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Abstract

Background: Pasteurella multocida is the etiologic agent of fowl cholera, a highly contagious and severe disease of
poultry causing significant mortality and morbidity throughout the world. All types of poultry are susceptible to
fowl cholera. Turkeys are most susceptible to the peracute/acute forms of the disease while chickens are most
susceptible to the acute and chronic forms of the disease. The whole genome of the Pm70 strain of P. multocida
was sequenced and annotated in 2001. The Pm70 strain is not virulent to chickens and turkeys. In contrast, strains
X73 and P1059 are highly virulent to turkeys, chickens, and other poultry species. In this study, we sequenced the
genomes of P. multocida strains X73 and P1059 and undertook a detailed comparative genome analysis with the
avirulent Pm70 strain. The goal of this study was to identify candidate genes in the virulent strains that may be
involved in pathogenicity of fowl cholera disease.

Results: Comparison of virulent versus avirulent avian P. multocida genomes revealed 336 unique genes among the
P1059 and/or X73 genomes compared to strain Pm70. Genes of interest within this subset included those encoding
an L-fucose transport and utilization system, several novel sugar transport systems, and several novel
hemagglutinins including one designated PfhB4. Additionally, substantial amino acid variation was observed in
many core outer membrane proteins and single nucleotide polymorphism analysis confirmed a higher dN/dS ratio
within proteins localized to the outer membrane.

Conclusions: Comparative analyses of highly virulent versus avirulent avian P. multocida identified a number of
genomic differences that may shed light on the ability of highly virulent strains to cause disease in the avian host,
including those that could be associated with enhanced virulence or fitness.
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Background
Avian pasteurellosis, also known as fowl cholera is a
highly contagious, systemic, and severe disease affecting
wild and domestic birds frequently resulting in high
mortality and morbidity. The disease is of major eco-
nomic importance throughout the world in areas of
domestic poultry production [1-3]. The causative agent
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of fowl cholera is Pasteurella multocida, a Gram-
negative bacterium. Carter [4,5] identified five capsular
types of P. multocida based on differences in capsular
antigens and designated them as A, B, D, E, and F
serogroups. Heddleston and co-workers classified the
bacterium into 16 somatic types based on differences in
the lipopolysaccharide antigens [6]. In 1981, a standard
system for identifying serotypes of P. multocida was
recommended that combined both the Carter capsular
typing and Heddleston somatic typing systems to desig-
nate serotypes [7] and a serotype is designated by its
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capsular type followed by the somatic type. Using this
system, the most common serotypes causing fowl chol-
era in the United States are A:1, A:3, and A:3.4 [8].
While there are no indications that any particular sero-
type is more or less virulent than others the virulence of
avian isolates of most common serotypes appears to vary
considerably [9].
Fowl cholera disease can occur in peracute/acute and

subacute/chronic forms [10]. All types of poultry are
susceptible to the disease, although among them turkeys,
pheasants and partridges are highly susceptible to
peracute/acute forms of disease whereas chickens are
relatively more resistant [11]. In chickens, the most
common forms of the disease are acute and chronic. In
peracute/acute disease there is sudden death due to
terminal – stage bacteremia and endotoxic shock [1,3].
Signs of acute cholera have been reproduced by injection
of endotoxin from P. multocida [12-14]. Post-mortem
findings are dominated by general septicemic lesions.
[1,2]. In chronic disease, signs are principally due to
localized infections of leg or wing joints, comb, wattles
and subcutaneous tissue of the head [2,10]. The com-
pleted genome of P. multocida strain Pm70 has been
available for over eleven years [15] and has greatly facili-
tated subsequent genomic-based approaches towards
better understanding the underlying genetic mechanisms
related to virulence and fitness. This complete genome
sequence has been used in the study of specific enzymes
[16], microarray analyses of differentially expressed
genes [17-20], proteomic analyses [21,22], study of viru-
lence factors [16,23-25], reverse vaccinology approaches
[26], and as a reference for assembly and comparison to
other genomes. While the Pm70 genome sequence has
been a great asset in our studies, progress has been
modest in the identification and understanding of P.
multocida virulence [27]. Even today, very little is known
about the totality of the mechanisms behind P.
multocida’s ability to cause disease. The Pm70 strain was
isolated from the oviduct of a layer chicken in 1976 from
Texas (personal communication- RE. Briggs). This strain
belongs to serotype F:3 [28] and not A:3 as reported
earlier [15], is avirulent and does not cause experimental
fowl cholera disease in chickens [28]. In contrast, other
strains of P. multocida have been isolated, such as
strains X73 and the P1059, that are highly virulent to
chickens, turkeys, and other poultry species [29,30].
Additional P. multocida strains of bovine, avian, and

porcine origin have recently been sequenced, which was
the subject of a recent comparative review [31]. The
authors noted, based on the nine genomes sequenced to
date, there was “no clear correlation between phylogen-
etic relatedness and host predilection or disease”. Infor-
mation is sparse on the location and characterization of
the genes responsible for differences in virulence of
avian and other P. multocida. In another recent review,
Boyce et al. [32] speculated that the combination of
additional P. multocida genome sequences and advances
in our ability to genetically manipulate the organism will
facilitate major advances in our understanding of disease
pathogenesis. To that end, we undertook a detailed com-
parative genome analysis of two virulent strains (X73
and P1059) and avirulent strain Pm70 of P. multocida.
The goal of this study is to enable narrowed identifica-
tion of a repertoire of unique genes present in the highly
pathogenic avian strains that may play a role in viru-
lence. This information will also facilitate the design of
improved modified live vaccine candidates with defined
mutations that can be evaluated as immunoprophylactic
agent(s) to control P. multocida-caused disease in avian
and other host species.

