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Abstract

Background: PstS is a phosphate-binding lipoprotein that is part of the high-affinity phosphate
transport system. Streptomyces lividans accumulates high amounts of the PstS protein in the
supernatant of liquid cultures grown in the presence of different carbon sources, such as fructose
or mannose, but not in the presence of glucose or in basal complex medium.

Results: Functionality experiments revealed that this extracellular PstS protein does not have the
capacity to capture phosphate and transfer it to the cell. Regulation of the pstS promoter was
studied with Northern blot experiments, and protein levels were detected by Western blot
analysis. We observed that the pstS gene was expressed in cultures containing glucose or fructose,
but not in complex basal medium. Northern blot analyses revealed that the pst operon (pstSCAB)
was transcribed as a whole, although higher transcript levels of pstS relative to those of the other
genes of the operon (pstC, pstA and pstB) were observed. Deletion of the -329/-144 fragment of the
pstS promoter, including eight degenerated repeats of a sequence of 12 nucleotides, resulted in a
two-fold increase in the expression of this promoter, suggesting a regulatory role for this region.
Additionally, deletion of the fragment corresponding to the Pho boxes recognized by the PhoP
regulator (from nucleotide -141 to -113) resulted in constitutive pstS expression that was
independent of this regulator. Thus, the PhoP-independent expression of the pstS gene makes this
system different from all those studied previously.

Conclusion: |.- In S. lividans, only the PstS protein bound to the cell has the capacity to bind
phosphate and transfer it there, whereas the PstS form accumulated in the supernatant lacks this
capacity. 2.- The stretch of eight degenerated repeats present in the pstS promoter may act as a
binding site for a repressor. 3.- There is a basal expression of the pstS gene that is not controlled
by the main regulator: PhoP.

Background have developed several mechanisms to survive under
Organisms detect and respond to extracellular nutri-  conditions of nutrient limitation, such as induction of
tional conditions in different ways. Streptomyces spp. are  the production of hydrolytic enzymes to degrade com-
some of the most abundant organisms in nature and  plex animal and plant debris, and antibiotic secretion to
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kill the closest organisms for their use as a new source of
nutrients [1]. One of the most general and ubiquitous
responses to nutrient limitation is mediated by the
nucleotide guanosine 5'-diphosphate 3'-diphosphate
(ppGpp), which triggers the onset of antibiotic produc-
tion and morphological differentiation [2,3]. Another
important signal involved in antibiotic production, and
in general in secondary metabolism, is the level of phos-
phate present in the medium [4]. The production of a
broad variety of metabolites responds to low levels of
phosphate, a response that is mediated by the two-com-
ponent system PhoR-PhoP [5]. One of the operons
under the control of this system is the pst operon, which
constitutes the high-affinity phosphate transport system
induced under phosphate starvation [5-7]. The PstS pro-
tein is encoded by the first gene of the pst operon (pst-
SCAB) and constitutes the high-affinity phosphate-
binding protein. In other organisms, a high expression
of the PstS protein occurs under stress conditions,
including alkali-acid conditions, the addition of subin-
hibitory concentrations of penicillin, and the response
of pathogenic bacteria to the eukaryotic intracellular
environment [8-11]. All these observations suggest that
PstS would be one of the multi-emergency proteins that
help cells to adapt to growth in different habitats.

In our previous work with S. lividans and S. coelicolor, we
have described the extracellular accumulation of the high-
affinity phosphate-binding protein PstS when the micro-
organisms are grown in the presence of high concentra-
tions of certain carbon sources, such as fructose, galactose
or mannose, although not with glucose. This accumula-
tion is strikingly increased in a S. lividans polyphosphate
kinase null mutant (4ppk). However, deletion of phoP,
which encodes the response regulator of the PhoR-PhoP
two-component regulatory system that controls the pho
regulon, impairs its expression [6]. These observations
clearly point to a phosphate-driven regulation of this sys-
tem. Moreover, Sola-Landa et al. identified the so-called
PHO boxes in the pstS promoter, and demonstrated that
they are the binding sites for the phosphorylated form of
PhoP [7,12].

Here we show that the PstS protein accumulated in the
supernatant of S. lividans does not participate in the
uptake of extracellular phosphate, and that only the PstS
protein present in the cell is responsible for this process.
We demonstrate that the pstS gene is also expressed in the
presence of glucose but that the accumulation of RNA and
protein is higher in the presence of fructose than in that of
glucose in old cultures. Finally, using a multicopy pstS
promoter-driven xylanase gene as a reporter we describe a
functional study of this promoter aimed at elucidating the
relevant regulatory regions by the carbon source and by
PhoP.

