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Abstract

Background: Organoselenium compounds have antimicrobial activity against some bacteria and fungi; furthermore,
the antioxidant activity of diselenides has been demonstrated. The aim of the present work was to examine the in vitro
minimal inhibitory concentration of a panel of differently substituted diselenides and their effectiveness in inhibiting
biofilm formation and dispersing preformed microbial biofilm of Staphylococcus epidermidis, Staphylococcus aureus,
Streptococcus pyogenes and Pseudomonas aeruginosa and the yeast Candida albicans, all involved in wound infections.
Moreover, the cytotoxicity of the compounds was determined in human dermal fibroblast and keratinocytes. In closing,
we tested their direct antioxidant activity.

Results: Diselenides showed different antimicrobial activity, depending on the microorganism. All diselenides
demonstrated a good antibiofilm activity against S. aureus and S. epidermidis, the compounds camphor diselenide,
bis[ethyl-N-(2’-selenobenzoyl) glycinate] and bis[2’-seleno-N-(1-methyl-2-phenylethyl) benzamide] were active against S.
pyogenes and C. albicans biofilm while only diselenides 2,2’-diselenidyldibenzoic acid and bis[ethyl-N-(2’-selenobenzoyl)
glycinate] were effective against P. aeruginosa. Moreover, the compounds bis[ethyl-N-(2’-selenobenzoyl) glycinate] and
bis[2’-seleno-N-(1-methyl-2-phenylethyl) benzamide] showed an antioxidant activity at concentrations lower than the
50 % of cytotoxic concentration.

Conclusions: Because microbial biofilms are implicated in chronic infection of wounds and treatment failure,
the combination of antimicrobial activity and potential radical scavenging effects may contribute to the
improvement of wound healing. Therefore, this study suggests that bis[ethylN-(2’-selenobenzoyl) glycinate]
and bis[2’-seleno-N-(1-methyl-2-phenylethyl) benzamide] are promising compounds to be used in preventing
and treating microbial wound infections.

Background
Common etiologic agents of wound infection are
Staphylococcus and Streptococcus species, P. aeruginosa
and Enterococcus species [1]. Both acute and chronic
wounds are sensitive to bacterial infection. Obesity is in-
creasing worldwide; it is often associated with diabetes
and complications such as chronic venous leg ulcers and
diabetic foot ulcers. The prevalence of diabetes mellitus
is estimated to be more than 371 million people world-
wide and the number of diabetic patients is increasing

everywhere [2]. Moreover, pressure ulcers, localized
injuries of the skin usually in proximity of bony promi-
nences, are a serious problem for all bed-bound and
chair-bound patients [3]. Wound infections may also
occur in burn victims [4], patients with traumatic
wounds [5], and patients with surgical wounds [6]. The
wound environment facilitates the development of mi-
crobial communities often associated in biofilms. Bio-
films are microbial sessile communities in which
microorganisms live attached either to abiotic or biotic
substratum or to each other, in a matrix composed of
proteins, lipids and polysaccharides, where they are
more resistant to antimicrobial drugs and immune sys-
tem responses with respect to the planktonic form [7].
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Biofilms are found on the surface of the skin and a con-
siderable amount of evidence suggests their involvement
in the delay of wound healing and in the chronic inflam-
mation process [8]. The prevention of biofilm formation
is the goal of wound treatment because the standard
protocols based on topical and systemic administration
are often unable to remove biofilms. In fact, a regular
debridement of chronic wounds is the main tool for
maintaining a healthy wound bed [9].
Selenium (Se), in the form of selenoproteins or small

organoselenium derivatives, is involved in numerous
redox equilibrium and redox processes in living systems
[10–12] and it is known to catalyze the formation of
superoxide radicals which are able to inhibit the attach-
ment of microorganisms to the solid surface [13]. Many
studies have demonstrated the antimicrobial activity of
different organoselenium compounds [14]. Diselenides
have been studied for their antimicrobial activity; diphe-
nyl diselenide and 2,2’-dithienyl diselenide have shown
antibacterial and antifungal acivities [15, 16], moreover,
selenocyanate and diselenides have been considered as a
new class of antileishmanial compounds [17]. Finally,
alkyl and aryl diselenides have shown microbial and anti-
viral activities [18].
In this study, we analyzed the ability of a panel of differ-

ently substituted diselenides whose characteristics influ-
ence the formation and dispersal of microbial biofilm of S.
epidermidis, S. aureus, S. pyogenes, P. aeruginosa and the
yeast C. albicans in different ways. These microorganisms
are all involved in wound infections and frequently display
drug-resistance, becoming a serious obstacle in acute and

chronic wound treatment. Moreover, we tested the cyto-
toxicity of diselenides in human fibroblasts and keratino-
cytes and their radical scavenging activity.