Methods
Bacterial strains
The strains sequenced in this study included P.
multocida strains P1059 (ATCC# 15742) and X73
(ATCC# 11039). Strain P1059 is a well characterized
pathogenic strain isolated from the liver of a turkey that
died of fowl cholera [30]. Strain X73 is also a well char-
acterized pathogenic strain isolated from the liver of a
chicken that died of fowl cholera [30]. For comparative
purposes, the avirulent Pm70 strain was used [15]. There
are several reasons why we selected strains P1059 and
X73 in this study. First, both strains are highly virulent
to chickens, turkeys and other poultry species. Second,
they are of different serotypes (P1059 = A:3; and X73 = A:1)
and different immunologic types [30]. Thirdly, they are
reference serotype strains that are readily available to
investigators and there is abundant literature on the
biology of these two strains [1,11,30,33-35].

Genome sequencing and annotation
Sequencing of strains P1059 and X73 was performed
using 454 Life Sciences pyrosequencing at the National
Animal Disease Center in Ames, Iowa. The following
data sets were generated for each strain: GS- FLX, with
270,010 shotgun reads of average length 240 bp yielding
64,827,159 bp for P1059; and GS-FLX, with 227,030
shotgun reads of average length of 240 bp, yielding
54,398,540 bp for X73. Reads were de novo assembled
into scaffolds using Newbler 2.3 [36]. The draft
sequences of these genomes are deposited under the fol-
lowing accession numbers: P1059 [Genbank:AMBQ0
1000000] and X73 [Genbank:AMBP01000000].

Comparative genomics
Annotation of P1059 and X73 was performed using
publicly available tools. Putative coding regions were
predicted using GeneMarkS [37]. Gene function was



Figure 1 Venn diagram illustrating the shared and unique
proteins of P. multocida strains Pm70, P1059, and X73.
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assigned using HMMER3 against Pfam-A 24.0, RPS-
BLASTp against CDD, and BLASTp against all microbial
proteins [38,39]. tRNA genes were identified using
tRNAscan-SE [40]. rRNA genes were identified using
RNAmmer [41]. For analysis of the shared and unique
proteins in the P. multocida genomes sequenced, BlastP
was used with a similarity cutoff of 90% identity over
90% of the protein as an arbitrary designation for similar
versus dissimilar proteins. For genomic island analysis,
whole genome alignments were performed using
MAUVE to identify regions present in strains P1059 and
X73 but absent from strain Pm70 [42]. Linear and circu-
lar genomic maps were generated using XPlasMap and
Circos [43]. Single nucleotide polymorphism (SNP) ana-
lysis was performed using SNPeff [44].

Results and discussion
Overview of the P. multocida P1059 and X73 genomes
A total of 270,010 reads were used to draft assemble
strain P1059, resulting in a single scaffold of 27 large
contigs (> 500 bp) of approximately 27-fold coverage
and an estimated genome size of 2.4 Mb. A total of
227,030 reads were used to draft assemble strain X73,
resulting in 17 large contigs (> 500 bp) of approximately
23-fold coverage and an estimated genome size of
approximately 2.4 Mb. No plasmids were identified in
either strain sequenced. The contigs generated were
then aligned to strain Pm70 to generate collinear draft
sequences and subsequently compare the three avian
source genomes.

Unique regions of virulent avian P. multocida
The draft genomes of strains P1059 and X73 were found
to contain 2,144 and 2,085 predicted proteins, respect-
ively. Along with strain Pm70, the genomes all contained
51 tRNA-carrying genes and 4 rRNA-carrying operons.
The genomes of the three avian P. multocida strains
contained a remarkably high number of shared proteins
(1,848), which comprised 86.2-90.7% of the predicted
proteins of the three avian strains using a BlastP similar-
ity cut-off of 90% (Figure 1). Compared to strain Pm70,
a total of 336 unique proteins were identified in either
strains P1059 or X73, of which 61 were contained within
both genomes (Table 1). Most of the 61 shared proteins
were small predicted proteins of unknown function and
located individually throughout the P. multocida genome
that could be attributed to differences in annotation
approaches (Figure 2). Also, most of the predicted pro-
teins identified were present in one or more sequenced
P. multocida from the NCBI database that were not
from avian hosts. However, one noteworthy region of
difference shared by P1059 and X73, but absent from
Pm70 and other strains of non-avian source, was located
between the core genes deoC and rfaD in both P1059
and X73 (P1059 – 01496 to 01503; X73 – 01400 to
01407). This region contained ten predicted proteins
with similarity to systems involved in the transport and
utilization of L-fucose. L-fucose is an important compo-
nent of host mucin and has shown to be a chemoattract-
ant for certain bacterial species, such as Campylobacter
jejuni. Moreover, the ability to utilize L-fucose by
C. jejuni has been shown to confer a fitness advantage
for avian strains in low nutrient environments such as
the respiratory tract [45,46]. Comparison of available
P. multocida sequences suggests that the presence of
this region may be a defining feature of pathogenic
avian-source P. multocida strains, as it was present in
P1059, X73, and P. multocida subsp. gallicida strain
Anand1 isolated from a chicken in India [47] but absent
from strains Pm70, pathogenic bovine-source strain
36950 [48] and pathogenic swine source strains 3480
and HN06 [49]. Other studies have demonstrated an
ability of avian-source P. multocida to ferment L-fucose,
further suggesting that the majority of avian-source
P. multocida strains harbor this system [9,33,50]. Other
bacteria inhabiting the respiratory tracts of poultry have
been identified to utilize L-fucose, such as Gallibac
terium anatis, suggesting that such capabilities may be
advantageous for respiratory bacterial pathogens of
poultry [51]. Such systems could play a role in increased
fitness and/or virulence capability of strains P1059 and
X73 in the avian host.
Twelve proteins were also identified that were present