http://www.biomedcentral.com/1471-2180/8/201

Results

The extracellular PstS protein is not functional

In principle, lipoproteins such as PstS are attached to the
cell membranes, where they exert their function. How-
ever, our previous observations showed that the PstS pro-
tein was strongly accumulated in the supernatants of S.
lividans cultures grown in the presence of certain carbon
sources. We therefore decided to study whether this frac-
tion of the protein also had the capacity to bind extracel-
lular phosphate and transfer it to the cell. To address this
issue, a construction expressing a [Xys1]-PstS fusion pro-
tein, which was completely secreted to the supernatant,
was obtained (Methods). In this construction, the pstS
promoter drives the expression of an in-frame fusion
between the DNA fragment of the xysA gene encoding the
signal peptide of the xylanase Xys1 from S. halstedii J]M8
[13] and the region of the pstS gene that encodes the
secreted form of the PstS protein. This fusion gene was
cloned into a Streptomyces integrative plasmid to obtain
plasmid pINTUF9 (Table 1), and this was introduced into
the S. lividans pstS mutant (Table 2). As controls, S. lividans
wild-type, the pstS mutant, and the pstS mutant trans-
formed with plasmid pINTUF5 (Table 1), which produces
the wild-type PstS protein, were used. The expression and
location of the PstS protein were followed by Western blot
analysis of the supernatants and cellular fractions of the
different strains after 72 hours of culture. The original PstS
protein was detected in the supernatants and in the cell
extracts of the wild-type strain and in the pstS mutant
transformed with pINTUF5. However, the PstS fusion pro-
tein, produced from pINTUF9 in the pstS mutant, was
only detected in the culture supernatant (Fig. 1A). This
result clearly demonstrates the capacity of the 45-amino
acid signal peptide of the xylanase encoded by the xysA
gene to secrete other proteins: in this case, PstS. The N-ter-
minus of the secreted PstS protein obtained from the
strain carrying pINTUF9 was identical to the wild-type
PstS extracellular protein [6], except that it had two extra
amino acids (A, G) at its N-terminus in order to keep the
signal peptide processing site present in the original xyla-
nase. Clearly, the size of the PstS protein observed in the
cells and in the supernatant of the strains carrying the
original pstS gene was different (Fig. 1A). This is due to the
fact that the protein released to the supernatant does not
have the first 41 amino acids [6].

The next step was to study whether the secreted PstS pro-
tein, generated from pINTUF9, had the ability to partici-
pate in the uptake of extracellular phosphate. To do so,
P32-phosphate incorporation in these four strains grown
in the presence of fructose was measured. As demon-
strated previously, phosphate incorporation by the pstS
mutant was very low (about 8%) in comparison with the
wild-type [6]. Transformation of this mutant with the
pINTUF5 plasmid restored phosphate incorporation to
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Extracellular PstS does not participate in phosphate
incorporation. A) Western blot to detect extracellular (S)
and cell-bound (C) PstS in the indicated S. lividans strains. (20
g of total protein were loaded per lane). B) Uptake of 32P-
labeled phosphate after | hour at 30°C. Strains assayed: wild-
type S. lividans (wt); the 4pstS deletion mutant (A4pstS); the
complemented transformant ApstS (A4pstS+pINTUFS5), and
the same mutant containing the integrative fusion xylanase
signal peptide-PstS (4pstS+pINTUF9). The results presented
are the means of three independent experiments.

almost wild-type levels. However, the pstS mutant con-
taining pINTUF9, which produces only the secreted PstS,
had a similar level of phosphate incorporation to that
obtained with the pstS mutant (Fig. 1B). The fact that the
PstS protein produced by this plasmid was unable to com-
plement the defect in phosphate incorporation of the pstS
null mutation suggests that the secreted PstS did not have
the ability to capture extracellular phosphate and transfer
it to the cell.

pstS is expressed in the presence of glucose or fructose but
not in basal medium

Up to this point we had focused our studies on the differ-
ent levels of accumulation of the PstS protein in the cul-
ture supernatants, but we had not yet studied the amount
of this protein bound to the cell under different culture
conditions in depth. Aware that only the PstS protein
bound to the cell must be functional, we focused our
attention on this fraction.

The first approach was to immunodetect PstS in wild-type
S. lividans cells grown under different conditions. Cultures
were performed in basal complex medium (YE) and in
this medium supplemented with glucose or fructose, and
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samples were taken every 24 hours. No PstS protein was
detected in cells obtained at 24 hours under any of the
conditions used (data not shown). At 48 hours of culture,
the protein was absent in cells from the basal medium but
was clearly present in cells grown in the presence of glu-
cose or fructose. At this time, the intensity of the PstS band
was similar in the presence of both carbon sources (Fig.
2A). Later, at 60 hours, the PstS protein was more abun-
dant in the presence of fructose than in that of glucose and
was still absent in cells from basal YE medium (Fig. 2A).
The same result was obtained for cultures of 72 and 96
hours (data not shown). As suggested previously, a possi-
ble explanation for this induction could be a difference in
the rate of phosphate consumption in the presence of the
different carbon sources [6]. Measurements of the residual
phosphate levels of the three cultures after 60 hours
showed that whereas 85 pM was detected in YE, only 15
UM was detected when the cells were grown in the pres-
ence of glucose or fructose. Therefore, since the phosphate
levels in cultures with both carbon sources (glucose and
fructose) were similar we suggest the existence of other
regulators that could account for the higher amount of
PstS detected in the presence of fructose in 60-h cultures
and older, although the possibility of an effect of residual
phosphate on PstS expression cannot be completely ruled
out.

The effect of the carbon source was also studied at tran-
scriptional level using Northern blot analysis. Total RNA
was obtained from the same cultures at 24, 48 and 60
hours. Total RNA was separated in an agarose denaturing
gel and hybridized with a 32P-labeled probe specific for
pstS (see Materials and Methods). No hybridization bands
were observed for any of the samples at 24 h (not shown).
The transcription of pstS was clearly observed (as a band
of about 1.1 kb) in 48-h and older cultures when supple-
mented with glucose or with fructose, but not in YE basal
medium. The intensity of this 1.1 kb hybridization band,
corresponding to the pstS transcript, was similar in the
presence of glucose and in the presence of fructose at 48
h. However, at 60 h the band was much more intense in
the presence of fructose than with glucose, indicating a
higher induction of pstS transcription in the presence of
this carbon source in old cultures (Fig. 2B).

