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Pyviko: an automated Python tool to
design gene knockouts in complex viruses
with overlapping genes
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Abstract

Background: Gene knockouts are a common tool used to study gene function in various organisms. However,
designing gene knockouts is complicated in viruses, which frequently contain sequences that code for multiple
overlapping genes. Designing mutants that can be traced by the creation of new or elimination of existing
restriction sites further compounds the difficulty in experimental design of knockouts of overlapping genes. While
software is available to rapidly identify restriction sites in a given nucleotide sequence, no existing software
addresses experimental design of mutations involving multiple overlapping amino acid sequences in generating
gene knockouts.

Results: Pyviko performed well on a test set of over 240,000 gene pairs collected from viral genomes deposited in
the National Center for Biotechnology Information Nucleotide database, identifying a point mutation which added
a premature stop codon within the first 20 codons of the target gene in 93.2% of all tested gene-overprinted
gene pairs. This shows that Pyviko can be used successfully in a wide variety of contexts to facilitate the molecular
cloning and study of viral overprinted genes.

Conclusions: Pyviko is an extensible and intuitive Python tool for designing knockouts of overlapping genes.
Freely available as both a Python package and a web-based interface (http://louiejtaylor.github.io/pyViKO/), Pyviko
simplifies the experimental design of gene knockouts in complex viruses with overlapping genes.
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Background
Gene knockouts are an important tool used to study
gene function in viruses [1], bacteria [2], and other or-
ganisms, including model organisms such as mice [3].
Although the principle of removing a gene in an attempt
to discern its cellular role is not new, the recent develop-
ment of CRISPR/Cas9 as a tool for knocking out genes
in vivo has revolutionized the field of genome editing
and underscores the importance of using knockouts as a
tool to study gene function [4]. A common experimental
approach to knocking out a gene is to simply excise the
gene of interest from the target organism’s genome.

Viruses, however, often contain DNA sequences that
code for multiple protein products in separate reading
frames, called overprinted genes (Fig. 1a) [5, 6]. For, ex-
ample, human immunodeficiency virus type 1 (HIV-1)
contains 8 instances of gene overprinting [7], as shown
in Fig. 1b. This phenomenon is widespread among
different viral families [5] and precludes the excision
strategy of knocking out a viral gene.
An alternate approach to excising genes is to mutate a

sequence in order to insert a premature stop codon in the
target gene, which results in a non-functional truncation
of the final translated protein. Throughout this work,
“target gene” refers to the gene we wish to mutate in order
to insert a premature stop codon. In Fig. 1a, gene A is the
target (overprinted) gene, and gene b is the overlapping
gene. To ensure that this truncation retains no function of
the wild-type gene, the stop codon should occur as early
in the gene sequence as possible. However, the amino acid
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sequence of the overlapping gene must be preserved in
order to experimentally discriminate between changes in
phenotype due to changes in the overlapping and target
genes. Such mutations are possible due to the degeneracy
of the genetic code—several amino acids can be coded for
by more than one nucleotide sequence [1]. However,
designing such mutants by hand is slow and non-trivial,
especially when mutating many clones or strains of
viruses. Additionally, changes in restriction enzyme recog-
nition sites that can be used to trace the newly introduced
mutations are important experimentally in planning mo-
lecular cloning and mutagenesis protocols [8].
Restriction enzymes are a class of bacterial endonucle-

ases that specifically cleave DNA at a 4–8 nucleotide
recognition sequence. Mutagenesis protocols are fre-
quently designed to add or remove a restriction site as
tracers, so that resulting constructs can be analyzed in-
expensively for the presence of the desired mutation
without having to sequence multiple clones [8]. Given
the diversity and number of restriction enzymes com-
mercially available [9], searching for potential restriction
enzyme recognition sites in a given DNA sequence by
hand is unfeasible. Methods for rapid searching of
nucleotide sequences for restriction sites have been pre-
viously published [10] and are not discussed here. In this
work, we introduce Pyviko—a tool which automates the
process of designing knockout viruses while taking into

account changes in restriction enzyme recognition sites
and the integrity of the overlapping gene.