Methods
Diselenides
All the diselenides used in the study are summarized in
Table 1. Diphenyl diselenides (9) is commercially available
by Sigma Aldrich; all the other compounds were synthe-
sized with procedures reported in literature starting from
antranilic acid (10, 10d, 10e) [19], the nicotinic acid (10c)
[20] and camphor (11) [21]. All compounds were dis-
solved in methanol and stock solutions, at a concentration
of 10 g/L; they were stored in the dark at −20 °C.

Microbial strains and growth conditions
The microbial strains used in this study were the
four Gram-positive bacteria Staphylococcus aureus
(ATCC 29213), Staphylococcus epidermidis (ATCC 35984),
Streptococcus pyogenes (ATCC20565), Streptococcus pneu-
moniae (ATCC 20566), the Gram-negative Pseudomonas
aeruginosa (ATCC 15692) and the yeast Candida albicans
(SC5314). The bacterial cultures were maintained in tryptic
soy agar (TSA). The day before the test, one colony was in-
oculated in tryptic soy broth (TSB) and incubated for 24 h
at 37 °C. Candida cells from stock cultures in Sabouraud
agar with 50 μg/ml chloramphenicol were grown in
Sabouraud broth at 37 °C for 24 h. Microbial cells were
harvested by centrifugation, washed, counted by spectro-
photometric analysis and resuspended to the desired con-
centration in the appropriate culture medium.

Table 1 Diselenides used in the study

Compounds Formula Molecular weight Abbreviation used in the text

Diphenyl diselenide (PhSe)2
312 9

2,2’-diselenidyldibenzoic acid DSBA 402 10

Camphor diselenide 332 11

2,2’-diselenidyldinicotinicic acid 404 10c

Bis[ethyl N-(2’-selenobenzoyl)glycinate] 570 10d

Bis[2’-seleno-N-(1-methyl-2-phenylethyl)benzamide] 634 10e
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Determination of minimum inhibitory concentration (MIC)
MICs against microbial strains were determined by broth
microdilution using two-fold serial dilutions in Muller
Hinton Broth for bacteria and RPMI 1640/MOPS for C.
albicans as described by the Clinical and Laboratory Stan-
dards Institute (CLSI) method. The test was carried out in
96-well U-bottom microdilution plates. Microbial inocula
were prepared by subculturing bacteria into Muller Hinton
Broth (MHB) and Candida cells in Sabouraud Broth at
37 °C for 18 h and then diluted to approximately 105–
106 CFU/ml in MHB or RPMI/MOPS. One hundred μl of
test compounds were diluted 1:2 in appropriate medium
and placed in a 96-well tissue culture plate. The initial con-
centrations of the compounds used was 250 mg/L. One
hundred μl aliquots of test microorganisms were added to
each well. Microplates were then incubated at 37 °C for
24 h. Each experiment was repeated at least three times.
As positive growth control, wells inoculated with microor-
ganisms in the absence of the tested compound were
carried out. MIC value was defined as the lowest concen-
tration of compound that inhibits microbial growth. The
positive control for Gram-positive and Gram-negative bac-
teria was gentamicin, and fluconazole for C. albicans.

Growth curve inhibition
The antimicrobial activity of promising compounds
against Gram-positive bacteria was investigated on the
basis of MIC values (2xMIC, 1xMIC, 0.2xMIC). Tests
were carried out in a 96 well culture plate. Two hundreds
μl of microbial suspensions in MHB (105 cells/ml) were
incubated at 37 °C in a microplate reader (Infinite 200
pro, TECAN). From time 0, the absorbance (600 nm) of
the culture was evaluated every 30 min for a total of 18 h.
Results are presented as the mean of absorbance. Each
analysis was performed in triplicate.

