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Abstract

Background: Increasing age, several co-morbidities, environmental contamination, antibiotic exposure and other
intestinal perturbations appear to be the greatest risk factors for C. difficile infection (CDI). Therefore, elderly care
home residents are considered particularly vulnerable to the infection. The main objective of this study was to
evaluate and follow the prevalence of C difficile in 23 elderly care home residents weekly during a 4-month period.
A C. difficile microbiological detection scheme was performed along with an overall microbial biodiversity study of

the faeces content by 16S rRNA gene analysis.

Results: Seven out of 23 (30.4 %) residents were (at least one week) positive for C. difficile. C. difficile was detected
in 14 out of 30 diarrhoeal samples (43.7 %). The most common PCR-ribotype identified was 027. MLVA showed
that there was a clonal dissemination of C. difficile strains within the nursing home residents. 16S-profiling analyses
revealed that each resident has his own bacterial imprint, which was stable during the entire study. Significant
changes were observed in C. difficile positive individuals in the relative abundance of a few bacterial populations,
including Lachnospiraceae and Verrucomicrobiaceae. A decrease of Akkermansia in positive subjects to the bacterium

was repeatedly found.

Conclusions: A high C difficile colonisation in nursing home residents was found, with a predominance of the
hypervirulent PCR-ribotype 027. Positive C. difficile status is not associated with microbiota richness or biodiversity
reduction in this study. The link between Akkermansia, gut inflammation and C. difficile colonisation merits further

investigations.
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Background

Clostridium difficile is a Gram-positive, anaerobic,
spore-forming, rod-shaped bacterium that has been
widely described in the intestinal tract of humans and
animals. In 1978, C. difficile was recognized as a major
cause of antibiotic associated diarrhoea and, in the most
serious cases pseudomembranous colitis [1-3]. Since
then, many outbreaks have been reported; most of
them were associated with the emergence of a specific
subtype, hyper-virulent PCR-ribotype 027 [4]. Nowadays,
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C. difficile is a worldwide public health concern as it is
considered the major cause of antibiotic-associated infec-
tions in healthcare settings [5]. A recent report of C. diffi-
cile infection (CDI) cost-of-illness attributes a mean cost
ranging from 8,911 to 30,049 USD for hospitalised
patients (per patient/admission/episode/infection) in the
USA [6] and annual economic burden estimated around
3,000 million euro in Europe [7].

CDI is more commonly diagnosed among older people
in nursing homes. High isolation frequencies have been
described in USA, with up to 46 % of elderly residents
testing positive for C. difficile, while in Europe or
Canada the reported rates are much lower, varying be-
tween 0.8 and 10 % [8]. This is partly because elderly
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people are more commonly in hospitals, have an anti-
biotic treatment and age-related changes in intestinal
flora and host defences, as well as the presence or other
underlying health problem [8-10]. These factors can
have an impact on the intestinal microbiota, which may
promote C. difficile colonisation and the development of
the infection [11]. Therefore, a new concern of several
studies has been the identification of the microbial com-
munities implicated in the CDI through the use of new
sequencing techniques, like metagenomics [12].

The aim of this study was to evaluate and follow the
prevalence of C. difficile among the residents of a
Belgian nursing home. Multilocus variable number of
tandem repeats analysis (MLVA) was performed to de-
termine the genetic diversity of the C. difficile isolates
and possible cross-infection between patients. Addition-
ally, 16S rRNA gene sequencing was used to characterise
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the faecal microbiota of the elderly residents, to evaluate
the global evolutions of the total microbiota and to
identify possible relationships between certain bacteria
populations and C. difficile colonisation, diarrhoea and
antibiotic treatment.

Results
Prevalence of C. difficile
A total of 242 faecal samples were collected from 23 res-
idents in seventeen consecutive weeks (resident number
11 was excluded from the study as he finally did not
agree to participate in the survey). Two subjects passed
away within the four-month study period. Seven out of
23 monitored residents were positive for C. difficile at
least once (Table 1).

