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Abstract

Background: Previous research has identified the potential for the existence of two separate
lineages of Escherichia coli O157:H7. Clinical isolates tended to cluster primarily within one of these
two lineages. To determine if there are virulence related genes differentially expressed between
the two lineages we chose to utilize microarray technology to perform an initial screening.

Results: Using a 610 gene microarray, designed against the E. coli O157 EDL 933 transcriptome,
targeting primarily virulence systems, we chose 3 representative Lineage | isolates (LI groups mostly
clinical isolates) and 3 representative Lineage Il isolates (LIl groups mostly bovine isolates). Using
standard dye swap experimental designs, statistically different expression (P < 0.05) of 73 genes
between the two lineages was revealed. Result highlights indicate that under in vitro anaerobic
growth conditions, there is up-regulation of stx2b, ureD, curli (csgAFEG), and stress related genes
(hsl), cspG, ibpB, ibpA) in Lineage I, which may contribute to enhanced virulence or transmission
potential. Lineage Il exhibits significant up-regulation of type Il secretion apparatus, LPS, and flagella
related transcripts.

Conclusion: These results give insight into comparative regulation of virulence genes as well as
providing directions for future research. Ultimately, evaluating the expression of key virulence
factors among different E. coli O157 isolates has inherent value and the interpretation of such
expression data will continue to evolve as our understanding of virulence, pathogenesis and
transmission improves.

Background

Kim et al., [1] utilized octamer-based genome scanning to
evaluate genome diversity among E. coli O157 isolates.
Based upon this genetic fingerprinting method they noted
two distinct lineages of this pathogen, one of which
tended to cluster the majority of human isolates utilized
in their study, and the second which grouped together iso-
lates primarily of bovine origin. They suggested that one
of these lineages (Lineage II) may not efficiently transmit

to humans from bovine sources. Pradel et al. [2] also
found that there were distinct lineages among isolates
derived from patients with hemolytic-uremic syndrome
(HUS) when evaluated genetically using a combination of
stx2-RFLP (restriction fragment length polymorphism
analyses), stx2 variant, and plasmid profile analyses. They
also suggested that there may be a separate lineage, which
was more virulent for humans, along with a lineage,
which may not be as pathogenic. Yang et al. [3] utilized a
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Table I: This table presents the genes that were consistently and statistically up regulated in the hypothetically more pathogenic
lineage | strains.

Name average mean log  average fold One Sample definition accession
ratio (635/532) increase t-Test (p)
hslf -2.04 4.10 0.017036 heat shock protein hsl) NP_287767.1
cspG -1.97 391 0.018217 homolog of Salmonella cold shock protein NP_286926.1
ibpB -1.82 3.54 0.037563 heat shock protein NP_290325.1
ibpA -1.59 3.02 0.031977 heat shock protein NP_290324.1
Fimb 10 -1.58 2.98 0.011803 putative fimbrial protein NP_290361.1
trxC -1.39 2.63 0.018467 putative thioredoxin-like protein NP_289141.1
feoB -1.31 2.47 0.004959 ferrous iron transport protein B NP_289949.1
ureD -1.28 243 0.038695 putative urease accessory protein D NP_287085.1
chap3 -1.26 2.39 0.030462 possible chaperone NP_288034.1
ydeA -1.23 2.35 0.026584 putative resistance/regulatory protein NP_287624.1
ureD_2 -1.23 2.34 0.050155 putative urease accessory protein D NP_287085.1
secret3 -1.09 2.13 0.024694 putative secreted protein NP_288394.1
fliC -1.06 2.08 0.018058 flagellar biosynthesis; flagellin, filament structural NP_288384.1
protein
stx2A -1.00 2.01 0.021712 shiga-like toxin Il A subunit encoded by bacteriophage NP_286976.1
BP-933W
terW -0.95 1.93 0.044205 unknown associated with putative tellurite resistance NP_286699.1
rfaH -0.93 1.90 0.007198 transcriptional activator affecting biosynthesis of NP_290472.1
lipopolysaccharide core, F pilin, and haemolysin
phoB -0.87 1.82 0.006296 positive response regulator for pho regulon, sensor is NP_286137.1
PhoR (or CreC)
ureA_2 -0.81 1.75 0.050244 putative urease structural subunit A (gamma) NP_287086.1
helicase | -0.71 1.64 0.01929 putative ATP-dependent helicase NP_288767.1
yegsW -0.71 1.63 0.015902 putative transcriptional regulator NP_288603.1
ureB_2 -0.70 1.62 0.038644 putative urease structural subunit B (beta) NP_287087.1
typelllap7 -0.66 1.58 0.033765 type lll secretion apparatus protein NP_289424.1
ygZ -0.61 1.53 0.038253 putative transcriptional regulator LYSR-type NP_287857.1
ykgA -0.60 1.51 0.000965 putative AraC-like transcriptional regulator NP_286025.1
sbmA -0.59 1.50 0.050279 sensitivity to microcin BI7, possibly envelop protein NP_286115.1
YjhS -0.57 1.49 0.03404 orf, hypothetical protein NP_290925.1
ybbK -0.53 1.45 0.037791 putative protease NP_286238.1
virulense -0.50 1.42 0.038974 putative virulence gene NP_290837.1
3
pldA -0.49 1.41 0.031981 outer membrane phospholipase A NP_290453.1
yejH -0.48 1.40 0.008115 putative ATP-dependent helicase NP_288767.1
transreg -0.34 1.27 0.03381 1 putative membrane spanning transport protein NP_286232.1
hydH -0.27 1.21 0.00039 sensor kinase for HydG, hydrogenase 3 activity NP_290635.1

