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Background

Corynebacterium glutamicum, is a Gram-positive soil bacte-
rium, which is used for the industrial production of differ-
ent amino acids, mainly L-glutamate and L-lysine, and of
nucleotides [1,2]. As a member of the Corynebacterinae,

Abstract

Background: The influence of the membrane-bound AAA+ protease FtsH on membrane and
cytoplasmic proteins of Corynebacterium glutamicum was investigated in this study. For the analysis
of the membrane fraction, anion exchange chromatography was combined with SDS-PAGE, while
the cytoplasmic protein fraction was studied by conventional two-dimensional gel electrophoresis.

Results: In contrast to the situation in other bacteria, deletion of C. glutamicum ftsH has no
significant effect on growth in standard minimal medium or response to heat or osmotic stress. On
the proteome level, deletion of the ftsH gene resulted in a strong increase of ten cytoplasmic and
membrane proteins, namely biotin carboxylase/biotin carboxyl carrier protein (accBC),
glyceraldehyde-3-phosphate dehydrogenase (gap), homocysteine methyltransferase (metE), malate
synthase (aceB), isocitrate lyase (aceA), a conserved hypothetical protein (NCgl1985), succinate
dehydrogenase A (sdhA), succinate dehydrogenase B (sdhB), succinate dehydrogenase CD (sdhCD),
and glutamate binding protein (gluB), while 38 cytoplasmic and membrane-associated proteins
showed a decreased abundance. The decreasing amount of succinate dehydrogenase A (sdhA) in
the cytoplasmic fraction of the ftsH mutant compared to the wild type and its increasing abundance
in the membrane fraction indicates that FtsH might be involved in the cleavage of a membrane
anchor of this membrane-associated protein and by this changes its localization.

Conclusion: The data obtained hint to an involvement of C. glutamicum FtsH protease mainly in
regulation of energy and carbon metabolism, while the protease is not involved in stress response,
as found in other bacteria.

C. glutamicum is closely related to other mycolic acid-con-
taining bacteria, e. g. to the amino acids producer Coryne-
bacterium efficiens and to important pathogens such as
Corynebacterium diphtheriae, Mycobacterium tuberculosis and
Moycobacterium leprae [3]. Due to the enormous industrial
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importance of C. glutamicum, this bacterium is very well
investigated. Its genome was sequenced and published
independently by different industry-supported groups
recently [4,5] and different global analyses techniques are
available including transcriptome [6], metabolome [7],
flux [8] and proteome analyses [9].

We are interested in nitrogen metabolism and nitrogen
control in C. glutamicum (for review, see [10-12]) and
recently identified proteolysis as a new regulatory mecha-
nism in nitrogen regulation [13]. Different proteases,
namely CIpXP and CIpCP [14] as well as FtsH are
involved in the degradation of nitrogen signal transduc-
tion protein GInK [13]. The identified enzymes are mem-
bers of the AAA+ protease family. These proteases and
protein disassembly machines are found in all kingdoms
of life and often exhibit crucial regulatory functions (for
recent reviews, see [15,16]).

In C. glutamicum, an effect of FtsH on the degradation of
nitrogen signal control protein GInK was reported [13].
The deletion of the ftsH gene is very well tolerated by C.
glutamicum cells and obvious detrimental effects of an ftsH
deletion could not be observed. Since we were interested
in the function of this protease, we initiated a proteomic
study and investigated the influence of an ftsH deletion on
membrane and cytoplasmic protein profiles.

Results

Influence of FtsH on growth of C. glutamicum strains
Mutations of ftsH were described in different bacteria. The
effect of these mutations are remarkably species-specific
and range from drastic growth impairment in Escherichia
coli [17] to effects on sporulation, development and stress
response in Bacillus subtilis [18,19] and Caulobacter crescen-
tus [20]. When growth of C. glutamicum wild type strains
ATCC 13032 and strain AftsH was analyzed, only a minor
effect of the ftsH deletion was observed (Fig. 1A). Dou-
bling times of wild type and mutant strain were very sim-
ilar in standard minimal medium (2 h 18 min versus 2 h
38 min). Next, the influence of increased temperature on
growth was tested. Neither growth at increased tempera-
ture (37°C instead of 30°C) had a significant detrimental
effect nor exposure of cells grown at 30°C to a sudden
heat shock of 37 and 39 °C, respectively (data not shown).
Also when the ftsH mutant was exposed to osmotic stress
applied either by growth in medium with increased osmo-
larity or as sudden osmotic shock due to sodium chloride
addition, no significant growth defect compared to the
wild type was detectable (S. Morbach and U. Meyer, per-
sonal communication). Obviously, FtsH plays a less cru-
cial role in C. glutamicum compared to other bacteria. To
identify FtsH targets in the cell, proteome studies were car-
ried out.