There was only one case of CDI diagnosed during the
study (subject 01). He was diagnosed in week eleven of

Table 1 Detailed information on 23 nursing home residents enrolled in the study, including the detection of C. difficile with and

without enrichment

Resident Week

identification 1 5 3 4 g 6 7 8

01 E E
02 - - - - - - - -
03 - - - + - -

04 - - - - - - - -
05 - - - +
06 - - - +
07 - - - +
08 + - - H
09 - + + -
10 - + - +
12 - - - -
13 D D - -
14 - - - -
15 E E E -
16 - - - - -
17 - - -
18 ¥ ¥
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Resident number 11 was excluded from the study

D: Positive results detected without enrichment

E: Positive results detected after 3 days of enrichment
-: Negative results for C. difficile presence

#: Sample was not available

H: resident hospitalized

t: The resident passed away during the study period
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the study after suffer more than three episodes consec-
utives of diarrhoea. C. difficile was detected in 14 out of
30 diarrhoeal samples (43.7 %). Regarding the anti-
microbial therapy, a total of five residents tested
positive for C. difficile had previously received an anti-
biotic medication. Probiotic treatment was noted in 4
residents, two of them were positive for C. difficile.
Only one resident (number 08) was hospitalized during
the study (Table 2).

Characterization of C. difficile isolates

Four different PCR-ribotypes (UCL16a, UCL36, UCL46
and 027) were identified among the 38 isolates. In one
resident (number 19), different PCR-ribotypes were
found in different sampling days while in another subject
(number 17) two different PCR-ribotypes were detected
in the same sampling day (direct culture: PCR-ribotype
027; 3 days of stool enrichment: PCR-ribotype UCL36).
Only in one resident (number 015), all but one samples
obtained were positive for C. difficile and the isolated
strains were all identified as PCR-ribotype 027. Three
out of these four different PCR-ribotypes had toxin
activity. All toxigenic isolates encoded toxin A and B,
while PCR-ribotype 027 also contained the binary
toxin. In addition, all types 027 contained an 18-base
pair deletion, a deletion at 117 of the tcdC gen and
gyrA mutation associated with moxifloxacin resistance
(Table 2).

C. difficile MLVA analysis

MLVA was performed in order to provide further insight
into the clonal relatedness of the C. difficile isolates and
cross-infection between patients. A total 59 isolates were
obtained during the study. Among them, 44 toxigenic
and non-toxigenic isolates were further analysed by
MLVA. Selection of these strains was based on the inclu-
sion of a representative number of isolates from each
classified PCR ribotype. In order to determine if the
seven variable-number-tandem repeat (VNTR) loci were
stable over time or if subjects harboured more than one
C. difficile type, isolates obtained from the same resident
on direct culture and after 3 enrichment days and on
different weeks were also studied by MLVA. Thirty-one
different MLVA profiles were identified. However, a high
degree of genetic relatedness was observed among most
of the strains with the same PCR-ribotype (summed tan-
dem repeat difference at all loci<2). The C6 and A6
were the most diverse VNTR loci. Regarding the strains
identified as PCR-ribotype 027, most of them were
closely related. Furthermore, several isolates from pa-
tients 15, 18 and 19 had an identical MLVA profile
(Table 3).
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Analysis of the residents’ faecal microbiota by barcoded
pyrosequencing

Among the 23 residents, all available faecal samples
from 13 residents (6 C. difficile negative and 7 C. difficile
positive, in total 118 faecal samples) were selected for
16S profiling of their faecal microbiota. A total of
433,815 final reads were attributed to 3,940 species level
OTUs (operational taxon units) among 118 samples
(Additional file 1). The analysis showed that the major
phyla found in patients were Firmicutes and Bacteroidetes
followed by the Verrucomicrobia and the Proteobacteria
(Fig. 1). On the family level, the major populations were
consistent with previous human studies, Bacteroidaceae,
Ruminococcaceae and Lachnospiraceae being dominant.
The Verrucomicrobiaceae, Porphyromonadaceae and Rike-
nellaceae were subdominant (Fig. 1). The 6 major genera
were Bacteroides, Akkermansia, Parabacteroides, Alistipes
and two populations undefined at the genus level belong-
ing respectively to the Lachnospiraceae and the Rumino-
coccaceae (Additional file 2).