in both strains P1059 and X73 at greater than 90%
amino acid similarity, but at less than 90% similarity in
strain Pm70 (Table 2). Among the twelve proteins iden-
tified were several membrane-associated proteins, in-
cluding LspB, PfhB3, Opa, and SprT. The presence of



Table 1 Predicted proteins of interest present in P. multocida strains P1059 and X73 at greater than 90% similarity but
absent from strain Pm70

Presence in:

Gene locus
(P1059)

Length
(aa)

Genomic
island

Predicted function Pm70 P1059 X73 36950 HN06 3480

00226 66 NA Hypothetical protein - + + - + +

00545 68 NA Hypothetical protein - + + - + +

00580 828 12 Trimethylamine-N-oxide reductase - + + + + +

00581 371 12 Cytochrome c-type protein TorY - + + + + +

00881 1125 15 Putative Ton-B dependent heme receptor - + + - - -

00948 62 NA Hypothetical protein - + + + + +

01347 332 26 Putative DNA-binding protein - + + + + +

01412 52 NA Hypothetical protein - + + + + +

01496 249 28 L-fucose operon activator - + + - - -

01497 586 28 L-fucose isomerase - + + - - -

01498 495 28 L-fuculokinase - + + - - -

01499 144 28 L-fucose mutarotase - + + - - -

01500 215 28 L-fuculose phosphate aldolase - + + - - -

01501 508 28 Ribose ABC transport system, ATP-binding protein - + + - - -

01502 342 28 Ribose ABC transport system, permease protein - + + - - -

01503 318 28 Ribose ABC transporter, periplasmic ribose-binding
protein

- + + - - -

01505 480 28 Aldehyde dehydrogenase A - + + - - -

01550 384 31 Flavohemoprotein - + + + - +

01587 53 NA Hypothetical protein - + + + + +

01686 108 NA HigA antitoxin protein - + + - + -

01825 60 NA Hypothetical protein - + + + + +

01854 51 NA Hypothetical protein - + + - - +

01963 52 NA Hypothetical protein - + + + + +

Presence of these proteins in additional sequenced P. multocida is also presented.
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divergent protein sequences that are membrane-
associated is suggestive of adaptation of P. multocida
strains towards particular hosts.
There were also predicted proteins identified as unique

to strains P1059 (148 total) and X73 (127 total) com-
pared to strain Pm70. Many of these proteins were again
of unknown function and/or associated with prophage-
like elements (Additional file 1: Table S1 and Additional
file 2: Table S2). However, some systems unique to each
strain were noteworthy. In strain P1059, one unique re-
gion contained six genes predicted as involved in the
transport and modification of citrate, and the conversion
of citrate to oxaloacetate via citrate lyase (00080 to
00085). This system was absent in all other sequenced
P. multocida genomes. The conversion of citrate to oxa-
loacetate is linked to citrate fermentation. Also unique
to strain P1059, but present in strains 36950, 3480, and
HN06, are four genes involved in xylose ABC transport
system with a transcriptional repressor (01538 to 01541).
Present in strains X73 and 36950 was a putative toxin-
antitoxin system similar to the HipAB systems (genes
02005 and 02006). Finally, genes for several novel pro-
teins with similarity to the previously described Pfh-type
filamentous hemagglutinins were identified in strains
P1059 and X73. Strain P1059 contained a novel pre-
dicted filamentous hemagglutinin (designated PfhB4 –
gene # 00523) that shares similarity with PfhB1 and
PfhB2 from P. multocida. PfhB4 has conserved domains
related to hemagglutination activity, two-partner secre-
tion, hemagglutinin repeats, and toxicity. PfhB4 is
present only in strains P1059, HN06, and 3480 (Figure 3).
It is adjacent to a putative hemolysin secretion/activa-
tion protein (gene # 00522) and thus appears to
represent a novel two-partner system involved in
hemagglutination. PfhB2 of strain P1059 has been shown
to play an important role in either colonization or inva-
sion in the turkey model [34]. Also, vaccination with
recombinant P1059 PfhB2 peptides cross protected