lineage-specific polymorphism assay consisting of 6
genetic markers and found that they could differentiate
two lineages of E. coli O157 indicating that the occurrence
of these two lineages may be widespread. Barkocy-Gal-
lagher [4] using Xbal RFLP analysis also found distinct
clusters of E. coli 0157, including a cluster where most
isolates lacked flagella and stx1 genes, leading them to
suggest the potential for the existence of clustered isolates
having differential abilities to cause disease.

The expression of several virulence factors in relation to
the existence of two lineages of EHECs have been evalu-
ated as well. McNally et al. [5] found clear differences in
the expression of locus of enterocyte effacement (LEE)-
encoded factors between different strains. It was found
that, EspD, when used as an indicator of LEE expression,

was expressed at higher concentrations in the majority of
strains that were of human origin (15 of 20) compared
with only a few (4 of 20) isolates that were of bovine ori-
gin (P < 0.001). They concluded that a subset of E. coli
0157 isolates (stx* eae*) in cattle were capable of causing
severe disease in humans. Another study evaluating gene
expression conducted by Richie et al., [6] found that HUS
derived isolates expressed higher concentrations of stx2
than bovine derived isolates.

Based upon the proposed existence of a less pathogenic
lineage of E. coli O157, it has been postulated that much
of the Class I recall of millions of pounds of meat annu-
ally [7] might be greatly reduced. However, even if a sep-
arate lineage of E. coli O157 (conclusively proven not to
cause disease in humans) were identified and concrete
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methods for differentiating this lineage developed, it
would still be unlikely (because of liability issues) to have
the suggested impact on the meat industry. Yet, the study
of genetic differences between two lineages of this patho-
gen that possess different virulence or transmission poten-
tial could still have wide ranging and significant economic
or scientific benefits. For example, if a specific lineage
could be more readily eradicated during the farm to fork
process, based upon their genetic differences, this might
indirectly have the originally intended effect of reducing
the volume of Class I recalls. In addition, from a purely
scientific standpoint, clues as to why certain isolates may
be more pathogenic or more easily transmitted, based
upon genetic differences, is of obvious importance in the
study of virulence.

Results and discussion

Microarray analyses, validated by quantitative PCR,
showed that, of the 610 genes on the array, 179 genes
were consistently and differentially regulated between the
two lineages. Of these 179 regulated genes, 73 transcripts
showed statistically significant (p < 0.05) differences in
expression of greater than 1.2 fold (Table 1 and Table 2)
between each member of the two lineages. Table 1 shows
those transcripts whose expression was greater (P < 0.05)
in each of the LI isolates. Three heat shock and one cold
shock protein transcripts were the most upregulated in the
LI isolates compared to the LII. In LII isolates cyoFE, hscA,
and fimbrial subunit 1 were most highly upregulated
compared to LI. Table 2 shows those transcripts whose
expression was statistically higher (P < 0.05) in each of the
LII isolates. Six transcripts that exhibited enough expres-
sion difference to be evaluated by CT using quantitative
PCR were chosen at random from these 73 and Q-PCR
performed as a validation method. These included ureD,
cyoE, hscA, nrfB [see Additional file 1], chap4, and stx2B.
Results of Q-PCR were found to agree in each instance
with the results of the microarray experiment. Supple-
mentary dataset 1 [see Additional file 1] provides a listing
of the 106 genes that were shown to be consistently up-
regulated or down-regulated as part of the microarray
experiment, but which did not fully meet the stringent
selection and statistical requirements additional supple-
mental dataset 2 provides all the genes on the array.