The mean alpha diversity and richness was variable be-
tween residents (Additional file 3), though no resident
mean values are statistically different from the rest of
the cohort (Fig. 2). Moreover, the analysis of the micro-
biota species structure and composition showed that
each patient has his own microbiological imprint during
the study as revealed by weighted UNIFRAC analysis of
phylogenetic distribution of the samples based on a
Bray-curtis distance matrix (Fig. 2 and Additional file 4).

Among the 118 samples, 24 samples were detected
positive for C. difficile by 16S rRNA gene analysis (Fig. 3).
Reads sharing minimum 99 % of identity to the C. diffi-
cile 16S rRNA sequence were identified as C. difficile.
Nearest known species (Clostridium glycolicum, Terri-
sporobacter mayombei and Romboutsia lituseburensis)
share less than 99 % of nucleotide identity on the V1-V3
hypervariable region with C. difficile 16S rRNA se-
quence. Thirty-seven out of 118 samples analysed by
16S rRNA gene analysis were positive for C. difficile
positive by classical microbiology. Among the positive
samples, 18 samples were detected by both methods, 19
samples were positive only by culture and 6 were posi-
tive only by 16S rRNA profiling.

Link between C. difficile colonisation and faecal
microbiota

In order to explore the link between C. difficile colonisa-
tion and the resident microbiota, residents negative and
positive for C. difficile were grouped. As the inter-
individual variability is the main driving factor for the
sample clustering, the grouping was made by resident
instead of strict positive and negative samples. Figure 4
shows the major mean genus relative abundance for
both groups. Statistical analysis revealed that only four



Table 2 Clinical characteristics of the 23 residents enrolled in the study and molecular type of the isolates

Resident  Age (years) Genre Status Room Diarrhea Hospital — Antibiotic  Probiotic  C difficile culture  PCR-ribotype  N°isolates CE  tcdA tcdB  cdtA cdtB  tcdC MUT  gyrA MUT
number floor stay treatment  treatment
01 77 M SD 1 + - + - + UCL16a 9 + o+ - - -
02 78 F D 2 - - - - - - - - - - _ _
03 92 F D 2 - - - - - - - - - _ - _
04 88 F D 1 + - - - - - - - - - , -
05 93 F D 1 + - + + - - - - - - - _
06 86 F D 2 - - + - - - - - - . - -
07 92 F SD 3 - - + - - - - - - . , -
08 91 F SD 3 - + + + - - - - - - - ,
09 88 F D 2 - - - - - - - _ - - _ _
10 78 F SD 2 - - - - - - - - - - - -
12 87 F 2 + - - - - - - - - - - -
13 65 M 1 - - + - + UCL36 4 - - - . .
14 76 F SD 1 - - - - - - - - - - - -
15 50 F 2 + - - + + 027 22 + o+ + + +
16 94 F 3 + - + - - - - - - - - -
17 63 F 3 + - + - + UCL36 1 - - - - -
+ 027 1 + o+ + + +
18 86 M D + - - - + 027 10 + 4+ + + +
19 89 F ) 3 + - + - + UCL36 2 - - - - ,
UCL46 2 + o+ - - -
027 4 + o+ + + +
20 81 F SD 1 - - + - - - - - - - -
21 82 F D 1 + - - - - - - - - - -
22 83 F D 1 - - - - - - - - - - -
23 88 F D 2 - - - - - - - - - , -
24 81 F D 1 - - + + + UCL36 4 - - - - .
M male
F female