At least three hybridization bands of 1.1, 2.4, and 4.2 kb
were detected in 60 h-old cultures in the presence of glu-
cose or fructose. The most prominent band was that of 1.1
kb, corresponding to monocistronic pstS transcript, as
indicated previously. The 2.4 kb band corresponded fairly
well to the size of a pstSC transcript (theoretical size 2.28
kb), while the size of the 4.2 kb band corresponded to the
full-length pstSCAB operon transcript (theoretical size:
4.18 kb) (Fig. 2C, 2D). These results clearly indicate that
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Table I: Plasmids
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Plasmid Characteristics Reference
pKC796 Shuttle vector for E. coli/Streptomyces Apramycin resistance. Integrative plasmid in Streptomyces. [29]
pKC796Hyg  Shuttle vector for E. coli/Streptomyces Hygromycin resistance. Integrative plasmid in Streptomyces. [6]
pINTUF5 pKC796Hyg derivative containing the original pstS gene from S. lividans. [6]
pINTUF2 pKC796 derivative containing the pstS promoter from S. lividans controlling the expression of the xysA xylanase gene  This study
from S. halstedii. [13]
pINTUF9 pKC796Hyg derivative. The pstS promoter from S. lividans controls the expression of a fusion gene that contains the  This study
region of the xysA xylanase gene that encodes the signal peptide (45 amino acids) and the region that encodes the PstS
secreted to the supernatant (from amino acid 42 up to the end).
pN702GEM3  Shuttle vector for E. coli/Streptomyces neomycin resistance. Multicopy plasmid [30]
pNUF5 pN702GEMS3 derivative. The pstS promoter from S. lividans controls the xysA xylanase gene. [6]
pNUF7 pN702GEM3 derivative. It contains the complete pstS gene from S. lividans. [6]
pNX30 pN702GEM3 derivative. The xysA xylanase ORF does not have any promoter. Used as a negative control. This study
pNUFI | pNUF5 derivative. The 29 bp that include the two PHO boxes of the S. lividans pstS promoter have been deleted This study
(deletion includes from-141 to -113).
pNUFI3 pNUF5 derivative. The distal 186 bp of the pstS promoter have been deleted (from -329 to -144, both included). This  This study

deletion eliminates the 8-times degenerated sequence with the consensus: -ACYCASCCMNSV-.

the complete operon was transcribed in the presence of
both carbon sources.

Deletion of a repeated sequence in the pstS promoter of

S. lividans duplicates its activity

We have previously proposed that the sequence ACTCAC-
CCCCGC, repeated several times in the S. coelicolor pstS
promoter and -with some discrepancies- up to eight times
in the pstS promoter of S. lividans, might be involved in
the carbon regulation of the expression of this promoter
[6]. To study this in more detail, we deleted the portion of
the S. lividans pstS promoter that contains the eight-times
repeated degenerated sequence with the consensus
sequence ACYCASCCMNSV. To do so, the -329/-144
region of the pstS promoter was deleted and the rest of the
promoter was used to drive the expression of the ORF of
the xysA xylanase gene [13] and used as reporter in a mul-
ticopy plasmid designated pNUF13 (Methods and Table
1). This plasmid (pNUF13), plasmid pNX30 (negative
control: xysA without promoter), and plasmid pNUF5
(full-length pstS promoter controlling xysA) (Table 1)
were introduced into S. lividans TK24 and cultures were
grown in YE supplemented with 5% glucose or with 5%
fructose in the presence of neomycin (20 pg.ml-!) for 72
h. The production of xylanase in the culture supernatants
was studied by Coomassie blue-stained SDS-PAGE and by

measuring the xylanase activity. The xylanase band
obtained in the strain harbouring pNUF13 was signifi-
cantly more intense than that obtained with pNUFS5 in the
presence of both carbon sources (Fig. 3A). Xylanase activ-
ity was quantified in all the supernatants, and we
observed that no xylanase activity was detected in the cul-
tures of the S. lividans TK24 strain transformed with
pNX30 under both conditions (data not shown). How-
ever, xylanase activity was detected in the strain trans-
formed with pNUF5 or with pNUF13 (Fig. 3B). Clearly,
there was an increase in the xylanase activity detected in
the strain carrying the pstS truncated promoter (pNUF13)
under both culture conditions. This increase was more
than two-fold when the strain was grown in the presence
of glucose and 1.7-fold in the case of the cultures per-
formed with fructose (Fig. 3B). In addition, we observed a
higher expression in presence of fructose than in the pres-
ence of glucose for both truncated and complete pstS pro-
moters. Thus, when the S. lividans TK24 strain was
transformed with pNUF5, 2.15-fold more xylanase was
produced with fructose than with glucose. When the plas-
mid used was pNUF13, the overproduction obtained with
fructose was 1.7 fold, values of 340 U/ml of xylanase
being attained. These results clearly indicate that the
region containing the eight-times repeats may play an
important role in controlling the level of expression of the

Page 4 of 12

(page number not for citation purposes)



