensu lato in soil from cattle
grazing farms, raw milk, nunu, and woagashie are shown
in Table 2. Eighteen of 25 (72.0%) soil, 14 of 30 (46.6%)
raw milk, 10 of 28 (35.7%) nunu and 12 of 31 (38.7%)
woagashi samples were positive for B. cereus sensu lato
with mean counts (log;o CFU/g) of 4.2+ 1.8,3.3+£20, 1.8
+1.4 and 2.6 + 1.8 respectively (Table 2). All the isolates
showed common phenotypic and biochemical characteris-
tics that are consistent with the identification of Bacillus
cereus sensu lato. The isolates were motile rods with perit-
richous flagella, and haemolytic with p-haemolysis or
lavender-green coloration under heavy growth which is an
indication of proteolytic activity. Additionally, they pro-
duced catalase, lecithinase, and reduced nitrate. The iso-
lates fermented D-glucose and maltose but were variable
in their ability to ferment sucrose and lactose. None of the
isolates fermented of D-xlyose and D-mannitol. Produc-
tion of oxidase and urease was variable while there was no
production of indole. All the isolates were able to grow at
10 °C. Thus the phenotypic and biochemical characteris-
tics suggest that the pool of isolates selected did not in-
clude B. anthracis which is non-hemolytic, and B.
cytotoxicus which has a minimum growth temperature of
20 °C [36]. Previous reports suggests that B. cereus strains
isolated from dairy products adapt to environmental cul-
ture conditions [37] which might explain the ability of
some B. cereus isolated from milk to ferment lactose. In
analysing 334 samples of pasteurized milk, TeGiffel et al.
[37] found that 40% of the samples were contaminated
with B. cereus, out of which 53% of the B. cereus isolates
could grow at 7 °C, and 20% fermented lactose which is
an uncommon carbon source for B. cereus [37]. Similarly,
17 B. cereus s. l. isolated from milk and dairy products in
the current work fermented lactose, whiles no isolate from
soil could ferment lactose.

Table 2 Prevalence of B. cereus sensu lato in soil, raw milk and
milk products

Sample type Number of positive Mean count®
samples (%) (log CFU/q)
Soils (n=25) 18 (72.0) 42+18
Raw milk (n=30) 14 (46.7) 33+£20
Nunu (n = 28) 10 (35.7) 18+14
Woagashie (n=31) 12 (38.7) 26+18
(

“Values are means + standard deviations (SD)
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B. cereus is widespread in the environment and shows
great ecological diversity, enhancing their ability to con-
taminate many raw and finished food products including
milk and milk products, although usually at low levels
of<10® CFU/g [38-42]. In the present study, raw milk
and traditional milk products (nunu and woagashie) all
had B. cereus counts of <4 log CFU/g. In general, it is
estimated that consumption of food containing B. cereus
cells and/or spores between 10° and 10° can cause dis-
ease [9, 43]. Therefore, the load of B. cereus sensu lato in
milk and milk products in the present study are within
acceptable limits for consumption according to the
EFSA recommended level of <10° CFU/g at the point of
consumption. However, there are reported cases of both
emetic and diarrhoeal diseases involving lower levels
(below 10° cfu/g) of B. cereus [43]. Therefore the poten-
tial for B. cereus infections through the consumption of
unpasteurized milk and milk products in Ghana cannot
be underestimated. Additionally, Ghana lacks proper
foodborne diseases surveillance systems to provide reli-
able data on the burden of foodborne illnesses involving
B. cereus in milk and milk products. Thus a number of
illnesses or sporadic outbreaks of B. cereus infections
resulting from the consumption of unpasteurized milk
and milk products may go unreported. Because B. cereus
are generally resident flora of soil and frequently associ-
ated with farm environments and the fecal shedding of
cattle, there is a higher risk of contamination of milk,
and subsequent entry into the dairy food chain where
they can cause spoilage and/or diseases. It is therefore
important for dairy farmers and processors of traditional
milk products to practice high level of good hygienic
practices (GHP) and Good manufacturing practices
(GMP), as well as implement the use of starter cultures
for the production fermented dairy products.