http://www.biomedcentral.com/1471-2180/7/6

Differences in the membrane proteome of wild type and
ftsH deletion strain

FtsH is a membrane-bound AAA+ protease and therefore
we started our investigations with an analysis of mem-
brane proteins. While the separation of C. glutamicum
membrane proteins by 2-D PAGE is restricted to those
with two or less transmembrane helices [21,22], recently,
a technique was established to separate highly hydropho-
bic proteins of the membrane fraction by anion exchange
chromatography and 1-D SDS-PAGE [23]. This technique
was applied for the comparison of membrane proteins
from wild type and corresponding ftsH deletion strain.

The FtsH protease was identified for the wild type in a
faint gel band in all three biological replicates, while this
band was absent in the deletion strain (Figure 2). Com-
pared to the wild type, five different proteins showed an
increased abundance in the ftsH mutant strain (Table 1),
namely all subunits of the succinate dehydrogenase com-
plex (sdhA, sdhB and sdhCD), glutamate binding protein
(gluB) and homocysteine methyltransferase (metE).
Upregulation of protein concentration did not exceed a
factor of five. While the succinate dehydrogenase complex
could be a direct substrate of FtsH, GluB is a lipid-
anchored glutamate binding protein [24], which is
located at the outer face of the cytoplasmic membrane.
Therefore, GluB must be an indirect target or processed by
FtsH before secretion to the external site of the cell. C.
glutamicum contains two homocysteine methyltransfer-
ares (metE and metH) catalyzing the final reaction of
methionine synthesis, yet only metH requires vitamin B,
(cobalamin) as a cofactor [25]. Upregulation of metE
could indicate that more of this enzyme is required for
methionine synthesis, maybe due to reduced import of
cobalamin in the ftsH deletion mutant, though further
experiments are needed to verify this hypothesis. Interest-
ingly, the ftsH deletion also influenced the abundance of
ClpC, the ATPase component of the ClpCP protease com-
plex. This protein was down-regulated in the mutant com-
pared to the wild type by a factor of 0.4. However, the
significance of this putative cross-talk between AAA+ pro-
teases in C. glutamicum needs further investigation.

Additionally, a role of FtsH in the response to nitrogen
starvation and to improving nitrogen conditions after a
starvation period was tested. Compared to the wild type,
NADH dehydrogenase (ndh), a putative integral mem-
brane protein (¢g0952) and the ATPase component of an
ABC-type sugar transport system (msiK) were down-regu-
lated by a factor of 0.5 (data not shown).

Comparison of cytoplasmic protein profiles

In addition to the membrane proteome also the cytoplas-
mic protein fraction of wild type and ftsH deletion was
analyzed by two-dimensional gel electrophoresis (2-D
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(A) Growth of the wild type strain ATCC 13032 (black line) and the deletion mutant ATCC 13032 AftsH (dotted line). Dou-
bling times of the wild type and the mutant strain were very similar (2 h 18 min versus 2 h 38 min). (B) Control of ftsH deletion
by PCR. Primers were designed to anneal approx. 214 bps up and down stream of ftsH gene (2562 bps). The PCR product
comprised 2990 bps in the wild type strain (lane 1) and 530 bps in the deletion mutant (lane 2), lane 3 contains marker DNA.
(C) Control of ftsH deletion by Western blotting. 25 pig of membrane protein of the wild type and AftsH were applied per lane.
No signal was obtained with cytoplasmic proteins (data not shown).
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Table I: Protein pattern of the membrane fraction of the wild type ATCCI13032 and ftsH deletion mutant.