BMC Microbiology 2008, 8:201 http://www.biomedcentral.com/1471-2180/8/201

B 48h 60h
B G F

B G F
e EE e
I l I I l l I—16S RNA

C 48h 60h
8 —
4— — pstS+pstC+pstA+pstB
5_ — pstS+pstC
1-— . pStS
] l— 16S RNA
ik
D ?eeggrﬁgsméé Probe )
D—| pstS &! psiC D{ pSiA DI ostB I>—(J pitH |
: pstS promote:'r pst operon
1.1 kb
2.4 kb
4.2 kb

Figure 2

Western and Northern analyses of PstS expression. A) Western blot to detect cell-bound PstS in S. lividans TK24
grown under the indicated conditions (B, basal; G, basal + 5% glucose, F, basal + 5% fructose) and times (48, 60 hours). 20 ug
of total protein were loaded per lane. B) Northern analysis of pstS expression in the above cultures. 16S RNA was used as a
loading control (lower part). C) Transcriptional analysis of the pstS operon genes in the presence of 5% fructose at the indi-
cated times (48, 60 hours). The bands detected are indicated at the right. 16S RNA was used as a loading control (lower part).
D) Schematic representation of the pst operon and surrounding genes. A putative transcriptional terminator is proposed
between pstS and pstC. The sizes of the RNA bands obtained in the Northern are indicated.
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Xylanase production under control of the pstS pro-
moter. A) Coomassie-Blue-R-stained SDS-PAGE showing
the production of the Xys| xylanase in supernatants of the S.
lividans TK24 (wild-type) transformed with different plasmids:
pNX30, the xylanase gene has no promoter; pNUF5, the
xylanase gene is under the control of the full length pstS pro-
moter; pNUF 3, the xylanase is under the 186-bp-deleted
pstS promoter (from -329 to -144). 5 pl of culture superna-
tant was loaded per track. B) Histogram showing the xyla-
nase activity detected in the supernatant of the indicated
strains. G, glucose; F, fructose. The results presented are
means of three independent experiments.

pstS promoter in the presence of the different carbon
sources.

Basal expression of the pstS promoter is independent of
the PhoP regulator

In order to study whether pstS expression was completely
dependent on PhoP in S. lividans, we obtained total RNAs

http://www.biomedcentral.com/1471-2180/8/201

from the wild-type strain and from a phoP mutant cultured
for 60 hours in the presence of fructose. RT-PCR for pstS
was performed and one amplification band was observed
for this gene in both strains. However, while the pstS-
amplified band was clearly detectable after 20 cycles in the
wild-type strain, 40 amplification cycles were necessary
for it to be detected in the phoP mutant. As a control, we
carried out RT-PCR for the phoP itself, observing that the
amplification band was clearly obtained in the wild -type,
although, as expected, no amplification band was
obtained in the mutant (Fig. 4A). This observation dem-
onstrates that residual pstS expression independent of
PhoP- occurs, at least in S. lividans.

An alternative strategy to study this expression was to

transform 8. lividans TK24 and the phoP mutant with the
plasmids pNX30 (negative control: xysA without pro-
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- — . — Xy
Figure 4

pstS expression in S. lividans TK24 (wt) and the phoP
mutant. A) Semiquantitative RT-PCR analysis of pstS and of
phoP expression in the wild-type (TK24) and the phoP mutant
(4phoP). RNAs from 60 h-cultures were used. The size of the
amplified bands is 530 bp for pstS, 327 bp for phoP, and 416
bp for the 16S RNA. Forty amplification cycles were per-
formed for the phoP gene in both strains and for the pstS
gene in the phoP mutant. 20 amplification cycles were done
for the rest of the RT-PCRs. B) Coomassie-Blue-R-stained
SDS-PAGE of S. lividans TK24 and AphoP supernatants show-
ing the production of the Xys| xylanase under the control of
the pstS promoter with the PHO boxes deleted (pNUFI I).
pNX30 and pNUF5 were used as controls (10 pl of 4-day-old
culture supernatants were loaded per lane).
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moter) and pNUF5 (full-length pstS promoter controlling
xysA) to monitor xylanase production. No protein band
corresponding to the xylanase was detected in either strain
carrying the control plasmid pNX30. However, a protein
band corresponding to the molecular weight of xylanase
was readily detected in the parental TK24 strain trans-
formed with plasmid pNUF5, and a weaker band -of the
same size- was also observed in the phoP mutant trans-
formed with the same plasmid (Fig. 4B). Western blot
analyses with anti-xylanase antibodies confirmed that this
band indeed corresponded to xylanase Xysl (data not
shown). Enzymatic activity assays confirmed that no xyla-
nase activity was present in either strain transformed with
pNX30. Values of 196 U/ml of xylanase were reached for
the wild-type S. lividans transformed with pNUF5, and
values of 19 U/ml for the phoP mutant transformed with
the same plasmid. Thus, 10% of the activity of the pstS
promoter must be out of the control of PhoP.

PhoP-independent basal expression was also demon-
strated by generating a S. lividans pstS-modified promoter
lacking the two PHO boxes described for the S. coelicolor
pstS promoter [7]. To accomplish this, the -141/-113
region of the S. lividans pstS promoter containing the PHO
boxes was deleted and this mutant promoter was used to
monitor xylanase expression (Methods and Table 1). The
plasmid generated, pNUF11, was introduced into both
strains - wild-type S. lividans and the phoP mutant- and
xylanase activity was analyzed in the culture supernatants.
A protein band corresponding to the molecular weight of
xylanase was observed in SDS-PAGE loaded with the
supernatant of both strains transformed with pNUF11
(Fig. 4B). Quantification of the xylanase activity afforded
identical values for both strains (19 U/ml). This result
again indicates that although the activity of the pstS pro-
moter is strongly reduced after deletion of the PHO-boxes
it remains active, resulting in a basal level of PhoP-inde-
pendent pstS transcription in S. lividans.