Effect of diselenides on biofilm formation
The in vitro static biofilm assay was performed using a
96-well microtiter plate, as previously described, with
some modification [22]. Bacteria were grown in TSB over-
night. To cultivate biofilms, the overnight cultures of
tested microorganisms were diluted 1:100 in fifteen ml of
growth medium (TSB supplemented with 2 % sucrose) in
the presence or absence of the different diselenides tested
at the concentrations indicated. The positive control for
Gram-positive and Gram-negative bacteria was gentami-
cin and fluconazole for C. albicans. Cultures were incu-
bated at 37 °C for 24 h in static conditions. After
incubation, the biofilm that had developed in each well
was washed twice with 200 μL of distilled water and then
dried for 45 min. One hundred μL of 0.4 % crystal violet
were added to each well for 30–45 min. After this proced-
ure, the wells were washed four times with distilled water
and immediately discolored with 200 μL of 95 % ethanol.

After 45 min, 100 μL of discolored solution was trans-
ferred to a well of a new plate and the crystal violet mea-
sured at 570 nm in a microplate reader (Tecan). The
amount of biofilm formed was measured comparing the
absorbance values of the compound-treated wells versus
untreated control wells. Biofilm formation bioassays were
performed in triplicate in at least three individual experi-
ments for each concentration.

Effect of diselenides on biofilm dispersion
Biofilms were grown on the inside surface of a 96-well
microtiter plate. Biofilms grown, as described above,
were then treated with three different concentrations of
diselenides as dispersion inducer or just the diluent, at
the same concentrations used to dilute diselenides as a
control, and incubated at 37 °C for a further 24 h. The
positive control for Gram-positive and Gram-negative
bacteria was gentamicin, and fluconazole for C. albicans.
Afterward, the biofilm mass was quantified by crystal

violet assay. Biofilm dispersal bioassays were performed
in triplicate in at least three individual experiments for
each concentration.

Antioxidant activity
The effect of antioxidant compounds on DPPH radical
has been detected by spectrophotometer analysis. The re-
duction of the radical by hydrogen atom transfer from a
hydrogen donor (antioxidant) with the formation of the
hydrazine DPPH-H causes a change in the color of the so-
lution from violet to pale yellow [23, 24]. The percentage
of DPPH radical scavenging ratio of each diselenides was
assayed by di(phenyl)-(2,4,6-trinitrophenyl) iminoazanium
(DPPH) assay as previously described [25]. DPPH is a
stable free-radical molecule at room temperature. In the
presence of antioxidant molecules, which can donate
hydrogen, DPPH is reduced giving a variation of colour
evaluable by spectrophotometry. The reaction mixture
consisted of a 100 μl of sample and 100 μl of DPPH rad-
ical solution in ethanol (50 mg/L). The change in colour
(from deep violet to light yellow) of DPPH was deter-
mined at 517 nm after 30 min of reaction using a micro-
plate reader (Tecan). The mixture of ethanol and sample
was used as blank. The control solution was prepared by
mixing ethanol and DPPH radical solution. Ascorbic acid
was used as a positive control. The percentage of DPPH
radical scavenging ratio [26] was calculated according the
following formula:

% DPPH radical scavenging ratio
¼ 1‐ Abs sample‐Abs blankð Þ=Abs control½ � � 100:

Cell viability assay
Cytotoxicity was tested by the determination of the cell
ATP level by ViaLight® Plus Kit (Lonza). This method is
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based upon the bioluminescent measurement of ATP
that is present in all metabolically active cells. The bio-
luminescent method utilizes an enzyme, luciferase,
which catalyzes the formation of light from ATP and lu-
ciferin. The emitted light intensity is linearly related to
the ATP concentration and is measured using a lumin-
ometer. All diselenides were tested on a human cervix
adenocarcinoma epithelial HeLa cell line (HeLa), human
dermis fibroblast (HuDe) and human skin keratinocytes
(NCTC2544) cells, which were grown in RPMI 1640
supplemented with 10 % heat-inactivated foetal calf
serum, 10,000 units penicillin and 10 μg streptomycin/
ml overnight to confluence. Monolayer cells were treated
for 24 h at 37 °C with scalar concentrations of tested
compounds (0, 0.22, 0.45, 0.9, 1.8, 3.9, 7.8, 15.6, 31.25,
62.5, 125, 250 mg/L). After incubation, the plates were
left at room temperature to cool for 10 min and then
the Cell Lysis Reagent was added to each well to extract
ATP form the cells. Next, after 10 min, the AMR Plus
(ATP Monitoring Reagent Plus) was added and after 2
more minutes the luminescence was read using a micro-
plate luminometer (TECAN). Results are expressed as
CC50. The 50 % cytotoxic concentration (CC50) was de-
fined as the concentration required to reduce the live cell
number by 50 %, compared to the untreated controls.