Implementation
Pyviko was implemented in Python 2.7. The Python
regex module [11] is optional and can be installed to
augment the base functionality of Pyviko, but is not re-
quired to use the software. Source code is freely available
[12] under the MIT license and is thoroughly unit tested
prior to each release. Releases are available from the
Python Package Index [13]. A client-side web interface in
JavaScript is available for making single-gene knockouts
without installing Pyviko [14]. Extensive documentation
for Pyviko is available online [15] and as comments in the
source code. Online documentation is build directly from
comments in the source using pdoc [16] and is available
without installing Pyviko. Bug reports should be submitted
on the project’s GitHub page [12].
The basic functionality of Pyviko is divided into three

modules: core, restriction, and mutation. Functions for
basic nucleic acid sequence manipulation, including
reading from and writing to Fast-All (FASTA) files, are
included within the core module. The restriction module
contains functions to analyze sequences for restriction
sites and find changes in restriction sites that result from
sequence changes. The mutation module includes func-
tions to find favorable mutations as well as the Mutant

Fig. 1 Examples of gene overprinting in viruses. a Outline showing different types of gene overprinting and associated nucleotide and amino
acid sequences. Gene B overprints into gene A in the same direction but a different frame. Genes C and D showcase overprinting in different
frames and directions. Start codons in nucleotide sequences are shown in green. b Genome of human immunodeficiency virus type I [7] with
annotated genes. tat and rev splicing is indicated by a solid line
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and OverGene classes. The Mutant class brings together
the three modules and identifies favorable knockout mu-
tants in sequences of interest.

Results
Use in interactive and stand-alone scripts
Pyviko was created to streamline the process of planning
viral mutageneses. Each module is designed to be
intuitive and extensible to facilitate its use in a variety of
applications. Figure 2a–b shows the generation of
knockouts from a single target and overlapping gene pair
in an interactive fashion in a Python interpreter. Using
the sequences of an input gene and its overprinted coun-
terpart, the overlapping sequence is automatically de-
tected and all possible knockouts matching the input
parameters are displayed. Thus, in the example shown in
Fig. 2a, the target gene can be knocked out by mutating
the initiation codon (index 0) to ACG without changing
the coding capacity of the overlapping gene (TAT and
TAC both code for tyrosine). Alternatively, the TCA
(serine) codon at index 3 of the target gene can be

mutated to a stop codon (TGA or TAA) without chan-
ging the coding sequence of the overlapping gene (CTC,
CTA and CTG all encode leucine).
To reach a wider, non-computational audience, this

single-gene pair knockout script has also been imple-
mented as a graphical interface in JavaScript [14]. This
interface supports generation of knockouts for a gene or
pair of genes under various parameters, including re-
quirements for start codon mutants or restriction site
changes. Figure 2c shows the input interface and 2D
shows the output of the analysis for the gene pair shown
in Fig. 2a. The full mutant sequence for each mutation is
shown together with a link to an interface to design
further restriction site changes for a particular point
mutant.
For experiments requiring the generation of many mu-

tants, Pyviko provides a rapid, high-throughput approach
to viral mutagenesis. Additionally, Pyviko supports reading
from and writing to files in the universal FASTA format to
maximize inter-application compatibility. Additional file 1
contains a Python script showcasing the ability of Pyviko

Fig. 2 Usage of Pyviko in stand-alone scripts and web interface. a Schematic of sample target (Y) and overlapping (X) genes used in code examples.
b Minimal Python commands for generating gene knockouts. In this interactive example, “>>>” denotes input into a Python interpreter and output is
displayed directly below the input on an unindented line. c Pyviko input interface [14] including sample gene sequences. d Results of analysis for input
shown in (c)
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to generate mutants in a batched fashion, taking input
from FASTA files and writing mutagenesis results to
FASTA. Additional file 1 also shows many of the options
available when searching sequences, including filtering for
mutants that add or remove a restriction site and includ-
ing or excluding mutants that perturb the start codon.
Mutating a gene’s start codon is another feasible option to
prevent production of a specific protein. Some viruses,
however, have been shown to use alternate start codons
[17]. Care should be taken to biologically validate knock-
outs made using this strategy.