Discussion

The normal localization of the PstS protein occurs
through an extracellular association with the cell mem-
brane by lipid anchorage and the protein participates in
the uptake of extracellular phosphate, transferring this to
the PstA and PstC transporters. An extracellular localiza-
tion of part of the PstS protein has been described previ-
ously in other organisms such as B. subtilis [14], but such
a high extracellular accumulation as that reported for old
cultures of wild-type S. lividans and its ppk mutant have
never been reported in other systems [6]. Recently, it has
been found that Pseudomonas aeruginosa strains that dis-
play high virulence against intestinal epithelial cells accu-
mulate extracellular PstS protein in appendage-like
structures [15]. Those authors provided evidence that
these appendages were involved in the adherence and dis-
ruption of the integrity of intestinal epithelial cells, and
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consequently in the pathogenicity of this bacterium. To
date, no other studies of the functionality of extracellular
PstS have been reported.

In the present study, we observed that the secreted PstS of
S. lividans does not play any role in the uptake of extracel-
lular phosphate. A possible explanation for this extracel-
lular accumulation might be that the number of PstS
molecules able to bind to the cell membrane might be
limited. Consequently, the overproduction observed in
the presence of several carbon sources could lead to a par-
tial release of the protein to the supernatant as debris, this
being resistant to proteolytic degradation owing to its
configuration. To some extent, this hypothesis is corrobo-
rated by the fact that the level of PstS bound to the cells
was similar in 60-h cultures and in cultures carried out
over 6 days. However, the amount of protein found in the
supernatant was much higher after six days (data not
shown), suggesting that the promoter was still active and
that the protein produced was being accumulated in the
supernatant.

An interaction among different bacterial regulons
involved in metabolism has been described in other
organisms such as B. subtilis. In this organism, the phos-
phorus (pho) regulon is regulated by the carbon control
protein-A (CcpA) through CcpA-responsive elements or
cre. However, the mechanism of this control is not fully
understood. Thus, whereas Choi et al. reported that
CcpA controls the phoPR two-component system in a
way independent of the cre sequence located in the
phoPR promoter [16], Puri-Taneja et al. described that
CcpA represses phoP transcription by binding directly to
this cre sequence [17]. From our RNA experiments, it is
clear that the S. lividans pst operon is transcriptionally
induced by glucose or fructose in cultures that are close
to or actually in the stationary phase. Under these condi-
tions, the level of residual phosphate is lower than in
basal medium, in which this operon is not induced, and
this suggests that the phosphate level triggers the expres-
sion of the pst operon. However, while the residual phos-
phate of cultures with glucose and fructose were similar
(in cultures of 60 hours and older) the expression of pstS
was higher in the presence of fructose. Accordingly,
although phosphate starvation seems to be the main sig-
nal for pstS expression, other regulators must also act in
response to the carbon source present in the media. This
was corroborated by deletion of the region that contains
the eight-times repeated sequence in the pstS promoter
proposed as the binding site of a carbon-responsive ele-
ment [6]. This deletion resulted in a truncated pstS pro-
moter with higher expression than the full-length
promoter, suggesting that the sequence contained the
binding site of a novel regulator. The identification of
this putative regulator is currently under investigation at
our laboratory.
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To date, all the pst operons studied are members of the pho
regulon. In some organisms such as E. coli, the number of
PHO boxes in the promoter region has been related to
inducibility by phosphate [18]. In S. lividans and S. coeli-
color, the pstS promoter contains two 11-bp direct repeat
units that constitute two PHO boxes in tandem, which are
the binding sites for the phosphorylated PhoP protein [7].
As demonstrated here, deletion of these sequences in the
S. lividans pstS promoter results in constitutive pstS expres-
sion that is similar in the wild-type and in the phoP
mutant. From these results it may be concluded that
although PhoP is the main regulator of this promoter,
some basal expression of the pstS promoter (1/10 of the
normal activity) escapes PhoP regulation. Similarly, it has
been demonstrated that the pst operon of Corynebacterium
glutamicum is partially induced in the phoR mutant (in this
organism the regulator has been designated PhoR and the
kinase as PhoS), suggesting that at least one other addi-
tional regulator must be involved in its expression [19].
These results differ from those reported recently for S. coe-
licolor by Sola-Landa et al. [12]. These authors demon-
strated that the S. coelicolor pstS promoter, controlling a
promoterless catechol dioxygenase gene xylE, was not
expressed in a S. coelicolor phoP mutant. However, the pstS
promoter from S. lividans is 28 bp longer than the corre-
sponding promoter from S. coelicolor [6] and therefore dif-
ferent types of regulation cannot be ruled out. Our results
also differ from those obtained from Bacillus subtilis,
where the pst promoter has been used to control -galac-
tosidase expression [20]. Those authors reported that no
expression was observed in a mutant strain lacking the
phoP gene, although they did detect a low level of expres-
sion in the mutant of the phoR sensory kinase gene. Thus,
it is possible that PhoP might be phosphorylated ineffi-
ciently by other sensory kinases in this strain [20].