Figure 2 Circular map comparing sequenced avian source P. multocida strains. Scale is presented in kb. The outermost rings depict
genomic regions not present in strain Pm70 but present in strains P1059 (light green), X73 (dark green), or both (yellow). Regions are numbered
as described in the Tables. The next three rings depict the shared genomic regions of avian source strains Pm70 (outer ring), P1059 (middle ring),
and X73 (inner ring). Colored regions depict regions present at greater than 90% nucleotide similarity and non-colored regions depict regions
absent. The innermost ring again depicts the core (very light green) regions present in all three strains and the regions absent from strain Pm70
but present in other sequenced strains using the same color scheme.
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turkeys against an X73 challenge [35]. PfhB2 was present
in strain Pm70, P1059, and X73, but was only 90% simi-
lar in the latter two as compared to Pm70. Overall, the
presence of unique genes/systems related to metabolism
and adhesion could provide strains such as P1059 with
additional tools for increased fitness leading to higher
virulence.
Of the 127 unique proteins identified in strain X73

were five genes for a galactitol-specific phosphotrans-
ferase and utilization system (00310 to 00316), only
present in strain X73; three genes for a TRAP
dicarboxylate transporter system (01441 to 01443), also
present in strain 36950; and six genes for a novel simple
sugar D-allose transport and utilization systems (00951
to 00956), only present in strain X73. Such systems
could again provide additional means of energy produc-
tion in a resource-limited environment.
Known virulence factors and antigens
Comparisons were performed for several known viru-
lence factors and outer membrane proteins that are im-
portant for P. multocida pathogenesis, functionality, and
vaccine development [52]. These comparisons revealed
some noteworthy aspects relative to their presence and
evolution in P. multocida. For example, the hemoglobin
receptors hgbA and hgbB were present in all sequenced
P. multocida genomes, but are significantly different in
their amino acid similarities (Table 3). HgbA and HgbB
have been shown to exhibit hemoglobin binding proper-
ties [53,54]. Their incomplete distribution reported in
previous studies could be attributed to genetic variation
rather than complete absence of these genes [55]. The
outer membrane porins ompH1 and ompH2 were also
present in all sequenced strains, with ompH2 more
highly conserved than ompH1 with respect to amino



Table 3 Similarity of proteins of interest in sequenced
avian Pasteurella multocida genomes

Protein name Pm70 P1059 X73 36950 HN06 3480

HgbA 100A 87 96 89 99 99

HgbB 100 - 95 - 84 -

Omp16 100 100 100 99 100 100

OmpH1 100 84 83 83 84 99

OmpH2 100 98 98 99 98 97

OmpH3 100 97 - 98 97 98

TbpA 100 99 99 98 100 99

PtfA 100 100 100 100 100 99

ComE 100 99 100 99 99 99

PlpE 100 94 94 - - -

PlpP 100 84 82 98 72 76

PlpB 100 99 100 99 100 100

PlpD 100 100 100 100 100 100

PfhB1 (PM0057) 100 99 98 - - 99

PfhB2 (PM0059) 100 90 90 97 - -

PfhB3 - 100B 98 96 - -

PfhB4 - 100 - - 93 93
APercent amino acid similarity to same protein from strain Pm70.
BPercent amino acid similarity to same protein from strain P1059.

Table 2 Predicted proteins of interest present in P.
multocida strains X73 and P1059 at greater than 90%
similarity but present at less than 90% similarity in strain
Pm70

Gene
locus

Length
(aa)

Predicted function

00056 576 Hemolysin activator protein precursor

00060 1767 Exoprotein involved in heme utilization or
adhesion - PfhB3

00219 96 Hypothetical protein

00361 617 Outer membrane iron receptor protein-Fe
transport

00444 80 Hypothetical protein

00514 116 Hypothetical protein

00515 91 Hypothetical protein

00522 70 Hypothetical protein

00795 972 Beta-1,3-glucosyltransferase

01068 197 Opacity family integral membrane protein-Opa
protein

01069 169 SprT- protein

01350 424 Nucleoside permease -NupC
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acid similarity. Furthermore, a third outer membrane
porin ompH3 was present in all sequenced strains except
strain X73, but was highly conserved within these
strains. The ptfA gene, encoding a type 4 fimbrial sub-
unit, was highly conserved in all sequenced strains, as
was comE encoding a fibronectin-binding protein. The
pfhB1 gene, encoding a filamentous hemagglutinin pro-
tein, was present in strains Pm70, P1059, X73, and 3480.
Figure 3 Dendrogram depicting amino acid sequence
similarities between the filamentous heagglutinins of
Pasteurella multocida. Evolutionary history was inferred using the
Maximum Likelihood method based on the JTT matrix-based model.
The tree is drawn to scale, and 500 bootstrap iterations were
performed. A total of 1,479 positions were used in the final dataset.
The analyses were conducted in MEGA [Tamura et al. 2007]. Proteins
from P. dagmatis were included for comparative purposes.
PfhB1 was highly conserved among these strains. PfhB2,
a second filamentous hemagglutinin, was present in
strains Pm70, P1059, X73, and 36950. This protein was
more variable in amino acid sequence among these
strains (Figure 3). Two other genes encoding filamentous
hemaggultinins, pfhB3 and pfhB4, were absent in strain
Pm70, with pfhB3 present in strains P1059, X73, and
36950, and pfhB4 present in strains P1059, HN06, and
3480. Finally, lipoproteins plpP, plpB, and plpD were
present in all sequenced strains, and all were highly con-
served except plpP, whose product shared only 82-98%
amino acid similarity between strains.

