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Abstract

of any such motifs and their functional characterization.

protein folding via disulphide bonding.

Background: Enveloped viruses utilize cellular membranes to bud from infected cells. The process of virion
assembly and budding is often facilitated by the presence of certain conserved motifs within viral proteins in
conjunction with cellular factors. We hence examined the West Nile Virus (WNV) Envelope protein for the presence

Results: We identified conserved *°'PXAP*** and ***YCYL*? motifs in the WNV envelope glycoprotein bearing
resemblance to retroviral late domains. Disruptive mutations of PXAP to LAAL and of the highly conserved Cys*° in
the YCYL motif, led to a severe reduction in WNV particle production. Similar motifs in case of retroviruses are
known to interact with components of host sorting machinery like PXAP with Tsg101 and YXXL with Alix. However,
in the case of WNV, siRNA mediated depletion of Alix or Tsg101 did not have an effect on WNV release. Molecular
modeling suggested that while the *°'PXAP*®* motif is surface accessible and could potentially interact with cellular
proteins required for WNV assembly, the ***YCYL*>? motif was found to be internal with Cys

Conclusions: The conserved “°'PXAP*** and ***YCYL**? motifs in the WNV envelope are indispensable for WNV
particle production. Although these motifs bear sequence similarity to retroviral late domains and are essential for
WNV assembly, they are functionally distinct suggesting that they are not the typical late domain like motifs of
retroviruses and may play a role other than Alix/Tsg101 utilization/dependence.
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Background

West Nile Virus (WNV) is a single stranded positive sense
RNA virus of the genus Flavivirus. The 11Kb RNA gen-
ome is translated in the cytoplasm as a polyprotein and
processed to yield 3 structural (Capsid C, Premembrane
prM/membrane M and Envelope E) and seven non-
structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B and
NS5) proteins [1]. Co-expression of prM and E proteins
alone is sufficient for production of recombinant VLPs [2]
that are similar to infectious virions in antigenic properties
and have been commonly used to study virus assembly
and budding. Although the field of Flavivirus assembly
and release remains in its infancy, recent reports have
identified certain residues in the prM that are important
for WNV particle secretion [3,4]. It is known that WNV
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genome replication occurs in the cytoplasm in the peri-
nuclear region and virus particles assemble and bud into
the Endoplasmic Reticulum (ER) lumen. Subsequently vi-
rions are transported to the plasma membrane (PM) via
the cellular secretory pathway to be released from cells by
exocytosis [5-8].

Following the synthesis of viral genome and proteins,
enveloped viruses utilize cellular membranes to bud
from infected cells. This is often facilitated by the pres-
ence of certain conserved motifs within viral proteins
and their ability to interact with the cellular processes/
machinery. The best known example of this process is
the interaction of retroviral late domain motifs with
components of the ESCRT (Endosomal Sorting Complex
Required for Transport) sorting machinery to promote
budding. Three types of consensus late domain motifs
have been identified thus far: (i) the PT/SAP motif re-
cruits the ESCRT-1 component Tsgl01 (Tumor Suscep-
tibility growth factor 101) [9,10], (ii) the YXXL late
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domain motif interacts with the ESCRT associated pro-
tein Alix [11,12] and the (iii) PPXY late domain motif
binds to the Nedd4 family of E3 ubiquitin ligases that
are involved in cargo recruitment during Multivesicular
Body (MVB) formation [13,14]. Besides retroviruses, late
domain motifs have also been identified in other en-
veloped viruses like rhabdoviruses (vesicular stomatitis
virus, rabies virus) [15-17], filoviruses (ebola, marburg)
[18-22], arenaviruses (lymphocytic choriomeningitis virus,
lassa virus) [23,24], paramyxoviruses (Nipah virus, Sendai
virus) [25,26] and DNA viruses like hepatitis B virus, vac-
cinia virus, herpes simplex virus-1 and Epstein Barr virus
[27-33]. Amongst flaviviruses, the NS3 of Japanese en-
cephalitis virus (JEV) has been shown to associate with
Tsgl01 [34] while the yellow fever virus (YFV) NS3 has
been shown to interact with Alix [35] assisting in virus re-
lease. However, currently there is no information on the
presence of late domains in WNV proteins.