SD semi-dependant residents

D dependant residents

CE cytotoxicity assay using MRC-5 cells
tcdC MUT: Presence of deletions in the regulator gene tcdC (118 bp-39 bp-17 bp)
gyrA MUT: Presence of mutation in the gyrA gene associated with moxifloxacin resistance
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Table 3 MLVA profile of the isolates obtained from each nursing home resident

PCR- MLVA profile Resident No. of Week
Ribotype 6 B7 < E7 8 CDRS CDR6O  Total number Isolates
027 22 9 38 10 175 39 72 1076 15 4 1828 65 75
18 1 5
23 9 38 10 175 39 7.2 1086 15 1 3t
2 9 39 10 175 39 72 1086 15 1 7°
222 9 378 10 175 39 72 107.6 15 3 9° 10F 14F
18 1 15F
19 1 12°
222 9 378 10 175 38 7.2 107.5 15 1 g
22 9 3738 10 175 38 7.2 107.3 15 1 of
23 9 378 10 175 38 72 1083 15 1 12°
222 9 265 10 185 39 7.2 973 15 1 12°
23 9 40 10 175 39 7.1 1105 18 1 2
22 9 3638 10 175 39 7.2 1064 18 1 7°
222 9 378 10 176 39 7.2 107.7 18 1 7€
23 9 36.8 10 175 38 7.2 107.3 18 1 9f
22 9 37 10 175 39 7.2 106.6 19 1 3F
222 9 368 10 175 38 72 106.5 19 2 7ENE
UCL16a 308 14.1 235° 5 108 6.8 32 92 1 1 1F
308 14 235 5 108 6.8 32 941 1 2 2F 16
308 14 245 5 108 6.8 32 95.1 1 1 10°
307° 14° 113 5 108 6.8 32 818 1 1 1E
298 14 235 5 108 6.8 32 93.1 1 2 12F 16"
318° 14 235 5 108 6.8 32 95.1 1 1 14°
UCL46 288 211 223 14 8 88 22 105.2 19 1 1E
288 211 225 14 8 88 23 1055 19 1 o
UCL36 19.2 17 428 8 929 49 102 112 13 1 10
183 16 428 8 929 49 102 110° 13 1 1E
183 16 368 8 99 49 102 104.1 13 1 20
19.2 16.1 418 8 929 49 102 110.1 13 1 2*
308 17 347 8 108 49 102 1174 17 1 g
318 17.1 347 8 108 49 102 1185 19 1 7°
318 17 348 8 108 49 102 1185 24 1 3P
318 17 347 8 108 49 102 1184 24 1 st
318 18.19 358 8 108 49 102 1206 24 1 gt

Differences found in the results after one or more repetitions: 224.5; ©30.8; €17.3; 926.9; ©10.3; f16; 918

E Strain isolated after 3 days of feces enrichment
P Strain isolated after direct culture of the feces

genus populations have significant relative abundance be-
tween both groups (Fig. 4). Blautia (Firmicutes) and Flavo-
nifractor (Firmicutes) and the Lachnospiraceae_unclassified
(Firmicutes) appeared more abundant in the C. difficile
positive group, whereas Akkermansia (Verrucomicrobia-
ceae) abundance was higher in the C. difficile negative
group. In order to better understand these differences, both

groups were further divided into diarrhoeic (>1 diarrhoeic
faeces sample) or non-diarrhoeic residents. Results showed
a decrease in Verrucomicrobiaceae linked to C. difficile
positive groups (data not shown). In addition, a higher
abundance of Lachnospiraceae family was detected in C.
difficile positive diarrhoeic residents compared to other
groups (p < 0.05) (Additional file 5).
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The analysis of mean alpha diversity of both groups
showed that C. difficile positive group does not exhibited
an increased faecal microbial diversity compared to C.
difficile negative group after Bonferroni corrections
(Fig. 4). No differences were revealed in the species rich-
ness (Chao index). The diarrhoeic status does not appear
to have an influence on the results obtained (data not
shown).