Single nucleotide polymorphisms
The three avian source P. multocida genomes were also
compared for SNPs within the conserved regions of their
genomes using MAUVE [42], and the SNPs were ana-
lyzed for their coding effects using SNPeff [44] (Table 4).
A total of 31,021 SNPs were identified between strains
Pm70 and P1059, and 26,705 SNPs were identified be-
tween strains Pm70 and X73. The density of SNPs varied
considerably across the P. multocida genome, with some
regions containing a much higher density of SNPs than
the rest of the core genome (Figure 4). This suggests
that some regions of the genome are under diversifying
selection, while the majority of the genome is under
neutral or purifying selection. The ratio between non-
synonymous to synonymous substitutions (dN/dS) is
commonly used as a measure of purifying versus



Table 4 Single nucleotide polymorphism (SNP) analysis and dN/dS ratios of categorized and selected coding regions of
Pasteurella multocida strains Pm70, P1059, and X73

Location Non-synonymous Synonymous dN/dS

Pm70 vs. P1059 Total 8910 22111 0.4

Cytoplasmic 2431 9933 0.25

Cytoplasmic membrane 1556 5556 0.28

Extracellular 94 103 0.91

Outer membrane 1575 2062 0.76

Periplasmic 93 549 0.17

Pm70 vs. X73 Total 7401 19304 0.38

Cytoplasmic 2384 9162 0.26

Cytoplasmic membrane 1251 4710 0.27

Extracellular 125 134 0.93

Outer membrane 1783 1976 0.9

Periplasmic 98 593 0.17

Function Non-synonymous Synonymous dN/dS

PfhR (pm0040) Putative porin-Fe transport 7 15 0.47

PfhB1 (pm0057) Filamentous hemagglutinin 34 65 0.52

PfhB2 (pm0059) Filamentous hemagglutinin 498 506 0.98

Est (pm0076) Outer membrane esterase 39 59 0.66

PtfA (pm0084) Type IV fimbrial subunit-ptfA 4 0 4

HgbA (pm0300) TonB-dependent hemoglobin receptor 159 152 1.05

Csy1 (pm0305) CRISPR-associated protein 290 130 2.23

OmpW (pm0331) Outer membrane protein 2 4 0.5

pm0336 TonB-dependent receptor 39 57 0.68

HgbB (pm0337) Hemoglobin binding protein 78 90 0.87

OmpH_1 (pm0388) Outer membrane porin 36 66 0.55

OmpH_2 (pm0339) Outer membrane porin 10 16 0.63

TolC1 (pm0527) Outer membrane efflux channel 12 44 0.27

Pcp (pm0554) Peptidoglycan-associated protein 0 3 0

HemR (pm0576) Hemoglobin binding receptor 6 4 1.5

pm0591 Secreted effector protein 75 40 1.88

PhyA (pm0773) Capular polysacharride export protein 2 4 0.5

OmpA (pm0786) Outer membrane protein 61 70 0.87

Pm0803 Outer membrane receptor protein, mostly Fe transport 67 58 1.16

TadF (pm0844) Pilus assembly protein 112 81 1.38

TadE (pm0845) Pilus assembly protein 134 70 1.91

TadD (pm0846) Pilus assembly protein 126 103 1.22

RcpB (pm0851) Pilus assembly protein 144 69 2.08

RcpA (pm0852) Pilus assembly protein 182 222 0.82

RcpC (pm0853) Pilus assembly protein 166 112 1.48

Flp1 (pm0855) Flp pilin component 21 19 1.11

pm0998 Hypothetical protein 6 4 1.5

NanB (pm1000) Outer membrane sialydase 157 161 0.98

TonB (pm1188) TonB energy supply via iron transport 3 4 0.75

GlpQ (pm1444) Glycerophosphodiester 2 3 0.67
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Table 4 Single nucleotide polymorphism (SNP) analysis and dN/dS ratios of categorized and selected coding regions of
Pasteurella multocida strains Pm70, P1059, and X73 (Continued)

PlpE (pm1517) Protective outer membrane lipoprotein 24 39 0.62

PlpP (pm1518) Protective outer membrane lipoprotein 63 55 1.13

TorD (pm1794) Chaperone 4 3 1.33
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diversifying selection [56]. The overall dN/dS ratios of
all coding regions of strains P1059 and X73 compared to
strain Pm70 were 0.40 and 0.38, respectively. Proteins
were then divided into groups based upon predicted
subcellular localization of each protein using PSORT-B
version 3.0. Using this approach, the dN/dS ratios varied
considerably, with higher ratios (0.76-0.93) found within
proteins predicted as extracellular or outer membrane
[57]. Amongst specific outer membrane proteins, the
highest dN/dS ratios were observed within PfhB2, HgbA,
HemR, pm0591 (a secreted effector protein), pm0803
(an iron-regulated outer membrane protein), TadD-F (pi-
lus assembly proteins), RcpB-C (pilus assembly proteins),
and PlpP. The higher dN/dS ratios observed among this
subset of extracellular and outer membrane proteins is
suggestive that they are under diversifying selection due
to interactions with the host immune system, although
further analyses would be required to confirm this
observation.