Results of the microarray experiments showed that the LI
isolates express higher transcription of ureD (Table 2), as
well as ureA, ureB, ureC (supplemental data), compared
to LII. In addition stx2B (Table 2) and stx2A (supplemen-
tal data) transcripts are detected in higher abundance in
Lineage 1. Lineage I also exhibits up-regulation of key fim-
bria related transcripts, especially fliC, fliT, and fliP. Other
attachment related transcripts csgA, csgF, csgE, and csgG
(curli) were also up-regulated, which could also be highly
significant in promotion of pathogenesis [8-12]. When
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using all of the regulated genes as a single data set for
Gene Ontology [13] based analyses, it was found that, up-
regulation of genes associated with regulation of urease
activity, GTP binding, metabolism, nitrogen metabolism
and regulation of transcription were statistically (p < 0.05)
more represented in LI isolates (Table 3). In LII isolates
peptidase activity, transferase activity, and DNA binding
activity were statistically more represented (p < 0.05).
These differences could point to a fundamental difference
in the environmental response and control networks of
these lineages that promotes survival and differential
expression of virulence attributes in response to specific
environments and hosts. These types of control networks
could be the key to understanding differential virulence or
transmission potential if such a phenomenon could be
proven to exist within the O157 serogroup.

Stx2

The role of stx2 in pathogenesis is well accepted [14-18]
and up-regulation of constitutive stx2 expression in the
hypothesized more pathogenic LI isolates may not be a
surprising finding. The up-regulation of stx2B and stx2A
[see Additional file 1] transcripts is accompanied by up-
regulation of regulatory genes associated with Stx2 expres-
sion. A complicated network of interactions between the
oraA (recX), dinl, lexA, umuD, SSB, recA, psiB and possibly
other unidentified proteins, act in the regulation of RecA
function. The role of recA as part of an SOS response is to
cleave repressors that in addition to the SOS response ulti-
mately lead to Stx2 production [19]. OraA (also known as
recX) and dinl are coregulators (competing regulators) of
recA [20] and both were up-regulated in LI isolates along
with the stx2 subunit transcripts. OraA is thought to be co-
transcribed with recA during SOS response [21]. RecA spe-
cific oligos were not included in the array but we might
expect that being co-transcribed along with oraA that it
would likely be up-regulated in LI as well. PsiB, (supple-
mental) is also up-regulated in LI and thought to prevent
ssDNA from inducing an SOS response by inhibiting acti-
vation of recA protein [22]. PsiB, is found on many conju-
gative plasmids near the origin of conjugative transfer and
has anti-recombinase activities [23]. Expression of the dinl
protein of E. coli inhibits both the co-protease and recom-
binase activities of recA in vivo [24]. Yet, in spite of all of
the regulators of SOS response in LI isolates, we still
observe a significant up-regulation of stx2a and stx2b tran-
scripts which have been shown to be expressed as part of
an SOS response [25-27].

With up-regulation of dinl, psiB, oraA and also with the up-
regulation of stx2a and stx2b and various other genes
related to stress response it could be an indication that LI
isolates do have differentially regulated pathways the
enhance its toxin expression potential. It does appear that
the current LI isolates have a modified regulatory system
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Table 2: This table presents genes that were consistently and statistically up regulated in the hypothetically less pathogenic lineage Il