Discussion

The gut microbiota ecosystem plays a critical role in re-
sistance to colonisation by pathogenic organisms, infec-
tion and recurrence [11]. C. difficile colonisation has
been described as ten times higher in elderly nursing
home residents than in the general population living
outside long-term care facilities [13]. The deteriorating
health status of nursing home residents, their frequent
hospitalisation and the cohabitation in the same contam-
inated environment promote bacterial colonisation and

dissemination [14, 15]. The aim of this study was to
evaluate the presence of C. difficile in a short cohort of
elderly nursing home residents and to evaluate the glo-
bal evolutions of their faecal microbiota.

In the present study, 30.4 % (7/23) were positive to C.
difficile. In previous studies conducted in Germany,
United Kingdom, Ireland, Australia or Canada, the
prevalence of positive residents reported ranges between
0.80 and 10 % [13, 16-19]. This prevalence is much
higher in other reports in USA, varying between 6.4 and
54.8 %. The same scenario was reported for the inci-
dence of CDI in Belgian hospitals when compared with
other hospitals in Europe and USA [20, 21]. In this
study, only one resident was diagnosed with a CDL
However, other residents presented symptoms (diar-
rhoea) and either stool test positive for toxigenic C. diffi-
cile. Therefore, the lack of clinical diagnosis or request
do not exclude that other residents suffered CDI during
the study period. On the other hand, positive residents
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Fig. 2 Species bacterial diversity and species phylotypic tree based on Bray-Curtis distance matrix. a Bacterial diversity (inverse Simpson biodiversity
index), bacterial richness (Chao1 richness index) and bacterial evenness (Deduced from Simpson index). Bacterial diversity indexes are
expressed as a box plot of the mean from subsampled datasets, whiskers represent minimum and maximum value. Median is shown as a
line inside the box. b Phylotype tree of the 118 subsampled datasets built upon a Bray-Curtis distance matrix at the species taxonomical
level (average tree is shown, 1000 iterations). The figure also shows all the faecal samples studied by 16S rDNA profiling analysis collected
from each resident in different weeks

to C. difficile without any signs of disease were also de-
tected. Results obtained from PCR-ribotyping and
MLVA showed that there was a clonal dissemination
within the nursing home residents. Therefore, even if
some authors have refuted the theory of person-to per-
son transmission to explain the increase incidence of
CDI within hospital awards [22, 23], it seems that in
nursing homes the situation is different. Only four differ-
ent PCR-ribotypes were identified and three of them
were toxigenic (UCL16a, UCL46 and 027). Surprisingly,
none of them were among the five PCR-ribotypes most
commonly identified in Belgian hospitals in 2013 and
2014 [21]. Since 2011, decline in the prevalence of the
PCR-ribotype 027 has been reported in different
European countries. Furthermore, in Belgium, the pro-
portion of hospitals with the hypervirulent PCR-ribotype
027 decreases from 34 % in 2009 to 15 % in 2013 [20].

Nursing home population is closed and restricted and
changes in the prevalence of PCR-ribotypes come later
than in hospitals. Therefore, it could be hypothesised that
the most prevalent PCR-ribotypes today in hospitals
(PCR-ribotypes 078 and 014/020) [21] will be in a few
years predominant in nursing homes. In previous
studies on elderly gut microbiota, Bacteroidetes and
Firmicutes have been reported to dominate, with a
marked preponderance of Bacteroidetes over Firmicutes
[24-26]. In the present study, the major bacterial phyla
identified in residents’ microbiota are Firmicutes followed
by Bacteroidetes. We also found a higher abundance of
Verrucomicrobia than previously observed [27, 28]. The
predominance of Firmicutes and Bacteroidetes has also
been highlighted in a large cohort study in Belgium [27],
although the overall prevalence of Bacteroidetes in our
study is higher than the mean value on a large-scale
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population level (34 % in our study vs 25 % in the Belgian
Flemish Gut Flora Project, unpublished data). This in-
crease in Bacteroidetes relative proportion in elderly gut
microbiota compared to a matched cohort of younger
adults has already been described [27].