LPS genes
The Heddleston somatic typing system classifies P.
multocida into 16 somatic types based on antigenic dif-
ferences in the lipopolysaccharide (LPS) [6]. Good pro-
gress has been made in understanding the structural
basis for the LPS typing scheme. The genes and the
transferases required for the biosynthesis of the somatic
type-specific outer core region of the LPS has been iden-
tified in strains of P. multocida strains representing
Figure 4 Density map of single nucleotide polymorphisms (SNPs) bet
multocida strain Pm70 genome conserved in all strains. SNPs were ide
three strains.
various somatic types [24,58-63]. Since endotoxin (LPS)
is a key virulence factor in P. multocida, we examined
each gene involved in LPS biosynthesis in the X73 and
P1059 strains and compared with the Pm70 strain. All
three strains produced two glycoforms simultaneously,
termed glycoforms A and B. Both X73 and P1059
contained the inner core biosynthetic complement of
genes, including kdtA (P1059-01455; X73- 01363), hptA
(opsX; P1059-02017; X73- 01921), kdkA (P1059-01451;
X73-01359), hptC (rfaF; P1059-02018 ; X73-01922), hptD
(P1059-01443; X73-01351 ) and gctA (P1059-01456; X73-
01364). The gene that encodes for the enzyme which cat-
alyzes the attachment of phosphoethanolamine to L-α-D
Heptose −11 (Pm70-pm0223) was present only in strains
P1059 and Pm70. There appeared to be some variation in
the hptD gene between Pm70 and the X73 and P1059
strains although it was generally conserved between
strains. Linking the inner core to the outer core is the
hptE gene, present in both X73 and P1059 (X73-01185;
P1059-01293). The outer core structure expressed by
X73, P1059 and Pm70 strains are structurally distinct and
distal part of the molecule because in all three strains a
polymeric O antigen was absent. The X73 strain but not
P1059 and Pm70 express an outer core oligosaccharide
that contains two terminal galactose residues, with
phosphocholine (PCho). Present in X73 but absent from
Pm70 and P1059 were the outer core biosynthetic genes
involved in phosphocholine (PCho) biosynthesis genes
for somatic type 1. As reported previously [23], these
ween strains Pm70, P1059, and X73 across the Pasteurella
ntified using MAUVE and included genomic regions present in all
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genes include pcgA (X73-01180), pcgB (X73-01182), pcgC
(X73-01181), and pcgD (X73-01183) as well as gatA
(X73-01184). X73 attaches a phosphoethanolamine
(PEtn) residue to the terminal galactose. Studies have
shown [23] that PCho on the LPS is important for viru-
lence of X73 strain to chickens. However, a clear role for
PEtn has not been defined. Present in the outer core of
Pm70 and P1059, but absent in X73, were the biosynthetic
genes for somatic type 3. These genes include losA (Pm70-
Pm1143; P1059-01292); (Pm70-Pm1138; P1059-01287);
(Pm70-Pm1139; P1059-01288); (Pm70-Pm1140; P1059-
01289); and (Pm70- Pm1141; P1059-01290).
In summary, comparative analyses of highly virulent

versus avirulent P. multocida identified a number of
genomic differences that may shed light on the ability
of highly virulent strains to cause disease in the avian
host. Most of the differences observed involved the
presence of additional systems in virulent avian-source
strains P1059 and/or X73 that appear to play metabolic
roles. Such systems might enhance the fitness of these
strains in the avian extraintestinal compartment, but
without experimental evidence this is purely a specula-
tive observation. This work does, however, underscore
the need to utilize such genomic data towards targeted
molecular approaches to better understand the role of
horizontal gene transfer in the pathogenesis of this or-
ganism. Also, it is evident given the high degree of large
sequence and single nucleotide polymorphisms in
P. multocida that focused studies need to be conducted
to appreciate adaptation of these strains to their re-
spective hosts.

Additional files

Additional file 1: Table S1. Coding regions present in Pasteurella
multocida strain P1059 but absent from strains Pm70 and X73, excluding
prophage-associated regions.

Additional file 2: Table S2. Coding regions present in Pasteurella
multocida strain X73 but absent from strains Pm70 and P1059, excluding
prophage-associated regions.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TJJ performed the genomic analysis, and was the primary author of this
study. JEA participated in bioinformatics analyses, including sequence
annotation, alignments and pathway reconstruction. SSH formatted and
prepared assemblies and annotations for submission to GenBank. MH was
involved in analyzing the genome sequences. FMT participated in the
editorial review of the manuscript. SKM coordinated this study and helped to
draft the manuscript. REB conceived this study, performed the genome
sequences data and participated in writing of the manuscript. All authors
read and approved the final manuscript.

Acknowledgements
This work was supported by the Biotechnology Research and Development
Corporation, Peoria, Illinois, USA. Tools for comparative genome analysis
were provided through support of the Minnesota Supercomputing Institute.
Author details
1Department of Veterinary and Biomedical Sciences, University of Minnesota,
St. Paul, Minnesota, USA. 2Institute for Bioinformatics and Evolutionary
Studies, University of Idaho, Moscow, Idaho, USA. 3National Animal Disease
Center, Agricultural Research Service, US Department of Agriculture, Ames,
Iowa, USA.