Integration with existing tools and extensibility
Recent trends toward open-source software in bioinfor-
matics have led to the development of a variety of new
Python tools for analyzing nucleotide sequences, includ-
ing Biopython [10] and Pydna [18]. While Biopython and
Pydna both include functions for restriction site identifica-
tion, neither is designed to analyze restriction site changes
as a result of nucleotide sequence mutations. Pyviko is de-
signed to solve the problem of mutating overprinted genes,
which are most common in viruses but do occur in other
organisms, including bacteria [19], mice, and humans [20].
Unlike other software, Pyviko is optimized to analyze mul-
tiple overlapping sequences concurrently, examining
changes in translated amino acid sequence and restriction
sites resulting from changes in nucleotide sequence.
While Pyviko is not dependent on existing software for

its basic nucleic acid manipulation and restriction site
identification functionalities, it is not designed to super-
sede other general nucleotide sequence analysis programs.
Rather, Pyviko can be used in conjunction with software
like Pydna and Biopython to complement Pyviko’s ap-
proach to viral mutagenesis. Additional file 2 contains the
script used to collect sequences from GenBank for the
large-scale analysis discussed in the following section. This
script leverages Biopython’s Entrez module to retrieve
viral genomes to be analyzed by Pyviko. Additional file 3
is a Python script that retrieves a viral genome sequence
(HIV-1 NL4-3 [21]) from the NCBI Nucleotide database
[22] via Biopython, generates a knockout for a target over-
printed gene (vpr) with Pyviko, then uses Pydna to design
primers for molecular cloning.
Although Pyviko was designed to generate knockouts of

viral overprinted genes, the software is generally applicable
to any mutagenesis of overprinted genes. Additional file 4
is a Python script containing a variety of examples of muta-
genesis design involving overprinted genes, including: mu-
tagenesis of hydrophobic to non-hydrophobic amino acid
residues in the target gene, identification of all mutations
in the overprinted region that do not change the polypep-
tide sequence of the overlapped gene, and generating a se-
quence that scrambles the amino acids of a target gene
without changing the amino acids of the overlapping gene.

Large-scale functional testing
To validate the approach of Pyviko in knocking out over-
printed viral genes, we performed a large-scale analysis of
annotated viral genomes deposited in the National Center
for Biotechnology Information (NCBI) Nucleotide data-
base. Using the script included as Additional file 2, we col-
lected 48,770 sequences annotated as complete viral
genomes from the NCBI Nucleotide database. From these
genomes, 248,777 pairs of overprinted gene pairs were
identified and analyzed by Pyviko. Note that individual
genes may appear in more than one pair as a gene may
overlap with more than one other gene (e.g. vif gene in
Fig. 1b).
Pyviko was able to identify point mutants that added a

premature stop codon in the target gene without chan-
ging the amino acid sequence of the overlapped gene in
96.5% of all genes analyzed. Many of these mutations
added or removed a restriction enzyme recognition site
[9], and 96.2% of all target genes analyzed could be
knocked out as above with the additional constraint of a
restriction site change. However, the location of the pre-
mature stop codon is important for the efficacy of the
knockout—a “premature” stop codon close to the end of
the target gene could still result in a gene product with
some level of function. Thus, we decided to further
judge the efficacy of Pyviko knockouts by examining the
first possible premature stop codon in each target gene
identified by Pyviko.
To quantify the effectiveness of Pyviko knockouts, we

calculated the percentage of stop codons that could be
added within the first 20 codons of the target gene.
While there is evidence that polypeptides shorter than
20 amino acids could have intracellular functions [23], it
is highly unlikely that a protein truncated to 20 amino
acids or less would retain its original function. Pyviko
identified potential premature stop codons within the
first 20 codons in 93.2% of all target genes (Fig. 3a).
Requiring a restriction site change, Pyviko identified a
premature stop codon within the first 20 codons in
76.4% of target genes (Fig. 3b). These data show that,
while requiring a restriction site change does not greatly
change the percentage of target genes that can be
knocked out, the distribution of first premature stop
codons is much wider when restriction site changes are
required (Fig. 3a–d). It is also possible that the relative
truncated length of a knockout is important—for
example, a truncated gene coding for 20 amino acids is
20% of the final polypeptide length of a 100 amino acid
protein, but only 2% of a 1000 amino acid protein. How-
ever, a heat map of first-codon knockouts along a unit
gene show that over 90% of knockouts are within the
first 10% of the coding sequence both without (Fig. 3c)
and with (Fig. 3d) restriction site change constraints.
This is consistent with the conclusion that the vast
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majority of Pyviko-designed gene knockouts will not re-
sult in a functional protein product.