The process of WNV budding into the lumen of the
ER is topologically similar to the process of MVB bio-
genesis in that both occur in a direction that is away
from the cytosol. MVB biogenesis is mediated by the
family of ESCRT proteins namely ESCRT-0, -1, -II and -
III and other associated proteins like Alix/AIP1. The
membrane associated ESCRT-III complexes are finally
disassembled and recycled by the ATPase Vps4. A number
of enveloped viruses via the conserved late (L) domain
motifs that mimic similar motifs in cellular proteins are
able to recruit the ESCRT machinery to the site of virus
budding [36]. Disruption of L domain motifs or their func-
tion leads to defects in the final (late) stages of virus
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budding characterized by the tethering of virions to the
cell surface [9,14,36,37]. Most data on the role of ESCRT
proteins and viral late domain motifs has come from re-
search on retroviruses that primarily bud from the plasma
membrane. Although there are reports that NS3 of other
Flaviviruses can interact with ESCRT components [34,35]
there are no such reports for WNV. Furthermore, it is not
known whether any late domain like motifs are present in
WNV structural proteins especially E protein that is essen-
tial for assembly into virus like particles [38].

Results and discussion

Identification of conserved motifs in the WNV E protein
In case of Flaviviruses, the structural E protein is neces-
sary for virus assembly and release and the production
of recombinant VLPs. Hence, using sequence analysis
and information based on work with other viruses we
undertook this study to identify the presence of con-
served motifs (a vital indicator of the functional im-
portance) in the Flavivirus structural E proteins and
determine whether they play a role in virus assembly
and release. Sequence analysis of different Flavivirus
structural proteins and different WNYV isolates revealed
the presence of conserved **'PXAP** and ***YCYL3*?
motifs in the E protein (Figure 1A and B). Similar but
less conserved motifs were also present in other Fla-
viviruses like Kunjin, JEV and St. Louis Encephalitis virus
(SLE) (Figure 1B). Analysis of systematically selected
WNV E protein sequences suggested that the PAAP
motif was present in about 90% of the analyzed
sequences while the frequency of the PSAP motif was
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Figure 1 Sequence analysis of Flavivirus Envelope proteins. (A) Outline of WNV structural proteins C, PrM and E. (B) Presence of conserved
H1pS/AAP* and **9YCYL*? motifs in the Flavivirus envelope protein. Selected Flavivirus proteins were downloaded from NCBI [42], aligned with
MAFFT [43] and the respective motif regions visualized in Jalview [44] using ClustalX-like coloring based on physicochemical properties and
conservation. Virus names are shown left with NCBI GI number. (C) Frequency of YCYL and PAAP motif variants in WNV envelope. Significant
protein hits (E<0.001) were first identified with Delta-BLAST [45] starting with the sequence of the envelope glycoprotein structure (PDB:2hg0)
against NCBI's non-redundant protein database restricting to West Nile virus sequences only. All hits were next aligned with MAFFT after
discarding those without sequence information for the YCYL or PAAP region and removing 100% identical sequences using Jalview. The resulting
set of 286 WNV sequences was analyzed for the respective motif occurrences.
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less than 10% (Figure 1C). The YCYL motif was present
in more than 95% of the WNV sequences analyzed.
Table 1, depicts the occurrences of the PXAP and
YCYL motifs in the protein non-redundant database
(nr) database. As expected, sequence motifs that serve
some biological functions, occur more often than by
chance [39,40] although it deserves mention that these
motifs are maintained within the Flavivirus E proteins
that themselves are highly conserved. While sequence
analysis revealed the predominance of PAAP motifs
over PSAP it is unclear as to what advantage the PSAP
motif would render in case of WNV. From studies in
HIV and that of host proteins like Hrs (Hepatocyte growth
factor Receptor Substrate) it is well known that the PSAP
motif is a strong binding partner of Tsgl01 [41].