Statistical analysis
All experiments were performed in triplicate in at least
three different experiments. Data were expressed as mean
± SD. Differences between diselenide-treated biofilm and
untreated biofilm were compared using the Student’s t-test
(two-tailed). *P-values of < 0.05 were considered significant.

Results
Antimicrobial activity of diselenides
The screening of diselenides as antimicrobial drugs versus
different microorganisms is shown in Table 2. The results
indicated that MIC of compounds 9 and 10 showed a
moderate antimicrobial activity against S. epidermidis, S.
pyogenes and C. albicans; whereas compounds 10d and
10e demonstrated considerable antibacterial activity versus
S. epidermidis and S. pyogenes.
The kinetics of microbial growth were investigated to

identify the right concentration of compounds to use in
the antibiofilm test to keep out direct antimicrobial
properties. The inhibitory effects of diselenides on the
growth of S. epidermidis, S. pyogenes, P. aeruginosa and
C. albicans are reported in Fig. 1. At the concentration
of 2xMIC and 1xMIC, all the compounds inhibited the
growth of all microorganisms (data non shown), while at
0.2xMIC for bacteria and 0.5xMIC for C. albicans the
growth curves observed were not significantly different
to those obtained for untreated bacterial cultures,

suggesting that diselenides did not affect microbial div-
ision at the concentrations tested.

Antibiofilm activity
To analyze in depth the antimicrobial properties of dise-
lenides, we examined the ability of S. aureus, S. epider-
midis, S. pyogenes, P. aeruginosa and C. albicans to form
biofilm in the absence or presence of organoselenium
compounds. Biofilm formation was measured by deter-
mining the mass of biofilm using crystal violet staining.
Biofilms were grown in static conditions in the presence
of diselenides at concentrations lower than MIC. In par-
ticular, we used a concentration of 0.2 × MIC for the
bacterial strains tested and 0.5 × MIC for C. albicans,
which resulted ineffective on microbial growth (Fig. 1).
For diselenides with a MIC ≥ 250 mg/L, we used the
concentration of 50 mg/L. All diselenides showed a good
antibiofilm activity against the Gram-positive bacteria S.
aureus and S. epidermidis, while diselenides 11, 10d and
10e were effective against S. pyogenes. Diselenides resulted
less active against P. aeruginosa, in fact only compound
10 and 10d reduced anti-biofilm activity by 20 % and 40 %
respectively. Finally, diselenides 9, 11, 10d and 10e showed
anti-biofilm activity against the yeast C. albicans (Fig. 2).
In parallel experiments, the ability of diselenides to

disperse preformed biofilm was assayed against Gram-
positive bacteria and the yeast C. albicans. Different
concentrations of diselenides corresponding to the
1 x MIC, 0.5 x MIC and 0.1 × MIC were added on pre-
formed biofilm and their effect on dispersal was deter-
mined after 24 h of incubation. For diselenides with a
MIC ≥ 250 mg/L we tested the concentrations 250, 125
and 25 mg/L. The results in Fig. 3, showed that disele-
nides 10d and 10e were able to reduce the biofilm mass
of S. epidermidis, compound 10d was able to reduce bio-
film at all concentrations tested; of note is that this

Table 2 Minimal Inhibitory Concentration (MIC) of diselenides
against different microorganisms

MIC (mg/L) 9 10 11 10c 10d 10e Positive
controla

Staphylococcus
aureus

>250 125 250 >250 >250 31.25 7.8

Staphylococcus
epidermidis

15.62 3.9 >250 >250 7.8 7.8 0.18

Streptococcus
pyogenes

15.62 7.8 31.25 >250 15.62 31.25 2.19

Streptococcus
pneumoniae

>250 125 >250 250 >250 >250 0.45

Pseudomonas
aeruginosa

>250 >250 >250 >250 250 >250 1.5

Candida albicans 31.25 62.5 125 >250 >250 >250 0.25

MIC was evaluated by standardized CLSI methods
aThe positive control for Gram-positive and Gram-negative bacteria was genta-
micin and Fluconazole for Candida albicans
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compound was able to reduce the biofilm mass at one
tenth of the MIC confirming that the antibiofilm effect
is not due to a direct killing effect; instead compound
10e was active in the amount of 1xMIC and one half of
MIC. Biofilm compounds 10 and 10d showed inhibitory
activity against S. aureus at all doses tested, while disele-
nides 9 and 10e were active up to 0.5 MIC. Diselenides
9, 10, 11 10d and 10e were able to decrease the pre-
formed biofilm S. pyogenes at concentrations of 1 and
0.5 ×MIC. Finally, C. albicans preformed biofilm was
dispersed by compounds 9, 11, 10d and 10e at all con-
centrations tested (Fig. 3). Up to this point, compound
10d was the most active in this series of diselenides.