Our Northern blot experiments demonstrated that the S. livi-
dans pst operon is transcribed as a single 4.2 kb transcript that
corresponds to the complete pst operon and that it may be
processed at specific points, resulting in smaller RNAs; the
most abundant one would be that corresponding to pstS. A
similar expression of the pst operon has been described in E.
coli and in B. subtilis [21,22]. Both organisms have palindro-
mic sequences in the intergenic region between pstS and pstC
that show 73% sequence identity and that can prevent ribo-
nuclease activity and consequently stabilize pstS RNA
upstream. In our study, the MFOLD program [23] predicted
a strong stem-loop structure for the RNA corresponding to
the pstS-pstC intergenic region, which possibly functions as a
transcriptional terminator. This terminator would start 3 bp
downstream from the UGA stop codon of pstS, ending at
nucleotide 83 downstream from pstS, with a AG (change in
Gibbs free energy) of -60.2 kcal/mol. Another explanation
for our Northern results is that the transcription machinery
might stop at the terminator between pstS and pstC, resulting
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in more pstS transcripts relative to the larger multicistronic pst
transcripts. This is corroborated by the ratio of intensities of
the different bands observed in the samples after 48 and 60
h. Thus, while the 1.1 kb band was detected at 48 hours, the
larger 2.4 and 4.2 kb bands were detected at 60 h. of culture,
and their intensities were lower than that of the former band
(Fig. 2C).

Conclusion

Although cultures of S. lividans accumulate high amounts
of the PstS protein in the supernatant of cultures carried
out with certain carbon sources such as fructose, the
results of the present work demonstrates that the secreted
form of this protein does not have the capacity to bind
external phosphate and transfer it to the cells. Our study
also reveals a novel regulatory system for pstS expression
in S. lividans. In contrast to other systems described so far,
where PhoP appears to be the only regulator, we detected
a basal expression of pstS, which escapes the control of the
main regulator PhoP. We have also identified a region of
the pstS promoter containing eight degenerated repeats
that may act as a binding site for as yet unknown repres-
sor(s). In sum, our work reveals the complexity of the reg-
ulatory network in Streptomyces and uncovers a
connection between phosphate and carbon regulation,
which should be further investigated in the future. We are
tempted to speculate that these novel regulators would
contribute to the integration of the different nutritional
signals that allow the organism to survive under adverse
environmental conditions.

Methods

Bacterial strains and media

All strains used are listed in Table 2. Streptomyces strains
grown at 30°C on Solid Mannitol Soya Flour Agar
medium (MSA), or R2YE [1] were used for normal cul-
tures and sporulation. Submerged cultures were usually
carried out in YE medium (1% yeast extract) supple-
mented with different amounts of the carbon source stud-
ied: normally fructose or glucose at 5%. Cells were grown
at 28°C and 250 rpm in an orbital shaker (Adolf Kithner
AG, Birsfelden, Switzerland) for as long as required for
each assay (1-5 days) in baffled flasks with 1/10 volume
of medium. E. coli was grown in Luria Broth (LB) or in
Luria Agar at 37°C. Supplements of kanamycin (50 pg ml-
1), neomycin (50 ug ml1) or hygromycin (50-200 pg ml-
1) were added when needed. Cell extracts were obtained in
a Fast-Prep device (Q-Biogene).

DNA manipulations and transformations of S. lividans and
E. coli

Total genomic DNA, plasmid isolation, transformation,
and protoplast manipulation were performed as previ-
ously described [6]. The plasmids used are listed in Table
1.
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Table 2: Bacterial strains.
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Strain Genotype Comments Reference
S. lividans 66 SLP2* SLP3* Parental strain of the pstS mutant. [n
Wild type.
S. lividans ApstS ~ SLP2* SLP3* Mutant defective in the high-affinity phosphate [6]
ApstS protein PstS.
S. lividans TK24  str-6 SLP2- SLP3- Parental strain of phoP mutant. [
Wild type.
S. lividans AphoP  str-6 SLP2- SLP3-AphoP Mutant defective in the regulator of the two- [27]

component system PhoP/R.

E. coli DH5a
hsdR 17(rk-, mk*), supE44, A, thi-1, gyrA, relAl

F-, ¢ 80 d lacZAMI5, A(lacZYA-argF)U169, recAl, endAl,

Used for cloning and plasmid isolation. [28]

RNA isolation and Northern analysis

The RNA for the analysis of the pst operon was obtained
from cultures of S. lividans TK24 grown in YE or in this
medium supplemented with 5% glucose or 5% fructose at
different times. The RNA was obtained at 24, 48 and 60
hours, according to the protocol provided with the RNe-
asy Protect bacteria Mini Kit (QIAGEN). RNase-free
DNase (RQ1, Promega) was used to eliminate all DNA.
The quality and quantity of RNA was analyzed in agarose
gels and by spectrometry in an Agilent bioanalyzer.