Received: 2 January 2013 Accepted: 6 May 2013
Published: 14 May 2013
References
1. Christensen JP, Bisgaard M: Avian pasteurellosis: taxonomy of the

organisms involved and aspects of pathogenesis. Avian Path 1997,
26:461–483.

2. Christenson JP, Bisgaard M: Fowl Cholera. Rev Sci Tech 2000, 19:626–637.
3. Wilkie IW, Harper M, Boyce JD, Adler B: Pasteurella multocida: Diseases and

Pathogenesis. Curr Top Microbiol Immunol 2012, 361:1–22.
4. Carter GR: Studies on Pasteurella multocida. A hemagglutination test for

the identification of serological types. Amer J Vet Res 1955, 16:481–484.
5. Carter GR: A new serological type of Pasteurella multocida from Central

Africa. Vet Rec 1961, 73:1052.
6. Heddleston KL, Gallagher JE, Rebers PA: Fowl cholera: Gel diffusion

precipitin test for serotyping Pasteurella multocida from avian species.
Avian Dis 1972, 16:925–936.

7. Carter GR, Chengappa MM: Recommendations for a standard system of
designating serotypes of Pasteurella multocida. Proceedings of the 24th
Amer. Assoc. Veterinary Laboratory Diagnosticians 1981, 24:37–42.

8. Rhodes KR, Rimler RB: Somatic serotypes of Pasteurella multocida strains
isolated from avian hosts (1976–1988). Avian Dis 1990, 34:193–195.

9. Lee MD, Wooley RE, Glisson JR, Brown J: Comparison of Pasteurella
multocida serotype 3,4 isolates from turkeys with fowl cholera. Avian Dis
1988, 32:501–508.

10. Webster LT: The epidemiology of fowl cholera. J Exp Med 1930, 51:219–223.
11. Petersen KD, Christensen JP, Permin A, Bisgaard M: Virulence of Pasteurella

multocida subsp. multocida isolated from outbreaks of fowl cholera in wild
birds for domestic poultry and game birds. Avian Pathol 2001, 30:27–31.

12. Heddleston KL, Rebers PA: Properties of free endotoxin from Pasteurella
multocida. Am J Vet Res 1975, 36:573–574.

13. Rhodes KR, Rimler RB: Effect of Pasteurella multocida endotoxins on
turkey poults. Avian Dis 1987, 31:523–526.

14. Heddleston KL, Rebers PA, Ritchie AE: Immunizing and toxic properties of
particulate antigens from two immunogenic types of Pasteurella
multocida of avian origin. J Immunol 1966, 96:124–133.

15. May BJ, Zhang Q, Li LL, Paustian ML, Whitman TS, Kapur V: Complete
genome sequence of Pasteurella multocida Pm70. Proc Natl Acad Sci USA
2001, 98:3460–3465.

16. Steenbergen SM, Lichtensteiger CA, Caughlan R, Garfinkle J, Fuller TE, Vimr
ER: Sialic acid metabolism and systemic pasteurellosis. Infect Immun 2005,
73:1284–1294.

17. Steen JA, Steen JA, Harrison P, Seemann T, Wilkie I, Harper M, Adler B, Boyce
JD: Fis is essential for capsule production in Pasteurella multocida and
regulates expression of other important virulence factors. PLoS Pathog
2010, 6:e1000750.

18. Nanduri B, Shack LA, Burgess SC, Lawrence ML: The transcriptional
response of Pasteurella multocida to three classes of antibiotics.
BMC Genomics 2009, 14(10 Suppl 2):S4.

19. Boyce JD, Wilkie L, Harper M, Paustian ML, Kapur V, Adler B: Genomic
scale analysis of Pasteurella multocida gene expression during growth
within liver tissue of chickens with fowl cholera. Microbes Infect 2004,
6:290–298.

20. Paustian ML, May BJ, Kapur V: Transcriptional response of Pasteurella
multocida to nutrient limitation. J Bacteriol 2002, 184:3734–3739.

21. Nanduri B, Lawrence ML, Peddinti DS, Burgess SC: Effects of subminimum
inhibitory concentrations of antibiotics on the Pasteurella multocida
proteome: a systems approach. Comp Funct Genomics 2008. doi:10.1155/
2008/254836.

22. E-Komon T, Burchmore R, Herzyk P, Davies R: Predicting the outer
membrane proteome of Pasteurella multocida based on consensus
prediction enhanced by results integration and manual confirmation.
BMC Bioinformatics 2012, 13:63–80.

http://www.biomedcentral.com/content/supplementary/1471-2180-13-106-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2180-13-106-S2.pdf
http://dx.doi.org/10.1155/2008/254836
http://dx.doi.org/10.1155/2008/254836


Johnson et al. BMC Microbiology 2013, 13:106 Page 10 of 10
http://www.biomedcentral.com/1471-2180/13/106
23. Harper M, Cox A, St Michael F, Parnas H, Wilkie I, Blackall PJ, Adler B, Boyce JD:
Decoration of Pasteurella multocida lipopolysaccharide with
phosphocholine is important for virulence. J Bacteriol 2007, 189:7384–7391.