strains
Name averagemeanlog average fold OneSample definition accession
ratio (635/532) increase t-Test (p)
inaA 0.57 1.49 0.028507 pH-inducible protein involved in stress response NP_28881 1.1
nupG 0.60 1.51 0.002513 transport of nucleosides, permease protein NP_289536.1
ompR 0.61 1.53 0.019932 response regulator (sensor, EnvZ) affecting transcription of NP_289945.1
ompC and ompF: outer membrane protein synthesis
figC 0.62 1.54 0.008244 flagellar biosynthesis, cell-proximal portion of basal-body rod NP_287208.1
secD 0.64 1.55 0.050195 protein secretion; membrane protein, part of the channel NP_286147.1
recB 0.75 1.68 0.050257 DNA helicase, ATP-dependent dsDNA/ssDNA exonuclease V. NP_289372.1
subunit, ssDNA endonuclease
hemY 0.78 1.72 0.045026 a late step of protoheme IX synthesis NP_290430.1
fhuA 0.79 1.73 0.015243 outer membrane protein receptor for ferrichrome, colicin M,  NP_285846.1
and phages T1, T5, and phi80
cheB 0.81 1.75 0.014779 response regulator for chemotaxis (cheA sensor); protein NP_288320.1
methylesterase
cutC 0.83 1.77 0.017209 Copper homeostasis protein NP_288311.1
secF 0.96 1.94 0.033545 protein secretion, membrane protein NP_286148.1
wecF 0.97 1.95 0.021373 TDP-Fuc4NAc:lipidll transferase; synthesis of enterobacterial NP_290425.1
common antigen (ECA)
frdD 0.97 1.95 0.042158 fumarate reductase, anaerobic, membrane anchor polypeptide  NP_290786.1
espP 1.07 2.10 0.023407 EspP NP_052685.1
kfras 1.08 211 0.040371 KfraS NP_052633.1
etp) 1.10 2.15 0.016101 Ept) NP_052615.1
toxB I.11 2.15 0.020589 toxin B NP_052665.1
fliy I.11 2.16 0.001708 putative periplasmic binding transport protein NP_288381.1
wzx 1.22 2.33 0.014144 O antigen flippase Wzx NP_288543.1
etpH 1.28 2.42 0.009559 EtpH NP_052613.1
etpO 1.28 243 0.021162 EptO NP_052620.1
fumC 1.31 2.48 0.01514 a late step of protoheme IX synthesis NP_290430.1
ydeW 1.34 2.53 0.001173 putative transcriptional regulator, sorC family NP_287642.1
etpl 1.39 2.62 0.005332 Etpl NP_052614.1
etpM 1.57 2.98 0.000193 EtpM NP_052618.1
cspD 1.59 3.0l 0.051261 cold shock protein NP_286652.1
oppC 1.60 3.03 0.009279 homolog of Salmonella oligopeptide transport permease NP_287488.1
protein
usher2 1.66 3.15 0.02289 putative fimbrial usher protein NP_287650.1
cspC 1.67 3.19 0.048484 cold shock protein NP_288259.1
etpN 1.68 3.20 0.015507 EptN NP_052619.1
etpK 1.70 3.25 0.000151 EtpK NP_052616.1
rpoB 1.74 3.34 0.005075 RNA polymerase, beta prime subunit NP_290619.1
argT 1.8l 3.51 0.007679 lysine-, arginine-, ornithine-binding periplasmic protein NP_288884.1
fimbera 1.84 3.58 0.0179 putative fimbrial protein NP_290128.1
14
chaper 1.86 3.64 0.002084 putative fimbrial chaperone NP_287649.1
2
fumA 1.88 3.68 0.005453 fumarase C= fumarate hydratase Class Il; isozyme NP_288046.1
etplL 1.97 3.92 0.009254 EtpL NP_052617.1
rpoC 2.01 4.04 0.021043 RNA polymerase, beta prime subunit NP_290619.1
cyoE 2.11 431 0.027937 protoheme IX farnesyltransferase (haeme O biosynthesis) NP_286170.1
hscA 2.32 4.99 0.012973 heat shock protein, chaperone, member of Hsp70 protein NP_289083.1
family
fimbsub 2.53 5.79 0.029658 putative major fimbrial subunit NP_287648.1

response, which significantly promotes Stx2 toxin produc-
tion compared to LII isolates. We have also considered
that LII isolates may have mutations affecting the integrity
of the stx2 prophage's late regulatory transcripts shown to

encode stx2 [28-31]. Future work looking at the actual
Stx2 toxin levels as well as evaluation of the structural
integrity of the Stx2 phage in these 6 isolates via sequenc-
ing or PCR would be a beneficial follow up to this
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research. We have performed Stx2b specific ELISA and
quantitative PCR analysis of 20 additional LI and 20 addi-
tional LII isolates as part of a follow-up study, and found
that the LI isolates have statistically (p < 0.05) higher tran-
scription rates and protein concentrations under these
same conditions (data not shown). If these LII isolates
have a defective toxin production system this could be a
strong indication that they lack one of the key virulence
factors contributing to the pathogenicity of 0157
[15,16,32-34].