Spot # NCgl # Protein (Gene) AftsH/wildtype ratio S.D. p-value
| 0359 succinate dehydrogenase CD (sdhCD) 1.6 0.4 0.0804
2 0360 succinate dehydrogenase A (sdhA) 4.5 0.2 0.0003
3 0361 succinate dehydrogenase B (sdhB) 24 0.9 0.0916
4 1876 glutamate binding protein (gluB) 22 0.7 0.0734
5 2585 ATP-dependent protease (clpC) 0.4 0.03 0.0045
6 1094 homocysteine methyltransferase (metE) 4.9 1.4 0.0147
FtsH 2603 cell division protein -

wild type
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Figure 2

Coomassie-stained |-D gels after ion exchange chromatography of wild type and ftsH deletion mutant membrane fraction. Pro-
tein spots which appear to be regulated are marked by red arrow heads and are listed in Table I.
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PAGE, Figure 3). By this approach, six proteins were found
in increasing amounts, namely the biotin carboxylase/
biotin carrier protein (accBC), glyceraldehyde-3-phos-
phate dehydrogenase (gap), malate synthase (aceB), isoci-
trate lyase (aceA), a conserved hypothetical protein
(NCgl1985) and homocysteine methyltransferase (metE),
which was also identified as an upregulated protein in the
membrane fraction. AccBC was upregulated more than
50-fold, while GAP-DH was upregulated by a factor of
four. 37 different protein spots showed a decreased abun-
dance in the mutant. Almost one third of the proteins
identified (presented in Table 2) is clearly involved in car-
bon and energy metabolism. These include the maltooli-
gosyl trehalose synthase (treY), the 1,4-alpha-glucan
branching enzyme (glgB), fumarate hydratase (fum), a
putative L-lactate dehydrogenase (lldA), glyceraldehyde-3-
phosphate dehydrogenase (gap), phosphoenolpyruvate
carboxylase (ppc), pyruvate dehydrogenase E1 component
(aceE), an acyl-CoA synthetase (fadD4), succinate dehy-
drogenase A (sdhA) and transaldolase (tal). Interestingly,
GAPDH is present in two spots, which differ in their
approximate pl, an upregulated one (see above) spot
number 2 in Figure 4 and a downregulated spot (number
30), indicating a posttranslational modification of the
protein. Furthermore in the ftsH deletion strain succinate
dehydrogenase A (sdhA) is less present in the cytoplasm
but enriched in the membrane fraction. This indicates that
FtsH is involved, either directly or indirectly, in the release
of this succinate dehydrogenase subunit from the mem-
brane into the cytoplasm. Since FtsH lacks a robust
unfolding activity, a cleavage of SdhA and release of the
protein from the complex by FtsH is rather unlikely. Other
identified proteins with decreased abundance were parts
of amino acid metabolism such as glutamine synthetase
(glnA), aspartate-ammonium-lyase (aspA), succinyl-
diaminopimelate desuccinylase (dapE), and dihydroxy-
acid dehydratase (ilvD) (Fig. 4). As in the case of the mem-
brane proteome, the influence of FtsH on the cytoplasmic
protein profile in dependence of the nitrogen status of the
cell was analyzed. For unknown reasons, 2-D gels of pro-
teins isolated from nitrogen-starved AftsH cells revealed in
contrast to the wild type (see also [26]) reproducibly
strong horizontal streaking. The reason for this FtsH-spe-
cific effect, which made comparisons impossible, is
unknown and could not be prevented by alternative gel
loading techniques such as cup loading (C. Liick, personal
communication).

Discussion

Data which hint to an involvement of FtsH in GInK signal
transduction protein degradation [13] prompted us to
investigate the influence of this AAA+ protease on mem-
brane and cytoplasmic protein profiles in C. glutamicum.
Using a combination of anion exchange chromatography
and SDS-PAGE for membrane protein analysis and 2-D