Antioxidant activity
Non-healing wounds in humans have shown high oxida-
tive and nitrosative stress [27–29]. Exacerbation of oxi-
dative stress and biofilm-forming bacteria are critical for
the initiation of chronicity [27]. In the last few decades,
the biological antioxidant property of new synthetic or-
ganic selenium compounds has been reported [30–35].
The antioxidant mechanism of action of organoselenium
compounds depends on the cellular environment. These
agents do not change the redox balance themselves, but
their activities depend on the cellular redox state in
which they are placed. Mounting evidence suggests that
regular uptake of antioxidants is required to scavenge
ROS (Radical Oxygen Species) and RNS (Radical Nitro-
gen Species) [36, 37].
In order to develop strategies to reduce redox stress

and inhibit biofilm formation to restore wound tissue,
we tested the antioxidant activity of diselenides at three
different concentrations (100-50-10-1-0.1 mg/L) by
DPPH assay. As negative control, the diluent used in
preparing stock solution of diselenides was used; metha-
nol was added to the sample and its antioxidant activity
was determined. The results shown in Fig. 4 prove that
compounds 9, 10, 11 and 10c had no antioxidant activity
at concentrations of 0.1, 1 and 10 mg/L and a weak ac-
tivity at 50 and 100 mg/L. Furthermore, diselenides 10d
and 10e exhibited a moderate dose scavenging activity at
10 mg/L and a very good antioxidant property at 50 and
100 mg/L as compared to that observed with the posi-
tive control ascorbic acid.

Fig. 1 Growth curve of S. epidermidis, S. pyogenes, P. aeruginosa
and C. albicans in the presence of diselenides. Concentrations of
diselenides 0.2xMIC or 0.5xMIC were tested for bacteria or fungus
respectively. The positive control for Gram-positive and Gram-negative
bacteria was gentamicin, and fluconazole for Candida albicans
(untreated microorganisms: filled circles, 9: filled squares, 10: filled
triangles, 11:*, 10c: filled rhombuses, 10d: X, 10e: +, positive control -).
Data are expressed as a mean of six replicates from two
independent experiments
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Biocompatibility of Diselenides
For tissue engineering materials or drug carrier applica-
tion, diselenides must be non-toxic and biocompatible.
HeLa human epithelial cells, HuDe human dermal fibro-
blast cells and NCTC2544 human keratinocyte cells
were exposed to scalar concentrations of diselenides be-
fore ATP level measurement. The CC50 obtained for all
diselenides tested is reported in Table 3. Diselenides ex-
hibited different cytotoxicity toward different cell lines.
Compounds 11, 10d and 10e were highly toxic against
HeLa cells, while diselenide 10c showed mild toxicity
and compounds 9 and 10 had low toxicity. Human fibro-
blast HuDe showed a slight reduction in vitality in the
presence of compounds 10, 10d and 10e, while disele-
nides 9, 10c were mildly toxic and compound 11 showed
a strong toxicity. Finally, for human keratinocytes
NCTC2544, the CC50 of compounds 10c and 10e was ≥
250 mg/L; diselenides 10, and 10d showed moderate tox-
icity while compounds 9 and 11 were toxic.

Discussion
Given the role that pathogenic biofilms play in impairing
the healing of chronic wounds, preventing biofilm for-
mation is fundamental for faster and more effective
treatment. When the biofilm is well established, micro-
organisms inside the matrix will exhibit resistance to
killing by the host immune system and antimicrobials.
In the past two decades a variety of organoselenium
compounds have been tested against bacteria, fungi,
algae and viruses. Most of them have shown a good ac-
tivity with respect to the antimicrobial drugs in current
use [14]. In particular, organoselenium coating on cellu-
lose was able to inhibit P. aeruginosa and S. aureus bio-
film formation [38, 39]. The antifungal property of
biphelyl diselenide (PhSe)2 against different species of
Candida has been reported by Loreto ES et al. [16]. The
values for C. albicans reported in their study are similar to
those obtained in our experimental conditions.
The antibiofilm activity of other organoselenium com-

pounds against P. aeruginosa [36] and S. aureus has been
tested in in vivo and in vitro studies [36, 37]. We tested
six diselenides for their activity against preformed biofilms
as well during biofilm formation. All compounds were
able to reduce the biofilm formation of Gram-positive