Urease

Enterohemorrhagic E. coli has been shown to be highly
adaptable to various extreme environments (water, heat,
freezing, acid, desiccation, hypo- and hyperosmotic, dis-
infectants etc) which contributes greatly to its success as a
pathogen [35-46]. To succeed as a enteric pathogen with a
low infectious dose [47-49], E. coli O157 must be able to
survive passage through the acidic environment of the
stomach if they are to cause gastrointestinal disease [50].
As an indication of their evolutionary focused ability for
surviving acidic environments they possess 3 acid resist-
ance pathways [51] and urease could act as an additional
system to modify anion concentrations. Therefore the up-
regulation of urease in LI isolates is of interest in spite of
recent work indicating that E. coli O157 has only rarely
been shown to exhibit urease activity [52-55]. As an exam-
ple, a previous study noted that lack of urease activity in
EHEC strains is often due to a base substitution in the
ureD gene causing an early termination of the transcript
[54]. Urease expression and activity be condition, host, or
environment specific and could be expressed only in spe-
cific environments to beneficially modify internal and/or
surrounding anion concentrations, enabling EHEC to sur-
vive acidic conditions and contributing to its low infec-
tious dose. Thus, environmental (bovine) isolates may
not possess or have sufficient selective pressure for main-
tenance of detectable levels of urease transcript expression
under the conditions evaluated.

Previous research by Heimer et al [52] suggests regulation
of the urease operon is through fur (not differentially reg-
ulated) and an unknown trans-acting factor. It was
hypothesized that this transacting factor is missing in E.
coli O157:H7 strain EDL933 (atcc # 43895) though other
0157 strains (IN1 and MO28) have been shown to pos-
sess some urease activity. However, none of the isolates
showed differential regulation of fur which may be an
indication that the LI isolates may be differentially
expressing this proposed transacting factor, which is pro-
moting up-regulation of the urease operons under the cur-
rent growth conditions. It is likely that based upon
previous evaluation that there is some low level urease
activity that is not evident in E. coli O157 strains using
conventional methods such as Christensen agar [56]. We
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have begun investigations of the effects of pH, different
laboratory media, anoxia, nickel supplementation, and
cytosolic specific urease based acid resistance assays on
the ability to detect urease activity in O157 isolates.

Curli

Several factors related to attachment are up-regulated in LI
isolates. These include curli fibers, type III secretion appa-
ratus genes. This suggests that LI isolates have constitutive
up-regulation of many genes that are involved in intimate
attachment. It was reported that curli fibers are infre-
quently expressed during in vitro growth of E. coli
O157:H7 [8] and that strains containing variations at the
¢sgD promoter region, which induced expression of curli,
are associated with increased virulence in mice and
increased invasion of HEp-2 cells [57]. In this experiment
there was significant up-regulation of ¢sgA and c¢sgD as
well as some evidence for up-regulation of the both csg
operons [see Additional file 1] in the LI isolates compared
to LII, yet genes involved in regulation of curli operons do
not correspond to this observation. RpoS has been shown
to interact with hns (neither differentially regulated) to
derepress csgAB expression [58]. Further contradicting the
increased expression of curli operons in LI, ompR is up-
regulated in LII. Increased ompR expression has also been
associated with increased curli production yet a single
point mutation, in ompR [59]. Future work should likely
evaluate whether curli fibres are actually being produced
and assembled under these in vitro conditions in LI iso-
lates.

Virulence gene regulation

One of the more interesting of the up-regulated genes in
LI is rfaH. Originally, discovered as a primary regulator of
LPS-core synthesis in Salmonella enterica and E. coli
[60,61], RfaH is noted as a primary virulence regulator of
E coli that functions as a transcriptional anti-terminator
[62,63] in long operons. These operons include those
encoding the F-factor, O-antigens, different capsules,
hemin uptake receptor, alpha-hemolysin, and CNF-1 [64-
73]. Inactivation of rfaH in uropathogenic E. coli has be
shown to inhibit pathogenicity completely [74]. RfaH
mutants have been shown to have reduced ability to sur-
vive/grow in the presence of bile salts [75]. The up-regula-
tion of rfaH in LI isolates may be an important avenue to
pursue as a means to explain their hypothesized enhanced
virulence.

LEE

LII isolates showed an increased expression of toxB which
is known to promote expression of genes encoded by
locus of enterocyte effacement (LEE). Indeed, several of
the esp (A, B, P) showed slight cumulative up-regulation.
In addition, most of the etp genes involved in the type 11
transport system were also up-regulated. The type II secre-
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tion system was recently noted as also being involved in
intimate attachment through secretion of stcE [76]. These
results showing upregulation of such an important viru-
lence factor in LII isolates points out two key features that
are of importance in this manuscript. The first is that these
results as intended can help with identification of isolates
which may serve as good regulatory models for providing
additional insight into virulence expression. In addition,
these results are obviously counter to the overall hypoth-
esis that LI is either more virulent or has more potential
for transmission and therefore serve as a caution for the
interpretation of results. Thus, as with all microarray stud-
ies care must be taken in interpretation of the results, yet
negative results or results counter to the hypothesis
should not be ignored.