http://www.biomedcentral.com/1471-2180/7/6

PAGE for cytoplasmic proteins, we were able to show that
FtsH regulates only a few proteins under the growth con-
ditions tested. However, since the applied method only
covers about 10% of the C. glutamicum membrane pro-
teome [23], some FtsH targets may have been missed due
to technical limitations. For example, the FtsH target GInK
is degraded depending on FtsH but proteolysis is also
influenced by ClpCP and ClpXP [13]. In contrast to the
situation in E. coli (for recent review, see [27]), we found
that deletion of the ftsH gene is tolerated by C. glutamicum
cells very well, although this gene is conserved in all other
corynebacterial genome sequences published so far, i. e.
in the C. diphtheriae [28], C. efficiens [29] and Corynebacte-
rium jeikeium [30] genome, and although no obvious par-
alog of the ftsH gene is encoded in the C. glutamicum
genome. Obvious detrimental effects of an fitsH deletion
were not observed. In this respect the C. glutamicum results
resemble the situation in B. subtilis and C. crescentus. Also
for these organisms, a less severe effect of ftsH mutation
compared to an E. coli mutant was shown. In B. subtilis,
FtsH is involved in sporulation, stress adaptation and pro-
tein secretion [18,19], and the effect of its deletion on the
cytosolic proteome has been studied [31]. FtsH deletion
resulted in increased levels of an arginase, a protein simi-
lar to a quinone oxidoreductase, and penicillin binding
protein, but for the latter direct proteolytic action could be
excluded and for the other two proteins it was not verified.
FtsH of M. tuberculosis, which is phylogenetically closely
related to C. glutamicum, was heterologously expressed in
E. coli, and proteolytic activity against the known E. coli
substrates heat shock transcription factor 632 protein, pro-
tein translocation subunit SecY, and bacteriophage ACII
repressor protein was observed [32]. For M. tuberculosis no
experimental verification exists if SecY is indeed a target of
FtsH, and our data for C. glutamicumdoes not support this
hypothesis, but it does not completely rule this out, too.
For C. crescentus an involvement of FtsH in development,
stress response and heat shock control was shown [20].
The ftsH gene is expressed transiently after temperature
upshift and in stationary phase in this organism, while
during normal growth conditions FtsH is dispensable. In
C. crescentus a mutation of ftsH influences chaperones,
DnaK is derepressed under normal temperature compared
to the wild type, while an influence on GroEL abundance
was not observed. In contrast, the ftsH deletion in C.
glutamicum had no influence on DnaK and even less
GroEL was observed compared to the wild type. Further
differences besides chaperone activation are sporulation
and cell cycle proteins, processes which are absent in C.
glutamicum. The majority of proteins identified to be dif-
ferentially synthesized in dependence of FtsH C. glutami-
cum seem to be involved in carbon and energy
metabolism.
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Table 2: Cytoplasmic protein pattern of wild type strain ATCCI13032 and ftsH deletion mutant. The listed proteins differ in their

abundance of a factor of at least two.

Spot # NCgl# Protein (Gene) AftsH/wild type ratio MW kDa pl
| 0670 biotin carboxylase/biotin carboxyl carrier protein (accBC) 53.48 63.5 5.02
2 1526 glyceraldehyde-3-phosphate dehydrogenase (gap) 4.24 36.2 5.16
3 2247 malate synthase (aceB) 2.95 82.5 5.0
4 2248 isocitrate lyase (aceA) 2.65 47.2 4.92
5 1985 conserved hypothetical protein 2.31 122.8 4.85
6 1094 homocysteine methyltransferase (metE) 2.16 81.3 4.78
7 2037 maltooligosyl trehalose synthase (treY) 0.48 90.5 5.03
8 1177 | ,4-alpha-glucan branching enzyme (glgB) 0.48 82.6 4.99
9 1023 putative nicotinate-nucleotide pyrophosphorylase 0.47 294 5.22
10 2431 nicotinic acid phosphoribosyltransferase 0.47 48.0 5.22
I 0187 L-gulonolactone oxidase 0.47 53.0 5.68
12 0578 inositol-monophosphate dehydrogenase (guaB2) 0.47 534 5.99
13 0094 AMP nucleosidase (amn) 0.46 53.7 5.23
14 0358 transcriptional regulator, MerR family (ramB) 0.46 53.9 6.29
15 0704 putative DNA helicase 0.46 84.1 5.35
16 2718 sulfite reductase (hemoprotein) (cysl) 0.43 63.0 5.53
17 0251 catalase (katA) 0.42 58.7 5.18
18 0200 quinone oxidoreductase 0.41 332 4.99
19 2133 glutamine synthetase (glnA) 0.41 53.3 4.90
20 0471 DNA-directed RNA polymerase beta chain (rpoB) 0.41 128.8 4.86
21 1446 aspartate ammonia-lyase (aspartase) (aspA) 0.4 57.6 5.69
22 1440 ATPases of the AAA+ class 0.4 58 491
23 1835 polyphosphate glucokinase (ppgK) 0.4 26.7 4.97
24 0371 probable formyltetrahydrofolate deformylase protein (purl) 0.39 343 5.68
25 2986 N-acetymuramyl-L-alanine amidase (cwiM) 0.38 44.5 5.63
26 0967 fumarate hydratase (fum) 0.37 49.8 5.06
27 1442 aspartyl aminopeptidase (pepC) 0.36 44.9 5.10
28 2817 putative L-lactate dehydrogenase (lldA) 0.34 45.7 5.72
29 2126 dihydrolipoamide succinyltransferase (sucB) 0.34 70.9 4.26
30 1526 glyceraldehyde-3-phosphate dehydrogenase (gap) 0.34 36.0 5.16
31 1523 phosphoenolpyruvate carboxylase (ppc) 0.33 103.2 4.92
32 0251 catalase (katA) 0.29 58.7 5.18
33 1064 succinyl-diaminopimelate desuccinylase (dapE) 0.29 40.0 4.84
34 2586 inositol-monophosphate dehydrogenase (guaB/) 0.28 50.8 6.39
35 2487 GCN?5-related N-acetyltransferase 0.27 32.1 5.86
36 2167 pyruvate dehydrogenase EI component (aceE) 0.27 102.8 5.26
37 1151 acyl-CoA synthetase (fadD4) 0.26 63.7 5.08
38 0360 succinate dehydrogenase A (sdhA) 0.25 747 537
39 0570 predicted carbohydrate kinase 0.19 60.0 5.08
40 0707 superfamily Il DNA/RNA helicase, SNF2 family 0.16 106.9 5.65
41 1219 dihydroxy-acid dehydratase (ilvD) 0.16 64.2 5.18
42 1513 transaldolase (tal) 0.15 383 4.47
43 2602 GTP cyclohydrolase (folE) 0.08 22,0 6.08
Conclusion at30°C. A fresh C. glutamicum culture in BHI medium was