Fig. 2 The effect of diselenides on biofilm formation. S. aureus, S.
epidermidis, S. pyogenes, P. aeruginosa, and Candida albicans were
inoculated into a 96-well plate containing diselenides and incubated
for 24 h. The concentration of the different diselenides used for each
microorganism is indicated under the X-axis of the corresponding
histogram. Biofilm biomass was quantified by crystal violet assay
(absorbance 570 nm). Data represent the mean ± SD of 2 or more
independent experiments performed in triplicate. *P < 0.05, **P < 0.01
(treated microorganisms versus untreated cells)
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Staphylococci. Diselenides 11, 10d and 10e inhibited the
formation of S. pyogenes biofilm; while, only compounds
10 and 10d were active against the Gram-negative P. aeru-
ginosa. This effect is probably due to the different struc-
tures of the microbial cell walls. Dispersal of the biofilm
test showed that S. epidermidis biofilm is dispersed by dis-
elenides 10c and 10d, while S. aureus biofilm is partially re-
duced by compounds 9, 10 10d and 10e; dispersal biofilm
of S. pyogenes has been observed in the presence of all
compounds except 10c. Compounds 9, 10, 10d and 10e
were able to inhibit and to disperse the biofilm of C.

albicans. The overall results evidenced that diselenides
10d and 10e showed the best antibiofilm activity both in
biofilm formation and dispersion. The antimicrobial activ-
ity of 2,2’-dithienyl diselenide against bacteria and C. albi-
cans has been recently reported; the mechanism of action
suggested was the pro-oxidant activity [15]. However, the
anti-oxidant activity of diselenides has been demonstrated
[23]. This apparent incongruity is consistent with the
structures of diselenides 10d and 10e; in fact the amide
group, by a nonbonding interaction, enhances the electro-
philicity of the selenium atom, by activating the

Fig. 3 The effect of diselenides on biofilm dispersion. S. aureus, S. epidermidis, S. pyogenes, P. aeruginosa, and C. albicans were inoculated into a
96-well plate and incubated for 24 h. After incubation three different concentrations of diselenides (1 x MIC; 0.5 ×MIC; 0.1 ×MIC) were added to
preformed biofilm. The plates were then incubated for 24 h. Biofilm biomass was quantified by crystal violet assay (absorbance 570 nm). Data represent
the mean ± SD of 2 or more independent experiments performed in triplicate. *P< 0.05, **P< 0.01 (treated microorganisms versus untreated cells)
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oxidation of the dichalcogenide bond. This confers
radical scavenger properties to the structure but, at
the same time, the oxidative cleavage of the Se-Se
bond leads to the formation of strongly oxidant inter-
mediates (e.g. selenenic and seleninic species). If not
readily reduced by a glutathione mediated reaction
(like in the GPx catalytic cycle), such intermediates
can be responsible for the pro-oxidant activity.
The antioxidant activity of new selenide compounds has

been reported; monoselenides showed a weaker effect
compared to diselenides [39–41]. Novel nitrogen-
containing diselenides can act against oxidative stress
through a glutathione peroxidase-like activity [19]. As S.
aureus, S. epidermidis and S. pyogenes are the most com-
mon isolates among wound infections [8], we can assume
that diselenides have a potential for development as thera-
peutic antimicrobials for wound infections. Moreover, dis-
elenides affected cell vitality according to the cell line
used; fibroblast HuDe cells resulted more resistant than
human keratinocytes to compounds 9, 10, 10d and 10e,
while NCTC2544 cells are less sensitive to diselenide 10c.
The different cytotoxic activity is likely due to the intrinsic

differences among cell lines and multiple factors such as
cell permeability and macromolecular target binding.

Conclusions
In conclusions, considering that compound 10e was
the most biocompatible against fibroblast and kerati-
nocytes, the antioxidant activity of compounds 10d
and 10e and the antibiofilm properties of compounds
10d and 10e against S. aureus, S. epidermidis, S. pyo-
genes and C. albicans, diselenides 10d and 10e could
be very good candidates for the development of new
therapeutic applications for acute wound infections as
well as chronic skin diseases such as diabetic foot ul-
cers and venous stasis ulcers may be possible.
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