Distribution of virulence factor genes among B. cereus s. I.
isolates

PCR based detection of Virulence factors in B. cereus
sensu lato targeted genes encoding enterotoxins and
emetic toxin. These included genes encoding haemolytic
(hblA, hbIC, and hbID) and non-haemolytic (nheA, nheB,
and nheC) enterotoxin complexes, cytotoxin K (cytK),
enterotoxin FM (entFM), and cereulide (ces) as shown in
Fig. 1. All primers used produced amplicons of the
expected size from their respective target virulence
genes with reproducible results in repeated experiments.
The distribution of virulence genes among 96 B. cereus
s. l. isolates are shown in Table 3. For HNE encoding
genes, about 60% (58/96) of B. cereus s. . isolates were
found to harbour simultaneously the nheABC genes,
13% (12/96) harboured only one gene, 19% (18/96) har-
boured simultaneously two genes, and 8% possessed
none of the NHE encoding genes. For HBL encoding
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Fig. 1 Representative PCR products detecting various virulence factor genes in B. cereus s. /. isolated from soil and various dairy products. Lane M,
100 bp molecular size DNA marker; lane 1, nheA; lane 2, nheB; lane 3, nheC; lane 4, hblA; lane 5, hblC; lane 6, hblD; lane 7, cytK; lane 8, entFM; lane 9, Ces

genes, 38% (37/96) possessed only one gene, 24% (23/96)
possessed simultaneously two genes, 13% (12/96) pos-
sessed simultaneously all three bhlACD genes, and 25%
(24/96) possessed no HBL encoding gene at all. The
prevalence of cytk, entFM, and the emetic gene ces among
B. cereus s. I. isolates were 75, 67 and 9% respectively. The
emetic gene was only detected in B. cereus s. [ isolated
from milk and milk products but not from soil samples.
Virulence factors HBL, NHE and cytotoxin K are
primarily responsible for the production of B. cereus s. .
enterotoxins [12, 14, 44]. The isolated B. cereus s. L

commonly possessed cytk (75%) as the most prevalent
toxin gene followed by entFM (67%). Similar results of
high prevalence of nheABC and entFM gene complexes
have previously been reported to be widespread among
wild B. cereus isolates from various food and environ-
mental sources [30, 45-48], as well as some reference
strains [31]. Similarly, various studies have reported
higher prevalence rates, usually between 40 and 70.6% of
the HBL gene complex in B. cereus isolated from milk
and dairy products [28, 49-51]. The prevalence rate of
the emetic toxin gene ces was 9%. They were however

Table 3 Distribution of enterotoxin and emetic toxin genes in B. cereus senso lato isolated from dairy farm and milk product

Toxigenic genes

Number of strains (%)% positive for target gene(s)

Soil (n=30) Raw milk (n =24) Nunu (n=18) Woagashie (n = 24) Total (n=96)
NHE gene complexes
nheA 3(10) 1(4) 0(0) 2(8) 6 (6)
nheB 103) 1(4) 0(0) 0 22
nheC 1(3) 00 1) 2(8) 44
nheA + nheB 2(7) 2(8) 00 1) 5(5)
nheA + nheC 0 0(0) 0(0) 0 0(0)
nheB + nheC 2(7) 3(13) 4(22) 4(17) 13 (14)
nheA + nheB + nheC 19 (63) 15 (63) 9 (50 15 (63) 58 (60)
None detected 2(7) 2(8) 4(22) 0(0) 8(8)
HBL gene complexes
hblA 4(13) 4(17) 1(6) 28 11011
hblC 103 521 3(17) 1(4) 10 (10)
hblD 5017) 2(8) 2(11) 7 (29) 16 (17)
hbIA + hblC 0(0) 3(13) 0(0) 0(0) 3(3)
hblA + hblD 6 (20) 28 1(6) 3(13) 12 (13)
hbIC + hblD 103 3(13) 0(0) 4(17) 88
hbIA + hbIC + hbID 5(17) 14 4(22) 28 12 (13)
None detected 8 (27) 4 (17) 7 (39) 5(21) 24 (25)
Other genes
itk 9 (30) 21 (88) 18 (100) 24 (100) 72 (75)
entfFM 19 (63) 17 (71) 15 (83) 13 (54) 64 (67)
Ces 0(0) 5(21) 1(6) 3(13) 99

“percentages have been converted to the nearest whole numbers
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Table 4 Resistance to antimicrobials by B. cereus sensu lato isolated from dairy farms and milk products

Antibiotic “Breakpoints bInterpretation n (%)