The data obtained in this study, indicate that C. glutami-
cum AAA+ metalloprotease FtsH is not involved in the cel-
lular response to heat or osmotic stress as shown in other
bacteria. An astonishingly small amount of membrane
and cytoplasmic proteins is affected by an ftsH deletion.
From these data an involvement of FtsH in regulation of
energy and carbon metabolism as well as in amino acid
biosynthesis is indicated.

Methods

Strains and growth conditions

C. glutamicum type strain ATCC 13032 [33] and ftsH dele-
tion mutant [13] were routinely grown on a rotary shaker

used to inoculate minimal medium (per litre 42 g MOPS,
20 g (NH,),SO,, 5 g urea, 0.5 g K,HPO, x 3 H,0, 0.5 g
KH,PO,, 0.25 g MgSO, x 7 H,0, 0.01 g CaCl,, 50 g glu-
cose, 0.2 mg biotin, 10 mg FeSO,, 10 mg MnSO,, 1 mg
ZnSO,, 0.2 mg CuSO,, 0.02 mg NiCl, x 6 H,0, 0.09 mg
H;BO;, 0.06 mg CoCl, x 6 H,0, 0.009 mg NaMoO, x 2
H,O; pH adjusted to pH 7.0 using NaOH; [34]) for over-
night growth. This culture, with an overnight OD, of
approximately 25 to 30, was used to inoculate fresh min-
imal medium to an OD,, of approximately 1, and cells
were grown for 4 to 6 hours until the exponential growth
phase was reached (ODg, approximately 4-5). To induce
nitrogen starvation, cells were harvested by centrifugation
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Figure 3

Comparison of cytoplasmic proteins of wild type strain
ATCC 13032 and strain AftsH. Overlay of 2-D gels and false
colour presentation: wild type proteins were stained in
green, proteins of the deletion mutant in red. Spots present
in both protein profiles appear in yellow. Molecular mass and
pH range are indicated.

and the pellet was suspended in and transferred to pre-
warmed minimal medium without nitrogen source. The
nitrogen-deprived cells were incubated at 30°C under aer-
ation.

Polymerase chain reaction

To verify the deletion of the ftsH gene, PCR experiments
were carried out. Primers were designed to anneal approx.
214 bps up and down stream of ftsH gene (2562 bps)
(ftsH+200up fw: 5'-GTG GGC TAC GGA CIT GAT TTC G-
3'; ftsH+200down rv: 5'-GAA CCA ACT CIT CAT GGC
CCT C-3"). Chromosomal DNA prepared by phenol-chlo-
roform extraction was used as template. PCR was per-
formed using Taq polymerase and the following program:
95°C 5 min; 30 cycles (95°C 30 s; 64°C 30 s; 72°C 3
min) followed by 72°C 10 min and cooling down to 4°C.
PCR products were analyzed by agarose gel electrophore-
sis [35].