Northern blot analysis of the pstS gene and of the com-
plete operon was carried out with 4 ug of RNA denatured
on 1% formaldehyde agarose gels and transferred to a
Hybond-N membrane, essentially as described [24]. A
pstS probe containing most of the open reading frame
(918 bp, from nucleotide +189 to +1107) was obtained
by PCR using the oligonucleotides MRG-30 and MRG-31
(Table 3) and plasmid pNUF7 (Table 1) as template, and
was then labeled by random priming using the DNA Labe-
ling Beads (dCTP) kit and [32P]dCTP (Amersham).
Hybridization was carried out at 65°C in a solution con-
taining 5x SCC (1x SCCin 0.15 M NacCl, pH 7, plus 0.015
M sodium citrate), 2x Denhardt's solution, 0.5% sodium
dodecyl sulfate (SDS), and 0.1 mg/ml sheared salmon
sperm DNA (AMBION). After hybridization, the blots
were washed with: 5x SCC containing 0.1% SDS at room
temperature for 20 min., 2x SCC containing 0.1% SDS at
42°Cfor 20 min., 0.2x SCC containing 0.1% SDS at 42°C
for 20 min. and 0.1x SCC containing 0.1% SDS at 65°C
for 20 min. The 0.24- to 9.5-kb RNA ladder (Life Technol-
ogies) was used for sizing the RNA in formaldehyde-agar-
ose gels. The intensity of 16S RNA was used as a loading
control.

RT-PCR analysis
RT-PCR analyses were carried out using the Superscript™
One-Step RT-PCR with the Platinum®Taq System (Invitro-

gen). RNA samples from S. lividans TK24 and its phoP
mutant were collected at 48 and 60 h, as indicated previ-
ously. For each RT-PCR reaction, 200 ng of RNA were used
in a final volume of 20 pl. The program used was as fol-
lows: 30 min cDNA synthesis at 55°C, followed by 2 min
at 95°C and 20-40 cycles of: 45 s at 94°C (denaturation),
30 s at 65°C (annealing) and 40 s at 65°C (elongation).
The reaction was completed by a 10-min incubation at
72°C. Two microlitres of each sample were visualized by
electrophoresis in an ethidium bromide-stained 1.6%
agarose gel in 1x TAE. The oligonucleotides used are listed
in Table 3.

Construction of an integrative plasmid with a xylanase
signal peptide-pstS fusion

To perform PstS functional studies, the integrative plas-
mid pINTUF9 (Table 1) was constructed. In this plasmid,
all the PstS protein produced was secreted to the superna-
tant owing to an in-frame fusion with the 45-amino acid
signal peptide of the xylanase Xys1 from S. halstedii J]M8
[13]. The plasmid was obtained after several cloning steps.
Briefly, the region of the pstS gene that encodes the mature
PstS protein located in the supernatant (from amino acid
42 up to the end) was isolated from plasmid pNUF7 [6]
by PCR using the oligonucleotides RS-008 and MRG-34
(Table 3). The PCR band was digested with Smal/Xbal and
ligated with plasmid pINTUF2 (Table 1), digested with
Nael/Xbal (Nael cuts just after the sequence that encodes
the signal peptide of the xylanase and Xbal cuts at the end
of the xysA gene). The new construct had the pstS pro-
moter controlling a fusion gene that contained the signal
peptide of the xylanase (45 aa) fused in-frame with the
fragment of DNA that encodes the PstS protein released to
the supernatant. This construction, flanked by termina-
tors, was transferred to plasmid pKC796Hyg (Table 1) by
digestion of both DNAs with EcoRV/Kpnl, ligation, and
selection in E. coli. The plasmid obtained, pINTUF9, and
the empty vector, pKC796Hyg, were introduced into S.
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Table 3: oligonucleotides used
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Name Sequence

Origin/use

MRG-27 TAATAACATATGGCGCTGAAGCTTCACTTGAG
GGAG

Reverse oligonucleotide for cloning the pstS promoter. The sequence
recognized by Ndel is underlined.

MRG-28 TTTTTAGATCTCAGCCCCGGGACCGGGCCCT

Forward oligonucleotide for cloning the pstS promoter. It was designed at the
end of SCO4143 that is upstream from the pstS gene. The sequence recognized
by Bglll is underlined.

MRG-34 TTTTICTAGATCAGCTCAGGCCCGAGATGGTC

Reverse oligonucleotide to clone the region of pstS gene that encodes the
secreted PstS protein. It contains a Xbal site for cloning.

RS005 CCTTCGGCGCCTTCATCTCATC

Forward oligonucleotide of the S. lividans pstS promoter from nucleotide -112 to
-91. Used in a PCR to delete the PHO boxes.

RS007 GATGAGATGAAGGCGCCGAAGGGGACGGTG
CGGTGAGGTCAC

Reverse oligonucleotide to delete the PHO boxes in pstS promoter (from
nucleotide - 141 to -113). The oligonucleotide contains from nucleotide -161 to -
142 and from -112 to -91.

RS008  ATCCCCCGGGAGCAACATCAAGTGCGACGAC
GCC

Forward oligonucleotide to clone the region of pstS gene that encodes the
secreted PstS protein. It contains a Smal site for cloning.

RS009  TCCCCCGGGCCACAGGGGTTCACCCGGCG

Forward oligonucleotide of the S. lividans pstS promoter from nucleotide -143 to
-124. Used to delete the 186 bp region upstream from the PHO boxes in a PCR
with Oli MRG-27. It contains a Smal site for cloning.

AE007  GCCTGGGTCAAGCAGTACGTCG

Forward oligonucleotide of the S. lividans pstS gene from nucleotide +199 to
+220. Used in RT-PCR analysis.

AE008  GATGGCGCCGGGGGTCTGCTT

Reverse oligonucleotide of S. lividans pstS gene from nucleotide +715 to +735.
Used in RT-PCR analysis.