LPS, fimbria, and Flagella

LI isolates also show notable up-regulation of genes
involved in a number of systems that are noted as viru-
lence factors. Of interest in LII is the comparative up-reg-
ulation of LPS, fimbria (FimH), capsule, and flagella
related genes (Table 1 and supplement). Considering that
the isolates were grown under anaerobic conditions the
increase in LPS and flagella related transcripts represents
what may be a typical K-12 like E. coli response to anoxic
conditions [77] in the LII isolates, while the LI seem to be
lacking this common profile. The hypothesized decrease
virulence of LII may be partially explained by the more
pronounced regulation of certain virulence factors by LI.
Another interesting aspect that is related to the expression
of genes associated with motility and the results seen here
is the hypothesis proposed by Monday et al. [78], which
is related to a competitive interaction between different
type 1II secretion systems. According to this hypothesis
there could be a competitive interaction between the type
III secretion systems associated with flagellar export and
assembly and the type III secretion system that mediates
the injection of virulence factors (LEE). Thus, because
0157 has multiple type III systems there is the potential
for these systems to interfere with one another. This com-
petition could ultimately affect the expression of motility
and/or virulence factors. Thus, because there is an increase
in LEE expression as well as motility genes in LII isolates
it may be a result of an interaction of the type III regula-
tory networks in these isolates.

In proper proportions type 1 fimbriae and the LPS of
uropathogenic E. coli are known to operate together to
induce apoptosis in human neutrophils [79]. The cooper-
ative effects of these virulence attributes may function as a
mechanism by which E. coli induces infections of the uri-
nary tract. However, if LPS is over produced, excess LPS is
likely to be secreted by bacteria into their environment,
which may have the opposite effect. In fact, it has been
documented that if significant amounts of LPS is released
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from non-adherent bacteria this has an anti-apoptotic
effect on neutrophils, suggesting that LPS can also serve as
an important regulator of neutrophil survival in tissue
[79]. Up regulation of LPS by LII isolates compared to LI
isolates, if this excess LPS were shed from the bacteria,
maintained in the cytoplasm, or deposited in excess onto
the membrane might also be toxic to the bacteria inhibit-
ing its own growth and interaction with its environment
[80]. Overproduction of LPS could also alter bacterial cell
morphology by accumulation in the bacterial cytosol,
which could also potentially prevent pathogenesis. Previ-
ous work [81] and [82] demonstrated that E. coli O157
exhibiting reduced production of O157 LPS side chains
displayed an increased binding to tissue culture cells. It
was concluded that the presence of the O157 polysaccha-
ride has the potential to interfere with the adherence and
its expression is not required to produce the attaching and
effacing lesions. Excess LPS may act to mask adhesive
structures present on the bacterial surface. It is also possi-
ble that the physicochemical properties of the cell such as
surface charge or hydrophobicity may be altered by lack of
or excess LPS. These hypothetical interactions and the
effects of LPS expression on pathogenesis are again a
highly interesting topic for future research.

Conclusion

It has been hypothesized by various researchers that a less
pathogenic lineage of E. coli O157 exists. Geared toward
finding evidence that might direct research toward genetic
mechanisms that support the hypothesis of differential
virulence or transmission potential we evaluated repre-
sentatives from these two lineages in a preliminary study.
The results highlight several of the more important viru-
lence factors as being differentially regulated, as well as
various regulatory networks that may provide useful
insight and targets for future research. Key virulence fac-
tors were shown to be upregulated in LI, especially those
that have been suggested to promote virulence and trans-
mission potential. However, other contradictory findings
were also uncovered in which several virulence factors
more associated with colonization and pathogenesis were
also upregulated in LII isolates. Many previous studies
describing regulatory mechanisms are supported by the
results of this study, providing some additional insight
into the control of virulence genes. Though the hypothe-
ses considered as part of this research is still far from con-
clusive, the results do provide a valuable foundation that
will direct future research. Ultimately, evaluating the
expression of key virulence factors among different E. coli
0157 isolates is valuable beyond the reasoning discussed
within the confines of this report, and the interpretation
of such expression data will continue as the understand-
ing of virulence, pathogenesis and transmission evolves.
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Table 3: Gene Ontology Biological Processes and Molecular Functions representations for level 4 and level 6, presenting genes from
the above tables and supplemental data table grouped into those gene ontology categories shown to be statistically over represented.