S(5) R(> S \ R
Amoxicillin 4 8 0 0 96 (100)
Ampicillin 0.25 05 0 2 (0.02) 94 (98)
Cefepime 0 0 0 0 96 (100)
Chloramphenicol 8 32 95 (99) 1 (0.01) 0
Ciprofloxacin 1 4 96 (100) 0 0
Clindamycin 05 96 (100) 0 0
Erythromycin 0.5 4 88 (92) 8 (8) 0
Gentamicin 4 16 96 (100) 0 0
Oxacillin 2 4 3(3) 5(5) 88 (92)
Penicillin 0.12 0.25 0 0 96 (100)
Quinupristin/dalfopristin 1 4 96 (100) 0 0
Rifampin 1 96 (100) 0 0
Tetracycline 4 16 93 (97) 3(3) 0
Trimethoprim/sulfamethoxazole 2 4 0 19 (20) 77 (80)
Vancomycin 4 >4 96 (100) 0 0

*The breakpoints against B. cereus in the CLSI guideline M45A2E (2010) and M45-P (2005) were used for all antimicrobial agents except oxacillin and quinupristin/
dalfopristin for which the breakpoints for Staphylococcus spp. in the CLSI guidelines M 100-5S22 (2012) and S24 (2014) were used

bS susceptible, / intermediate, R resistant

detected only in B. cereus s. I isolated milk and milk
product but not from soil samples. Emetic toxin produ-
cing genes have previously been detected at different
low rates (1.5 to 17.2%) in isolated B. cereus strains iso-
lated from various food sources [42, 48, 52]; the different
prevalence rates being attributed to the differences in
food property [53-55]. Kim et al, [31], did not success-
fully generate amplicons for the emetic gene, ces, in both
reference and commercial strains of B. cereus. These
findings therefore seems to suggest that emetic toxin
genes are not highly prevalent or are rare among B.
cereus isolates.

Resistance of B. cereus s. I. to antibiotics
Resistance/susceptibility to different antimicrobial agents
by B. cereus s. I. are shown in Table 4. Irrespective of the
origin (soil, milk or milk products) of the isolates, they
were generally resistant to ampicillin (98%), oxacillin
(92%), penicillin (100%), amoxicillin (100%), cefepime
(100%) and trimethoprim/sulfamethoxazole (80% with 20%
intermediate resistant strains). They were however suscep-
tible to other antimicrobials such as Chloramphenicol
(99%), Ciprofloxacin (100%), Clindamycin (100%), Erythro-
mycin (92%), Gentamicin (100%), Quinupristin/dalfo-
pristin (100%), Rifampin (100%), Tetracycline (97%) and
Vancomycin (100%).

Because B. cereus have clinical significance, determining
their resistance or otherwise to antimicrobial agents is
critical for treatment during outbreaks. Previous reports
have shown that B. cereus is susceptible to imipenem and

vancomycin, and most strains are sensitive to chloram-
phenicol, aminoglycosides, ciprofloxacin, erythromycin,
and gentamicin [56-59]. Some strains of B. cereus are
moderately sensitive to clindamycin and tetracycline [58].
In this report, B. cereus s. I isolated from soil from cattle
grazing fields and milk and dairy products were pre-
dominantly resistant to f-lactam antibiotics. The abun-
dant production of p-lactamases by bacteria including
Bacillus species is a common cause of antibiotic resistance
in bacteria [39, 60]. Wild-type genomes of many bacteria,
including Bacillus species have been found to possess
genes encoding the production of B-Lactamase. However,
these chromosomal B-lactamases do not generally pro-
vide effective antibiotic resistance in wild-type bacilli,
despite evidence that the genes are not completely
silenced [61, 62].

Conclusions

Bacillus cereus sensu lato is prevalent in soil from cattle
grazing fields, raw milk and traditional dairy products,
but load in milk and traditional dairy products are at
levels considered to be safe for consumption. However,
various enterotoxin genes associated with the virulence
of B. cereus are widespread among isolates. Additionally,
the B. cereus s. I. isolates were generally resistant to -
lactam antibiotics but susceptible to other antibiotics.
There is therefore the need to observe good hygienic
and manufacturing practice by milk producers and
traditional dairy processors to prevent contamination
and subsequent potential disease outbreak by B. cereus.
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