AE024  TCGTCGGGCTGGAGATAGGG

Forward of S. lividans phoP gene from nucleotide +254 to +273. Used in RT-PCR
analysis.

AE025  CGTGGACGTCGAGGGTCTTG

Reverse oligonucleotide of S. lividans phoP gene from nucleotide +561 to +580.
Used in RT-PCR analysis.

16S F TCACGGAGAGTTTGATCCTGGCTC

Forward oligonucleotide of S. lividans 16S gene from nucleotide +20 to +44.
Used in RT-PCR analysis.

16S R CCCGAAGGCCGTCATCCCTCACGC

Reverse oligonucleotide of S. lividans [6S gene from nucleotide +436 to +460.
Used in RT-PCR analysis.

MRG-30 GCCATCGACGCCTGGGTCAAG

Forward oligonucleotide of S. lividans pstS gene from nucleotide +189 to +210.
Used to obtain pstS probe for Northern blot analysis.

MRG-31 CAGGCCCGAGATGGTCTCGCG

Reverse oligonucleotide of S. lividans pstS gene from nucleotide +1086 to +1107.
Used to obtain pstS probe for Northern blot analysis.

lividans ApstS by protoplast transformation, and the inte-  from S. halstedii as a reporter [13]. The intergenic region
grated strains were selected for hygromycin resistance. (329 nucleotides) between the homologous genes to S.
These plasmids were integrated into the genome of the S. coelicolor SCO4142 (pstS gene) and SCO4143 (a possible

lividans pstS mutant at the ¢ C31 integration site.

mutT-like protein) was previously cloned from S. lividans
to obtain the multicopy plasmid pNUF5. That region was

Analysis of the activity of the pstS promoter and of several called the full-length pstS promoter [6]. Deletion of the

deletions

distal region (from -329 to -144), which contained a

The expression of the pstS promoter and several deletions ~ degenerated sequence of 12 nucleotides repeated 8 times
(see below) was studied using the xylanase gene (xysA)  (see results), was accomplished using the oligonucle-
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otides RS009 (forward) and MRG-27 (reverse) (Table 3)
and was used to replace the whole pstS promoter. The new
plasmid obtained was designated pNUF13. Another plas-
mid, designated pNUF11, was obtained by deletion of the
29 bp (from -141 to -113, both included) that form the
two PHO-boxes present in this promoter [7]. This internal
deletion was constructed in a two-step PCR, using two of
the different PCR products obtained: one with oligonucle-
otides MRG-28/RS007 and the other with RS005/MRG-27
(Table 3). Both were mixed (they have 21 bp overlapping
ends) and used as templates in a second PCR with the
external oligonucleotides MRG-28/MRG-27. In all cases,
the amplified fragments were sequenced. In these experi-
ments, S. lividans TK24 (wild-type strain) and the S. livi-
dans phoP mutant were used as hosts. The xylanase activity
produced by the different versions of the promoter was
used as a reporter and was quantified from liquid cultures.

Phosphate uptake

Phosphate uptake was measured in S. lividans cultures
grown in liquid YE + 5% F medium for 72 h (30°C, 200
rpm). 32P-labeled Na,HPO, (Amersham Biosciences) was
added (2 x 10> cpm) and phosphate uptake was measured
after 1 hour at 30°C. Cells were recovered by filtration
through Whatman GF/C filters, washed twice with 0.9%
NaCl, and the radioactivity from the filter was quantified
on a liquid scintillation counter (Wallac 1409-001).

Residual Phosphate determination

Phosphate concentrations in the culture media were
determined by a modification of the malachite green/
molybdate method, using KH,PO, as standard [6]. The
reactions were carried out by mixing the supernatant (up
to 100 ul) with 800 ul of ammonium molybdate (4.2% in
4N HCl), malachite green (0.045% in ddH,0), Tween 20
(10% in ddH,0) solution and 100 pl of citrate solution
(34% in ddH,0), and the mixture was further incubated
at RT for 30 min. Absorbance was measured at 660 nm.

Enzyme assays

Xylanolytic activity was determined in the culture broth
by the dinitrosalicylic acid (DNS) method, using oat-spelt
xylan (Sigma) as substrate and xylose as standard [25,26].
One enzymatic unit of xylanase was defined as the
amount of enzyme required to release 1 umol of reducing
sugars (expressed as xylose equivalents) per minute. Activ-
ity was calculated in enzyme units per ml of supernatant
of culture.

Protein analysis

Electrophoresis in denaturing polyacrylamide gels (SDS-
PAGE) was performed as described previously [13]. West-
ern blot analyses were done on protein transferred to pol-
yvinylidene difluoride membranes and probed with
appropriate antibodies. Typically, anti xylanase (Xys1)
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antibodies [13] or anti-PstS antibodies were used. Anti-
PstS antibodies were raised in rabbits against S. lividans
PstS protein purified from the supernatants of cultures
carried out in the presence of 5% fructose. Fast-perform-
ance liquid chromatography (FPLC) was used to purify
the protein (data not shown). Typically, a 1/150.000 dilu-
tion was used for this antibody. Horseradish peroxidase-
conjugated secondary donkey-anti-rabbit antibody was
used. The blots were developed with ECL reagents (GE
Healthcare), used according to the manufacturer's instruc-
tions.

Enzymes and reagents were purchased from Bio-Rad,
Roche, GE Healthcare, Invitrogen, Merck, Panreac,
Promega, Quiagen or Sigma, and were used following the
manufacturer's guidelines.
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