Development of a rapid assay to study WNV assembly
and release

We next aimed towards conducting a functional ana-
lysis to determine if WNV may utilize the above con-
served motifs for virus assembly and release. To this
end we developed a rapid renilla luciferase (ren-luc)
based virus release assay and compared it to the clas-
sical radioimmunoprecipitation based assay (Figure 2).
This would not only be a useful tool for rapid siRNA
based screens or to identify potential drugs/com-
pounds that inhibit WNV particle production but also
obviate the requirement for a BSL3 facility that is
necessary for working with infectious WNV. 293T cells
were transfected with CprME and WNV Ren/Rep plas-
mids [46]. Culture supernatants were harvested 24 h
post transfection and cells lysed and read for ren-luc
activity (cell associated, Figure 2A and C) using the
Dual Glo luciferase assay substrate (Promega). Equal
volume of the harvested supernatants were then used
to infect 293T cells, cells lysed and read for luciferase ac-
tivity (virion-associated) 24 h post infection (Figure 2A
and C). Virus release was calculated as ratio of virion asso-
ciated ren-luc/(cell+virion associated ren-luc) activity.

Table 1 Occurrences of the PXAP and YCYL motifs in the
protein nr database

Motif Actual # Actual Expected # Expected
occurrences  frequency occurrences* frequency*

PXAP 2802870 3.05e-04 1867974 2.03e-04

YCYL 11945 1.30e-06 10851 1.18e-06

26,682,258 protein sequences in the non-redundant (nr) protein database
downloaded from NCBI on 1st July 2013, were searched for presence of the
PXAP and YCYL motifs. The relative abundance of each of the relevant amino
acids in the nr database was used to calculate the expected occurrences of
the motifs by chance.

*The expected occurrences and frequency were based on the relative
abundance of each of the 20 amino acid residues in the nr database. The
expected occurrence and frequency of PXAP motif is based on the relative
abundance of Proline and Alanine, while that of the YCYL motif is based on
the relative abundance of Tyrosine, Cysteine and Leucine in the protein

nr database.
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In parallel, classical radioimmunoprecipitation based
virus release assay [47] was also conducted to determine
the validity of the rapid assay described above (Figure 2A
and B). Although, the luciferase based rapid assay also
accounts for entry defects in virions, it is a convenient
high throughput method for identification of general in-
hibitors of the virus life cycle.

Tsg-5" and Alix-V domain expression inhibits WNV
assembly and release

As mentioned above, the conserved motifs identified in
the WNV envelope resembled the late domain like motifs
of retroviruses. We hence asked whether some of the well
characterized inhibitors of ESCRT pathway previously
used to study retrovirus budding would affect WNYV as-
sembly and release. To inhibit Tsgl01 we utilized either
Tsg-5" expression vector that prevents HIV Gag-TsglO1
interaction or Tsg-F and TSG-3’ that have been shown to
inhibit HIV release by globally disrupting the endosomal
sorting machinery [48,49]. We also used a transdominant
form of Vps4 (Vps4EQ) that prevents the dissociation of
ESCRT-III components at the endosomal membrane
thereby inhibiting HIV-1 and Murine Leukemia Virus
(MLV) budding [49-51], [52]. Similarly, the V domain of
Alix (residues 364—716) which is known to bind both
Equine Infectious Anemia Virus (EIAV) and HIV-1 Gag
acting as a dominant-negative inhibitor of virus release
[51,53,54] was also used. 293T cells were transfected to
express CprME, WNV Ren/Rep plasmids in the pres-
ence of either control plasmid (pUC) or Tsg-F, Tsg-5’,
Tsg-3’ [49], Alix-V [53] or Vps4EQ [50] expression vec-
tors. Virus release efficiency was then calculated by
both the rapid assay and classical virus release assay.
Interestingly, the expression of Tsg-5" and Alix-V do-
main modestly diminished WNV release whereas no
significant effect on virus release was observed on ex-
pression of Tsg-3" Tsg-F or Vps4EQ (Figure 3A and
B). While it is known that expression of Tsg-5" affects
HIV-1 release by affecting late domain function
[48,49], the precise mechanism via which Tsg-3’, Tsg-
F or Alix-V domain affect HIV release remains
unknown. They could either be affecting the function
of specific host proteins or universally disrupting the
cell sorting machinery utilized for WNV particle
production.