SDS-PAGE and Western blotting

To demonstrate deletion of ftsH on protein level, cells
were disrupted band fractionated as described below or 2-
D PAGE. Cytoplasmic proteins and membrane fraction of
the wild type ATCC13032 and the deletion strain were
separated by Tricine-buffered 9.5% SDS gels as described
[36]. After SDS-PAGE proteins were transferred onto a
polyvinylidene difluoride membrane (PVDF, Immobilon-
P, pore size 0.45 um, Millipore, Bedford, MA, USA) by
semi-dry electroblotting. Immunodetection of FtsH was
performed with antibodies against peptide fragments of E.

http://www.biomedcentral.com/1471-2180/7/6

coli FtsH, produced in rabbit. Antibody binding was visu-
alised by using appropriate anti-antibodies coupled to
alkaline phosphatase (Sigma-Aldrich, Traufkirchen, Ger-
many) and the BCIP/NBT alkaline phosphatase substrate
(Sigma-Aldrich, Traufkirchen, Germany).

Membrane proteomics

For analysis of membrane proteins, a combination of
anion exchange chromatography and SDS-PAGE was
applied as described previously [23]. For this method,
cells were disrupted by French Press treatment; the mem-
brane fraction was separated from cell debris and cyto-
plasm by differential (ultra)centrifugation and washed
with 2.5 M NaBr to remove membrane-associated pro-
teins. Membrane proteins were subsequently solubilised
in buffer containing 2% ASB-14 and separated by anion
exchange chromatography. After TCA precipitation and
SDS-PAGE, gels were scanned and analyzed using the Lab-
Scan software package (Amersham Biosciences, Freiburg,
Germany). The scanner was calibrated with a greyscale
marker (Kodak) and the same settings applied for all gels.
Scanning was carried out at 300 dpi and 8 bit greyscale.
Gel bands were quantified relative to each other by densi-
tometry using the software scion image (version beta
4.0.2; Scion Corporation). Proteins from three independ-
ent experiments (biological replicates) were regarded as
regulated if a p-value < 0.1 was calculated for a Student's
t-test (paired, two-tailed).

2-D PAGE, staining and protein analysis

For 2-D PAGE analyses C. glutamicum cells were disrupted
using glass beads and a Q-BIOgene FastPrep FP120 instru-
ment (Q-BIOgene, Heidelberg, Germany) by lyzing the
cells four times for 30 sec and 6.5 m sec’! in the presence
of the proteinase inhibitor Complete as recommended by
the supplier (Roche, Basel, Switzerland). Proteins were
separated by ultracentrifugation in cytoplasmic and mem-
brane-associated protein fractions [37,21]. For classical 2-
D PAGE, only the cytoplasmic proteins were analyzed fur-
ther. Protein concentrations were determined according
to Dulley and Grieve [38]. For isoelectric focusing (IEF) 24
cm pre-cast IPG strips pl 4-7 and an IPGphor IEF unit
(Amersham Biosiences, Freiburg, Germany) were used as
described [39]. 100 pg and 200 pg of protein were loaded
by rehydration for 24 h in a sample buffer containing 6 M
urea, 2 M thiourea, 4% CHAPS, 0.5% Pharmalyte (3-10)
and 0.4% DTT. The isoelectric focusing was performed for
48 000 Vh. The run for the second dimension was carried
out using 12.5% polyacrylamide gels and an Ettan Dalt II
system (Amersham Biosiences, Freiburg, Germany). After
electrophoresis 2-D gels were stained with Coomassie
brilliant Blue [35]. The Coomassie-stained gels were
aligned using the Delta2D software, version 3.3 (Deco-
don, Greifswald, Germany). All samples were separated at
least twice by 2-D PAGE to minimize irregularities (tech-
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Coomassie-stained 2-D gels of wild type ATCC 13032 and corresponding ftsH deletion mutant. Protein spots which appear to
be regulated are marked by red arrow heads and are listed in Table 2. Molecular mass and pH range are indicated.
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nical replicates). To validate the results, each comparison
of interest was performed using samples from at least
three independent experiments (biological replicates).
The Delta2D software (version 3.3) was also used for spot
quantification. Proteins were regarded as regulated if (i)
the corresponding ratios referring to the relative volumes
of the spots changed more than two-fold and if (ii) this
regulation pattern was found in all biological and techni-
cal replicates. All other proteins were classified as "not reg-
ulated". Pearson coefficients for wild type gels were higher
than 0.9962, for ftsH gels 0.9929, and for the comparisons
of wild type and ftsH mutant 0.9510.

Protein identification
Protein spots or bands with significantly altered abun-
dance in the ftsH mutant compared to the wild type were
analyzed by trypric in-gel digest and MALDI-ToF-MS as
described earlier [26].
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