Gene Ontology Classification % of total upregulated genes in LI % of total upregulated genes in LIl p-value
MOLECULAR FUNCTION LEVEL 4

Peptidase activity 0 16.33 0.0059
Transferase activity, phosphorus transfer 6.67 22.45 0.043
DNA binding 42.22 2245 0.048
MOLECULAR FUNCTION LEVEL 6

Urease activity 12.5 0 0.05
GTP binding 12.5 0 0.05
BIOLOGICAL PROCESS LEVEL 4

Regulation of cellular physiological processes 24.62 8 0.009
Regulation of metabolism 24.62 8 0.009
Nitrogen compound metabolism 6.15 0 0.04
BIOLOGICAL PROCESS LEVEL 6

Regulation of nucleobase, nucleoside binding 3061 11.32 0.02
Regulation of transcription 30.6 15.1 0.026

the file format, the title of the data, and a short description of the data

All cells have stress response pathways that help to main-
tain homeostasis, however it appears that these two line-
ages of O157 may have diverged just enough that their
regulatory pathways are geared for different purposes,
ultimately promoting survival in different environments
and hosts. It is not clear yet, though research is ongoing,
whether LII isolates have lower transmission potential or
lower virulence or indeed whether there is enough diver-
gence between the two lineages to consider them as sepa-
rate. One hypothesis presented in the literature and also
supported by the data presented is that LII strains may be
more co-evolved as a symbiont of cattle, which promotes
its long-term survival in this specific reservoir. For
instance, stx2 expression may not be as beneficial in colo-
nization of a bovine host as it has been noted that intesti-
nal receptors for Shiga toxin are found in humans but not
cattle [83], while LEE island expression may be very
important [84]. Popular theories of pathogen evolution
suggest that as a pathogen evolves within finite popula-
tions, the pathogen tends to become less virulent (attenu-
ation) to the host thereby promoting though various
mechanisms of evolution its own transmission and sur-
vival among the populations [85]. This may be exempli-
fied by the differential expression of stress response genes,
which could prime or maintain an isolate of E. coli 0157
in a genetic state that is able to rapidly respond to condi-
tions the isolate might encounter during transmission
from animal to human hosts, through the farm to fork
process, thereby increasing its transmission potential.

Methods

Bacterial isolates and growth conditions

A working set of lineage (20 LI and 20 LII) isolates as
described in Kim et al. [1] were obtained from A. Benson
(University of Nebraska, Dept. Of Food Science and Tech-
nology, Lincoln, Neb.). LI isolates 43895, fda518, frik533

and LII isolates ne037, frik2000, frik1985 were chosen at
random and utilized in the current analyses. Isolates were
grown on LB agar under anaerobic conditions for 12
hours. Previous growth studies noted that these 6 isolates
displayed similar growth curves, OD600, and concentra-
tion (data not shown). Stationary phase was selected to
ensure that all isolates and cultures were at the same stage
of growth. Isolates were of the Stx2vha genotype and all
exhibited typical O157 phenotype characteristics includ-
ing acid tolerance, lack of sorbitol fermentation, lack of
glucuronidase activity and beta hemolysis on tryptose
blood agar (Difco, Sparks, MD) with washed, defibrinated
sheep blood (Oxoid, Lenexa, KS). All isolates also dis-
played the same phenotypes using API20 (bioMerieux,
Durham, NC).

Microarray design

Using the transcriptome of E. coli O157:H7 EDL933 an
oligonucleotide microarray (~50mer) was designed.
Based upon funding available we were able to choose 610
genes [see Additional file 2] including 10 negative control
genes derived from pig sequences, which were selected
based upon their being associated with virulence or with
regulation of virulence genes. Specifications of oligos were
based upon various design characteristics such as temper-
ature of melting, 3' location, specificity, lack of repeat
nucleotides, etc. [86]. Oligos were synthesized and nor-
malized in concentration by Integrated DNA Technolo-
gies Inc. (Coralville, 1A). Oligos were resuspended in
Epoxide Slide Spotting Solution and printed onto Epoxide
Coated Slides (Corning Inc., Corning, NY). Each array
consisted of duplicate elements and each slide contained
a duplicate array.
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Microarray protocol

All procedures were performed according to respective
manufacturer protocols. Colonies were resuspended
immediately in RNAprotect Bacteria Reagent (Qiagen
Inc., Valencia, CA) after they were harvested. Total RNA
was extracted using RNeasy Protect Bacteria Mini Kit (Qia-
gen Inc.) and DNA removed using RNase-Free DNase Set
(Qiagen Inc.). RNA was quantified using a nanodrop ND-
1000 device (NanoDrop Technologies, Wilmington, DE)
and quality confirmed by electrophoresis. RNA was
labeled with either CyDye3-dCTP or CyDye5-dCTP
(Amersham Biosciences) using the LabelStar kit (Qiagen
Inc.) and Random nonamers (Sigma-Aldrich Inc., St.
Louis, MO). Labeled cDNA was hybridized to the micro-
array using Universal Hybridization Solution (Corning
Inc.).