Mutations of the conserved PAAP and YCYL motifs in
WNV envelope inhibits virus particle production

To further examine the relevance of these conserved
PXAP and YCYL motifs in WNV assembly and release,
we constructed mutations in the PAAP residues to either
LAAL or PSAP (Figure 4A) using site directed mutage-
nesis. Interestingly, mutation of PAAP to LAAL caused
a severe defect in virus budding, while mutation of the
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Figure 2 Rapid assay for studying WNV assembly and release. (A) Schematic diagram delineating the steps for the rapid Ren-luc based virus
release assay and comparing it to the classical radioimmunoprecipitation assay. 293T cells were transfected with WNV-CPrME along with the Ren/
Rep plasmids at a ratio of 1:1 or with the pUC vector as control. (B) For radioimmunoprecipitation based assay, cells were metabolically labeled
with [?’SS]Met—Cyst protein labeling mix (PerkinElmer) in RPMI 1640 medium supplemented with 10% FBS but devoid of Met and Cys 24 h post
transfection. Following ultracentrifugation, cell and virus lysates were immunoprecipitated using anti-WNV serum, run on an SDS PAGE gel
followed by fluorography. Virus release was calculated as ratio of virion associated versus cell+virion associated E protein. (C) For ren-luc based
virus release assay, culture supernatants were harvested 24 h post transfection and cells lysed and read for ren-luc activity (cell associated) using
the Dual Glo luciferase assay substrate (Promega). Equal volume of the harvested supernatants were then used to infect 293T cells, cells lysed and
read for luciferase activity (virion-associated) 24 h post infection. Virus release was calculated as ratio of virion associated versus cell+virion
associated ren-luc activity.

residues to PSAP led to virus release efficiency that was
modestly better than WT (Figure 4B and C). We also
mutated the YCYL domain to ACYA or AAAA. Interest-
ingly, mutation of the above motifs to AAAA but not
ACYA caused a severe defect in virus release (Figure 4B
and C). It is worth mentioning that disruptive mutations
to AAAA may also have other adverse side effects since
the highly conserved cysteine residue may be involved in
maintaining protein structure and stability.

It has previously been shown in context of HIV-1 that
the PAAP motif interacts poorly with Tsgl01 in in-vitro
binding assays using purified proteins [9,21,55]. Since a
large number of WNV isolates naturally bear a PAAP
motif at position 461-464 instead of PTAP, we wanted
to determine if a PAAP motif in the HIV p6 would per-
mit virus release. We hence mutated the PTAP motif in
HIV to PAAP and determined virus release. Although
HIV-PAAP was released less efficiently than WT-HILV, it

was significantly better than the PTAP deleted mutant
(Figure 4D). These findings, at least in case of HIV
where disruption of PT/SAP TsglO1 interaction signifi-
cantly affects virus release are indicative that the PAAP
motif may still be capable of binding Tsgl01 albeit at a
lower efficiency. Thus a PAAP motif can act as a func-
tional late domain for HIV and hence could do the same
for WNV isolates that predominantly bear PAAP motifs.
Our findings are consistent with those of Demirov et al.
[56] although the possibility that the PAAP motif is
capable of interacting directly or indirectly with certain
other host factors that favor HIV and/or WNV release
cannot be ruled out.

Depletion of endogenous Alix or Tsg101 does not inhibit
WNV assembly and release

Our findings that Tsg-5" expression inhibits WNV release
suggests a role for the ESCRT pathway in WNV budding.
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Figure 3 WNV release is inhibited on expression of Tsg-5’ and Alix V domain. 293T cells were transfected with WNV-CPrME and
Ren/Rep plasmids along with control pUC or the indicated cellular protein expression constructs. Virus release was determined using the (A)
classical radioimmunoprecipitation technique and (B) the rapid ren-luc based assay. Data represent mean + SD from 3 (A) or 4 (B)

However, in other enveloped viruses that bear late do-
mains (e.g. Gag of retroviruses, matrix of rhabdoviruses,
VP40 of Ebolavirus) these motifs are located on the cyto-
plasmic side of the membrane and thus would be able to
interact with ESCRT proteins to facilitate budding and par-
ticle release. The Flavivirus E protein on the other hand is
translated into the lumen of the ER and hence these con-
served motifs in WNV E protein would only be minimally
exposed to the cytoplasmic side of intracellular vesicles or
the plasma membrane. Hence in order to confirm the role
of Tsgl01 and/or Alix in WNV assembly and release we
used a siRNA based approach. For this 293T cells were
knocked down of endogenous Tsgl01 and Alix expression
using specific siRNAs and WNV release determined using
both Ren-luc based and immunoprecipitation based virus
release assays. As shown in Figure 5A and C, while Tsg101
depletion had no effect on WNV particle secretion, as
expected, it caused a severe reduction in HIV-1 release.
Alix depletion on the other hand had no effect on either
HIV or WNV release (Figure 5A and C) but diminished
EIAV release (Figure 5B). Thus while the conserved PXAP
and YCYL motifs in WNV are important for virus assembly
and release, it is most likely not due to dependence on the
ESCRT component Tsgl01 or the associated factor, Alix.