It has been recently underlined that longitudinal sur-
vey of microbiota in elderly and long-stay residents did
not support a model of unstable microbiota and diversity
[28]. The longitudinal analysis of the bacterial diversity
of community composition showed that bacterial diver-
sity and richness is variable between residents but did
not reveal any evolution during the study. Moreover,
inter-individual microbiota variability is known to be
greater than temporal variability [25] and has been con-
firmed by community structure analysis.

There are a growing number of publications on the
gut microbiota exploration and CDI. Some of them
focus on the idea that commensal bacterial populations
can protect from CDI [29]. Although no candidate
population has emerged, loss of some bacterial genera
like Bacteroides has been associated with CDI [30].
Other studies on hospitalized CDI patients described a
significant alteration of gut microbiota during CDI along
with decreased biodiversity and richness [29, 30]. This

alteration includes a rise in Proteobacteria and a de-
crease in Lachnospiraceae and other butyrate-producing
bacteria [29]. However, it should be noted that these
alterations do not appear to be specific to CDI and are
also observed in patients without C. difficile diarrhoea.
In a first extensive study on elderly and CDI, Rea et al.
[30] showed that there was little difference regarding the
microbiota composition between CDI subjects and
asymptomatic C. difficile carriers. Moreover, only minor
bacterial taxon showed a statistically different abundance
between C. difficile positive subjects and negative
individuals.

The 16S rRNA profiling has been performed on a
limited cohort of C. difficile negative and positive resi-
dents. Even if it was longitudinal, we did not focus on the
pathology or on the antibiotic use that might have oc-
curred during the survey. We centred this analysis on the
hypothesis that in these long term stay residents, C. diffi-
cile persistent or recurrent colonisation might be associ-
ated with more pronounced differences in microbiota
between both groups. Significant changes have been
observed in C. difficile positive individuals in the relative
abundance of bacterial populations, but these are limited to
the Lachnospiraceae and Verrucomicrobiaceae. Surprisingly,
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Lachnospiraceae and specifically genus Blautia abundance
is higher in C. difficile positive individuals, which is
quite different from previous reports [31, 32]. Even if
CDI diagnosis was not specifically performed during
the study, we further split both residents groups regard-
ing the presence of diarrhoeic faeces and observed that
this bacterial family abundance is significantly higher in
C. difficile positive residents having diarrhoeic faeces
compared to diarrhoeic C. difficile negative individuals.
Verrucomicrobiaceae (genus Akkermansia) is known to
be linked to gut health and its abundance seems to be
reduced in context of gut inflammation [33]. In
addition, Akkermansia is an appealing candidate to be-
come a human probiotic, selected based on established
mechanisms of preventive treatment of obesity and dia-
betes [34, 35]. Even if gut inflammatory status of the
residents has not been investigated, it is a known risk
factor for C. difficile colonisation and could therefore
be responsible for this negative correlation.

Positive C. difficile status is not associated with micro-
biota richness or biodiversity reduction in our study
(failed significance after Bonferroni corrections). It
appears that impact on gut microbiota structure is
associated with actual diarrhoeic episodes instead of C.
difficile positive status [30]. Recent studies have demon-
strated that stool consistency is a dominant factor
associated with microbiota composition and negatively
correlate species richness with stool looseness [27, 34].
Comparison between diarrhoeic samples versus non-
diarrhoeic samples in this study confirms this with a slight
yet significant decrease in bacterial richness (p <0.05 -
data not shown) but not in biodiversity.