Conclusions
In this work, we introduce Pyviko, an intuitive and ex-
tensible Python tool for designing viral knockouts. While
the software is platform-independent and does not re-
quire any external modules other than Python itself,
Pyviko can also be used with existing Python tools such
as Biopython and Pydna to extend its base functionality
as shown in the example scripts. Pyviko performed well
on a test set of over 240,000 gene pairs collected from
viral genomes deposited in the NCBI Nucleotide data-
base, identifying a point mutation that could be inserted
within the first 20 codons of the target gene in 93.2% of
all tested gene-overprinted gene pairs. This shows that
Pyviko can be used successfully in a wide variety of con-
texts to facilitate the molecular cloning and study of
viral overprinted genes. The complete source code and

quick-start guide are included as Additional files 5 and
6, respectively.

Availability and requirements
Project name: Pyviko
Project home pages: https://github.com/louiejtaylor/
pyViKO, https://pypi.python.org/pypi/pyviko
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 2.7 or higher
License: MIT license

Additional files

Additional file 1: A Python script showcasing the ability of Pyviko to
generate mutants in a batched fashion, taking input from FASTA files and
writing mutagenesis results to FASTA. Additional file 1 also shows many
of the options available when searching sequences, including filtering for
mutants that add or remove a restriction site and including or excluding
mutants that perturb the start codon. (PY 787 bytes)

Fig. 3 Large-scale analysis of viral overprinted genes from the NCBI Nucleotide database. a and b Show counts of the first position at which a directed
point mutation can insert a premature stop codon in the overprinted gene without changing the amino acid sequence of the overlapped gene in each
gene pair surveyed. Full-size graphs show mutations over the full length of all genes surveyed with a log2 scale to ensure visibility of bins with low counts.
Insets show the first 100 codons of each gene with a linear y axis. a Shows counts without requiring a restriction site change and (b) shows counts with a
required restriction site change. c and d Show positions of the first stop codon mutants from (a) and (b) expressed as the ratio of the position of the
first codon relative to the total length of the gene in codons. c, as in (a), shows counts without requiring a restriction site change and (d), as in (b),
shows counts with a required restriction site change
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Additional file 2: The Python script used to collect sequences from
GenBank for the large-scale analysis in Fig. 3. This script leverages
Biopython’s Entrez module to retrieve viral genomes to be analyzed by
Pyviko. (PY 4 kb)

Additional file 3: A Python script that retrieves a viral genome sequence
(HIV-1 NL4-3) from the NCBI Nucleotide database via Biopython, generates a
knockout for a target overprinted gene (vpr is overprinted by vif) with
Pyviko, then uses Pydna to design primers for molecular cloning. (PY 1 kb)

Additional file 4: A Python script containing a variety of examples of
mutagenesis design involving overprinted genes: mutagenesis of
hydrophobic to non-hydrophobic amino acid residues in the target gene,
identification of all mutations in the overprinted region that do not change
the polypeptide sequence of the overlapped gene, and generating a
sequence that scrambles the amino acids of the target gene without
changing the amino acids of the overlapped gene. (PY 4 kb)

Additional file 5: The Pyviko Web User Interface Quick Start Guide, also
available at [24]. This document explains the use of the Pyviko web user
interface. (PDF 461 kb)

Additional file 6: The Pyviko source code, version 1.0.1.1. Current
release available from the Python Package Index [13]. (GZ 7 kb)

Abbreviations
DNA: Deoxyribonucleic acid; FASTA: Fast-All (file format); HIV-1: Human
immunodeficiency virus type 1; NCBI: National Center for Biotechnology
Information; Pyviko: Python viral knockouts; RNA: Ribonucleic acid
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