In the WNV E protein, the PAAP motif is surface located
while the YCYL motif is deeply buried

Our siRNA mediated depletion studies above sug-
gested that WNV may not rely on the ESCRT host cell
sorting machinery for assembly and release. Thus, it
is plausible that these motifs may interact with other
host factors to facilitate the assembly of the virion
particles. In fact our structural analysis shows that the
PXAP motif is surface accessible and could participate
in protein interactions with yet unidentified cellular
factors (Figure 6A). In the context of the viral capsid
made up of multiple envelope (E) proteins the PXAP
surface motif appears to form part of the interface
between the envelope subunits (Figure 6B). It also lies
adjacent to the discontinuous epitope recognition
site of co-crystallized neutralizing antibodies. On the
other hand the YCYL motif is deeply buried and forms
part of the structural core with the central cysteine
participating in formation of a critical disulfide bridge
(Figure 6A). This is in agreement with our findings
where mutation of the YCYL motif to ACYA had little
effect on virus release but mutation to AAAA severely
affected budding possibly via loss of the disulphide
bridging cysteine.
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Figure 4 Mutation of PAAP motif to LAAL significantly diminishes WNV release. (A) Sequence of the “*'PS/AAP™* and **9YCYL**? motif
bearing region and their mutagenesis strategy. 293T cells were transfected with WNV-CPrME WT or the indicated mutant DNAs along with the
Ren/Rep plasmid. Virus release was determined using the (B) classical radioimmunoprecipitation technique and (C) the rapid ren-luc based assay.
Pooled data (mean + SD) from 3 (A) or 4 (B) independent experiments is shown. (D) HIV-PAAP mutant is capable of efficient release when
compared to the PTAP minus mutant. 293T cells were transfected with HIV pNL4-3 WT, PTAP- or PAAP DNA. Virus release was determined 24 h
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Conclusions

In this study, we have developed a rapid assay to study
WNV assembly and release and identified conserved
motifs in the viral envelope (E) that have functional
relevance. These motifs bear sequence homology to late
domain like motifs described in retroviruses. Expe-
riments aimed at elucidating their role demonstrated
that while expression of Tsg-5" and Alix-V domain mo-
destly inhibited WNV particle production, expression
of Vps4EQ had no effect on WNV release. These data
combined with the fact that siRNA mediated depletion
of Alix or TsglOl did not affect WNV release argues
against their utilization or the ESCRT pathway by
WNV. For instance, it has been documented that HSV
possesses PT/SAP and YXXL motifs in several of its
proteins but virus particle production is independent
of Alix or Tsgl01 expression [60]. Likewise, the PSAP
motifs are conserved amongst the Vesiculovirus M
protein without possessing L domain activity [61,62].
However, the conserved nature of these domains in
WNV and reduced virus release upon disruptive

mutations argues in favor of a role in virus assembly
via yet unidentified mechanism/s.

Our data are also reminiscent of the effects of Alix V
domain expression versus Alix depletion on HIV particle
production. While siRNA depletion of Alix does not
affect HIV release, dominant negative inhibition via Alix
V domain expression does [11,53]. Moreover, it was re-
cently demonstrated that the Alix V domain is capable
of interacting with ubiquitin [51,63,64]. It is also known
that ubiquitination plays a role in both HIV and flavivi-
rus particle production [65,66]. It is thus plausible that
expression of the Alix V domain may alter ubiquitin
dependent cellular functions thereby affecting WNV
particle production. The precise mechanism behind this
phenomenon with respect to HIV-1 remains to be eluci-
dated. The fact that some WNYV strains like Sarafend ex-
hibits significant budding from the plasma membrane
[67] would favor a role of ESCRT components like Alix
and Tsgl01 for budding.