This study underlines that C. difficile status in long-
term stay elderly resident is associated with specific
changes in microbiota composition. We confirm that the
detection alone of this bacterium cannot be linked to
major changes in microbiota structure. We have shown
that longitudinal study underlines the dynamic of C.
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difficile status and the relative stability of gut microbiota
in these elderly populations. The major limitation of this
is the relatively low number of volunteers. Microbiota
analysis has been marked by a strong inter-individual
variability, which can certainly influence comparisons
between C. difficile negative and positive groups. It has
been recently shown that several types of microbiota
composition might increase susceptibility to CDI [31].
Further studies on long-term stay residents will be
needed to improve our knowledge of the C. difficile
reservoir and susceptibility in nursing homes.

Conclusions

C. difficile colonisation is higher in nursing homes than
in hospitals, with a predominance of the hypervirulent
PCR-ribotype 027. MLVA reveals a clonal dissemination
of this PCR-ribotype among nursing home residents. In
the last years the prevalence of this type is decreasing in
hospitals, suggesting that the isolation of elderly in
nursing homes has an important impact on the type of
strains found. Changes were observed in C. difficile
positive individuals in the relative abundance of some
bacterial populations, including Lachnospiraceae and
Verrucomicrobiaceae. Lachnospiraceae and specifically
genus Blautia abundance is higher in C. difficile positive
individuals than in negative individuals. Positive C. diffi-
cile status is not associated with microbiota richness or
biodiversity reduction in this study. Notably, a decrease
of Akkermansia in positive subjects was repeatedly
found. The link between Akkermansia, gut inflammation
and C. difficile colonisation merits further investigations.

Methods
Resident recruitment and sampling
The study was conducted at the Saint-Joséphine (ACIS)
nursing home, in the province of Liége (Theux),
Belgium. This local nursing home has a total capacity of
110 beds with a total of 73 employees. Data collected
included gender, age, clinical status, medical history, re-
cent history of diarrhoea, recent hospitalization, medica-
tion, including non-steroidal anti-inflammatory drugs
(NSAIDs) or antibiotics, probiotics and changes in diet.
During a 4-month period, from March through June
2013, stool samples from a group of 23 elderly care
home residents were collected weekly. Most of the sub-
jects were aged 65 years and older. Faecal sampling was
performed from Thursday until early Friday. Two sam-
ples per person were collected. The first sample was col-
lected in an individual identified sterile 50 ml tube for
further culture to detect C. difficile. The second one was
collected using the Stool DNA Stabilizer (PSP® Spin
Stool DNA Plus Kit 00310; Invitek, Westburg b.v.,
Netherlands) to study the microbial biodiversity of the
faeces content by amplicon sequencing. Samples obtained
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were scored as normal, diarrhoea or bloody diarrhoea fae-
ces. They were kept at 4 °C for a maximum of 48 h until
their arrival in the laboratory for immediate culture or
DNA extraction.

C. difficile culture, identification and characterisation
Culturing of faeces (with and without a phase of enrich-
ment), isolation and identification of C. difficile colonies
were performed as previously described [36]. Toxin
activity of the isolated strains was confirmed by a cyto-
toxicity assay using confluent monolayer MRC-5 cells as
described previously [37].

Molecular typing of C. difficile isolates
C. difficile isolates were tested using Genotype Cdiff
system (Hain Lifescience, Nehren, De) for the presence
of the tpi gen, toxin genes tcdA, tcdB, cdtA and cdtB,
deletions in the regulator gene tcdC and gyrA mutation,
according to the manufacturer’s instructions.
PCR-ribotyping was performed using the primers and
conditions described by Bidet et al. [38]. An inter-
national number was used for C. difficile strains that
presented a PCR-ribotype profile matching the Cardiff
ribotypes from the strain collection available in our
laboratory. Otherwise, strains were identified with an
internal nomenclature.