Microarray analysis

Each microarray experiment was performed in duplicate
and each experiment also had a corresponding dye swap
for an added technical replication. As an example of a dye
swap design LI is labeled with cy3 and LII is labeled with
cy5 in one array and in the second array LI is labeled with
cy5 and LII labeled with cy3. Dye swaps are not biological
replicates but provide technical replication that accounts
for different dye incorporation rates. Images were cap-
tured using a Genepix 4000B (Molecular Devices Corpo-
ration, Union City, CA) laser scanner and images
processed using GenePix 6.0 software (Molecular Devices
Corporation). Analysis was performed using Acuity 4.0
software as well as GeneSpring 11.0 software (Agilent
Technologies, Palo Alto, CA). Results were compared
between the two software packages to assure conformity
of results. Slides were normalized using standard settings
(ratio based so that the mean of the ratio of means, of all
features, were equal to 1.0). All ratios less than 0.1 and
greater than 10.0 were excluded, as well as bad, low signal,
absent, or unfound features. To obtain our final data pro-
vided in Table 1 and Table 2 we required that all arrays,
duplicate elements on each array, and these same features
on the dye-swap experiments (after mathematical conver-
sion x' = -x) to provide agreement, show significant rele-
vance at the p < 0.05 level, and exhibit at least 1.2 fold
regulation. A supplemental dataset was derived for those
genes that showed a tendency to be differentially
expressed. Usually, the lack of inclusion into the stringent
dataset was only based upon the quality of the signal in
one of the array or dye swap comparisons. Therefore,
these results are provided for information and discussion
purposes.

Quantitative PCR

The results of the array were validated using quantitative
PCR. Subsets of the regulated genes were chosen at ran-
dom and primers designed using Primer Select 2.0 soft-

http://www.biomedcentral.com/1471-2180/6/30

ware (Applied Biosystems, Foster City, CA). RNA was
quantified using NanoDrop system and then using
QuantiTect SYBR Green RT-PCR kit (Qiagen Inc.) relative
CT was determined with 16s as a control gene, using ABI
7500 Real Time-PCR system (Applied Biosystems).

Functional analysis

HT-GO-FAT software was used to perform the functional
GO related analysis. Functional classifications were deter-
mined for the regulated genes using HT-GO-FAT and the
LIRU8 database. Statistics for higher represented classifi-
cations were also determined using HT-GO-FAT. A dedi-
cated Amigo database was also prepared based upon the
microarray and the EDL933 transcriptome and can be
found at the above URL.

Statistical analysis

Acuity 4.0 built in statistics algorithms were utilized for all
statistics related to microarrays. One sample t test was
used to determine the significantly regulated genes. Ran-
dom samples assigned by computer generation. Standard
methods were utilized for evaluation of quantitative PCR
based upon target gene Ct values (number of cycles of
PCR before a threshold of detection is crossed) normal-
ized with the Ct value of an appropriate housekeeping
gene (fadD) to compensate for variation in initial RNA
and cDNA concentrations. The first normalization proce-
dure provides the initial ACt value. The sample ACt values
were then normalized against the smallest ACt value iden-
tified in the complete data set, termed AACt. Finally, the
AACt value for each sample was transformed by the func-
tion 244CT to produce the final gene expression value for
each sample. This method allowed for direct comparison
of relative gene expression values between isolates. Gene
Ontology related statistics were calculated as described by
Al-Shahrour et al [87].
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Additional material

Additional File 1

Regulated Genes p < 0.2 and > 0.05, This file and dataset contains 105
genes that failed a criteria for inclusion in the primary dataset and their
significance test was not less the p = 0.05.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-6-30-S1.xls]

Additional File 2

All genes contained in the Escherichia coli O157:H7 virulence array, This
file provides a list of all of the genes contained in the 610 gene virulence
gene O157:H7 array.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-6-30-52.xls]
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