Sequence analysis and information based on other vi-
ruses showed the presence of PXAP and YXXL conserved
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Figure 5 Depletion of endogenous Tsg101 or Alix using specific sSiRNA does not inhibit WNV release. 293T cells were transfected with
control, Alix or Tsg101 siRNA. 24 h post transfection cells were transfected again with respective siRNAs along with (A) WT HIV-1 pNL4-3 DNA (B)
WT EIAV Gag DNA or (C) WNV-CPrME plus the Ren/Rep plasmids. Virus release was determined after radiolabeling and immunoprecipitation for
HIV and WNV, via western blotting for EIAV and also by the rapid ren-luc based assay for WNV. Data represent mean + SD from 3 independent
experiments (A&C). For the ren-luc based WNV assay one representative of 3 independent experiments is shown.

motifs in the E protein of Flaviviruses and different
WNV strains, motifs that resemble the retroviral late
domain-like motifs. It is worth mentioning that se-
quence analysis of a large portion of several different
Flavivirus E proteins showed only 18% conservation in
the amino acid residues, although the number does re-
flect the maximum diversity across the whole Flavivirus
family [68]. This conservation was mostly seen on the
inner surface of the monomers plausibly as a result of
neutralizing antibody pressure. On the contrary, the
PXAP and YCYL motifs were quite conserved indicat-
ing their functional relevance. Moreover, substantial
changes in the consensus sequences are also found to
occur in only a few areas of the E protein and may have
relevance to growth in insect cells versus vertebrates [69].
Although mutational analysis confirms the importance of

these domains in WNV assembly and particle formation,
the role of Tsgl01 and Alix in this phenomenon remains
inconclusive from this study. Molecular modeling shows
that the PXAP domain is present on the surface of the E
protein and could potentially interact with cellular factors.
On the other hand the YCYL conserved domain consisted
of a conserved cysteine that is involved in disulphide bon-
ding and protein folding. Although the YCYL motif may
be critical in maintaining structure of the virus, the
conservation of this motif and its functional relevance
has neither been studied nor demonstrated in other
Flaviviruses. Moreover, the same was not true for the
PXAP domain. Interestingly, mutation of the PAAP
motif to PSAP, which is an optimal binding partner for
cellular sorting proteins modestly enhanced virus re-
lease. Considering the presence of only PAAP and PSAP
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Figure 6 Crystal structure of West Nile virus envelope
glycoprotein visualized with Yasara [57]. (A) Analyzed motifs on
PDB:2hg0 [58] highlighted in red (PAAP) or magenta (YCYL).
Structural analysis suggests that the PAAP motif is surface accessible
while the YCYL motif is buried. (B) Analysis of the envelope protein
in context of the assembled viral envelope PDB:3iyw [59]. Three
envelope proteins are shown in gray, purple and yellow. The PAAP
surface motif (red residues in black circles) appears to form part of
the interface between the envelope subunits. It also lies adjacent to
the discontinuous epitope recognition site of co-crystallized
neutralizing antibodies (blue and green).

at positions 461-464 in all the WNV sequences ana-
lyzed, the importance of this domain in virus assembly
cannot be ignored. While the cellular sorting partner of
PS/AAP domain in WNV could not be identified, our
study opens the gate for further investigation into un-
derstanding WNV and Flavivirus assembly in general.

Further studies are needed to determine the precise
mechanism via which these motifs, specially the PXAP
domain, regulates WNV assembly and release and
whether it functions via interaction with certain host fac-
tors or merely play a structural role in regulating virus
assembly and release.

Methods

Cell culture and transfections

293T cells were cultured in DMEM supplemented
with 10% EBS. All transfections were performed using
Lipofactamine2000™ reagent (Invitrogen) as per the manu-
facturer’s instructions. In cases where transfections in-
volved multiple DNAs, efficiency of co-transfection was
carefully controlled by using an equal amount of plasmid
expression vectors for each well and adjusting the total in-
put DNA in each well to be constant by using pUC DNA.
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Plasmids, antibodies, cell culture reagents, and siRNAs
The WNV CprME and Ren/Rep plasmids have been de-
scribed previously [46] and were kindly provided by Dr.
Ted Pierson (NIAID). Mutations in the CprME 461pA A P16t
and **YCYL*” motifs to PSAP, LAAL, ACYA and AAAA
were constructed by site directed mutagenesis (Strata-
gene) using specific primer pairs. The full-length HIV-1
proviral clone pNL4-3 [70] and its PTAP minus deriva-
tive have been described previously [56]. The HIV
PAAP mutant in the pNL4-3 backbone was constructed
by site directed mutagenesis. Hemagglutinin (HA)-
tagged derivatives of Tsgl01-TSG-5" and TSG-3" in the
pcGNM2 expression as well as the full-length Tsg101
expression vector (pcGNM2/TSG-F) have been previ-
ously described [49]. pEGFP-C2:VPS4A(E228Q), ex-
pressing an ATPase-deficient mutant of VPS4A fused
to GFP has been previously described [50]. Expression
vectors for the V domain of Alix (pcGNM2/hAlix(364—
716) have been described [54]. The EIAV Gag expres-
sion vector (pPRE/GagEIAV) has been described [71].