MLVA

The DNA extraction was performed using a chelex 100
solution 5 % (Biorad, Nazareth, Be) as described previ-
ously [39]. For MLVA, seven VNTR loci (A6, B7, C6, E7,
G8, CDR5, CDR60) were studied as previously described
[40]. Isolates with MLVA STRD < 2 were indicative of a
high degree of genetic relatedness [41].

16S rRNA pyrosequencing and data analysis

Total bacterial DNA was extracted from the stool
samples with the PSP® Spin Stool DNA Plus Kit 00310
(Invitek), following the manufacturer’s recommenda-
tions. 16S rRNA profiling, targeting V1-V3 hypervariable
region and sequenced on Roche GS Junior was per-
formed as described previously [36]. Briefly, libraries
from 20 samples were run in the same titanium pyrose-
quencing reaction using Roche multiplex identifiers, and
amplicons were sequenced using the Roche GS-Junior
Genome Sequencer instrument (Roche). A total of six
sequencing runs were necessary to obtain the data for
the 118 samples.

Sequence reads processing was treated as previously de-
scribed [37] using respectively MOTHUR software pack-
age v1.35, Pyronoise algorithm and UCHIME algorithm
for alignment and clustering, denoising and chimera de-
tection (MOTHUR script has been added as Additional
file 6) [42-44]. 16S rRNA Reference alignment and
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taxonomical assignation in MOTHUR were based upon
the SILVA database (v1.15) of full-length 16S rRNA
sequences [45]. Clustering distance of 0.03 was used for
OTU generation. Subsample datasets were obtained
and used to evaluate ecological indicators, Richness
estimation (Chaol estimator), microbial biodiversity
(reciprocal Simpson index), and the population even-
ness (derived from Simpson index) at the phylotype
species level using MOTHUR. Population structure and
community membership were assessed with MOTHUR
using distance matrice based on Bray-Curtis dissimilar-
ity index (a measure of community structure which
considers shared OTUs and their relative abundances
[46, 47] abundances).

Weighted UNIFRAC test implemented in MOTHUR
v1.35 was used to assess differences regarding bacterial
community structure between residents. Statistical dif-
ferences in bacterial biodiversity, richness and evenness
between residents and between C. difficile positive and
C. difficile negative groups were respectively assessed
using one way-ANOVA and Mann—-Whitney test using
PRISM 6 (Graphpad Software). In order to highlight
statistical differences in the bacterial population abun-
dance between groups, multiple unpaired ¢-test with
Benjamini-Hochberg False Discovery Rate were per-
formed using PRISM 6 (Graphpad Software). Differences
were considered significant for a p-value of less than
0.05, adjusted with Bonferroni corrections.

Additional files

Additional file 1: Quality analysis of the 165 rRNA gene analysis for the
118 human faecal samples. (DOCX 40 kb)

Additional file 2: Taxonomical distribution deduced by 165 rRNA
profiling. Bart chart detailing the mean cumulated relative abundance
of the major genera for each resident. Bart chart detailing the mean
cumulated relative abundance of the major genera for each resident.
(PNG 3354 kb)

Additional file 3: Longitudinal distribution of the ecological indicators.
Bacterial diversity (inverse Simpson biodiversity index), bacterial richness
(Chao1 richness index) and bacterial evenness (Deduced from Simpson
index) expressed for each analysed samples. (PNG 4002 kb)

Additional file 4: Unifrac weighted score and significance between
patients. UNIFRAC weighted score (W score) and significance for patients
clustering based on Bray-Curtis dissimilarity distance matrix. (DOCX 84 kb)

Additional file 5: Relative abundance of Lachnospiraceae between
groups of diarrhoeic/non diarrhoeic and C. difficile status. Lachnospiraceae
relative abundance is expressed as mean relative abundance + standard
error of the mean. Different superscript letters correspond to statistical
difference according to one way ANOVA with Tukey-Kramer post-hoc test
(p < 0.05). (PNG 1052 kb)

Additional file 6: MOTHUR script used for 165 rRNA gene analysis.
(TXT 1 kb)
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