Metabolic labeling and immunoprecipitation

The protocol for radiolabeling and immunoprecipitation of
cell and virus lysates has been described in detail previously
[72]. Briefly, transfected cells were starved for 30 min in
RPMI medium lacking Met and Cys. Thereafter, cells were
incubated for 2—-3 h in RPMI medium supplemented with
FBS and [*>S]Met/Cys. Culture supernatants were filtered
and subjected to ultracentrifugation at 100,000 x g for 45
min. Cell and virion samples were lysed in cell lysis buffer
(0.5% Triton X-100, 300 mM NaCl, 50 mM Tris [pH 7.5]
containing protease inhibitors [Complete; Roche]). There-
after, they were immunoprecipitated either with HIV-Ig
(Kindly provided by the NIH AIDS research and reference
reagent program) or anti-WNV serum (Kindly provided by
Dr. Robert B. Tesh, University of Texas Medical Branch,
Galveston) coated Protein A beads. Immunoprecipitated
cell lysates were washed three times in RIPA buffer and
once with SDS-DOC wash (0.1% sodium dodecyl sulfate,
300 mM NaCl, 50 mM Tris [pH 7.5], 2.5 mM deoxycholic
acid), resolved by SDS-PAGE followed by Phosphorlmager
analysis. Virus release efficiency was calculated as ratio of
virion associated versus total cell plus virion associated
HIV-1 Gag or WNV E protein.

Renilla based virus release assay

The overall strategy for this assay is summarized in
Figure 2A. 293T cells were transfected with CprME and
WNV Ren/Rep plasmids [46]. Culture supernatants were
harvested 24 h post transfection and cells lysed and read
for ren-luc activity using the Dual Glo luciferase assay
substrate (Promega). Equal volume of the harvested su-
pernatants were then used to infect 293T cells, cells
lysed and read for luciferase activity (virion-associated)
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24 h post infection. Virus release was calculated as ratio of
virion associated ren-luc/(cell+virion associated ren-luc)
activity. The overall strategy is summarized in Figure 2A.

Sequence analysis

Selected Flavivirus proteins were downloaded from NCBI
[42]. The NCBI database was searched for sequences for
complete or almost full length (>3300 amino acids)
polyproteins from Flaviviruses and selected the ones with
species name including West Nile Virus. If multiple se-
quences were available per virus name, only the longest
sequence was considered. This yielded 11 different West
Nile virus sequences with separate strain designations
(strain name and GI numbers shown in alignment). The
downloaded sequences were aligned with MAFFT [43]
and the respective motif regions visualized in Jalview [44]
using ClustalX-like coloring based on physicochemical
properties and conservation. To systematically count the
frequency of YCYL and PAAP motif variants in WNV, we
first identified significant protein hits (E<0.001) with
Delta-BLAST [45] starting with the sequence of the enve-
lope glycoprotein structure (PDB:2hg0) against NCBI's
non-redundant protein database restricting to West Nile
virus sequences only. Next, we aligned all hits with
MAFFT [43] and discarded those without sequence infor-
mation for the YCYL or PAAP region and removed 100%
identical sequences using Jalview [44], leaving us with a
set of 286 WNV sequences for which we calculated the re-
spective motif occurrences.

The strain designations as listed in the alignment were
taken from the NCBI taxonomy on West Nile viruses:
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/
wwwtax.cgi?id=11082.

Several of these strains like Sarafend belong to the
pathogenic lineage 2. These are: West Nile virus H442,
West Nile virus SA381/00, West Nile virus SA93/01, West
Nile virus SPU116/89. Please note that the Kunjin virus
has been recognized as WNV strain which is also visible
by the identical sequences in the 2 displayed patterns.
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