24. St Michael F, Vinogradov E, Li J, Cox AD: Structural analysis of the
lipopolysaccharide from Pasteurella multocida genome strain Pm70 and
identification of the putative lipopolysaccharide glycosyltransferases.
Glycobiology 2005, 15:323–333.

25. Bosch M, Garrido ME, de Rozas AM P, Badiiola I, Barbe J, Llagostera M:
Pasteurella multocida contains multiple immunogenic haemin- and
haemoglobin-binding proteins. Vet Microbiol 2004, 99:102–112.

26. Hatfaludi T, Al-Hasani K, Gong L, Boyce JD, Ford M, Wilkie IW, Quinsey N,
Dunstone MA, Hoke DE, Adler B: Screening of 71 P. multocida proteins for
protective efficacy in a fowl cholera infection model and
characterization of the protective antigen PlpE. PLoS One 2012, 7:e39973.

27. Ewers C, Becker AL, Bethe A, Kiebling S, Filter M, Wieler LH: Virulence
genotype of Pasteurella multocida strains isolated from different hosts
with various disease status. Vet Microbiol 2006, 114:304–317.

28. Al-Hasani K, Boyce J, McCarl VP, Bottornley S, Wilkie I, Adler B: Identification of
novel immunogens in Pasteurella multocida. Microb Cell Fact 2007, 6:1–5.

29. Rhoades KR: The microscopic lesions of acute fowl cholera in mature
chickens. Avian Dis 1964, 8:658–665.

30. Heddleston KL: Studies on pasteurellosis. V. Two immunogenic types of
Pasteurella multocida associated with fowl cholera. Avian Dis 1962, 6:315–321.

31. Boyce JD, Seemann T, Adler B, Harper M: Pathogenomics of Pasteurella
multocida. Curr Top Microbiol Immunol 2012, 361:23–38.

32. Boyce JD, Harper M, Wilkie IW, Adler B: Pasteurella. In Pathogenesis of
Bacterial Infections in Animals. Chapter 17. 4th edition. Edited by Gyles CL,
Prescott JF, Songer JG, Thoen CO. Ames, Iowa: Wiley-Blackwell; 2010.

33. Lee MD, Wooley RE, Brown J, Glisson JR: A survey of potential virulence
markers from avian strains of Pasteurella multocida. Vet Microbiol 1991,
26:213–225.

34. Tatum FM, Yersin AG, Briggs RE: Construction and virulence of a Pasteurella
multocida fhaB2 mutant in turkeys. Microb Pathog 2005, 39:9–17.

35. Tatum FM, Tabatabai LB, Briggs RE: Cross-protection against fowl cholera
disease with the use of recombinant Pasteurella multocida FHAB2
peptides. Avian Dis 2012, 56:589–591.

36. Kumar S, Blaxter ML: Comparing de novo assemblers for 454
transcriptome data. BMC Genomics 2010, 11:571.

37. Besemer J, Lomsadze A, Borodovsky M: GeneMarkS: a self-training method
for prediction of gene starts in microbial genomes. Implications for
finding sequence motifs in regulatory regions. Nucleic Acids Res 2001,
29:2607–2618.

38. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ:
Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res 1997, 25:3389–3402.

39. McClure MA, Smith C, Elton P: Parameterization studies for the SAM and
HMMER methods of hidden Markov model generation. Proc Int Conf Intell
Syst Mol Biol 1996, 4:155–64.

40. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of
transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955–964.

41. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW:
RNAmmer: consistent and rapid annotation of ribosomal RNA genes.
Nucleic Acids Res 2007, 35:3100–3108.

42. Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of
conserved genomic sequence with rearrangements. Genome Res 2004,
14:1394–1403.

43. Darzentas N: Circoletto: visualizing sequence similarity with Circos.
Bioinformatics 2010, 26:2620–2621.

44. Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X,
Ruden DM: A program for annotating and predicting the effects of single
nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012, 6(2):80–92.

45. Muraoka WT, Zhang Q: Phenotypic and genotypic evidence for L-fucose
utilization by Campylobacter jejuni. J Bacteriol 2011, 193:1065–1075.

46. Stahl M, Friis LM, Nothaft H, Liu X, Li J, Szymanski CM, Stintzi A: L-fucose
utilization provides Campylobacter jejuni with a competitive advantage.
Proc Natl Acad Sci USA 2011, 108:7194–7199.

47. Ahir VB, Roy A, Jhala MK, Bhanderi BB, Mathakiya RA, Bhatt VD, Padiya KB,
Jakhesara SJ, Koringa PG, Joshi CG: Genome sequence of Pasteurella
multocida subsp. gallicida Anand1_poultry. J Bacteriol 2011, 193:5604.
48. Michael GB, Kadlec K, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R,
Murray RW, Watts JL, Schwarz S: ICEPmu1, an integrative conjugative
element (ICE) of Pasteurella multocida: structure and transfer. J Antimicrob
Chemother 2012, 67:91–100.

49. Liu W, Yang M, Xu Z, Zheng H, Liang W, Zhou R, Wu B, Chen H: Complete
genome sequence of Pasteurella multocida HN06, a toxigenic strain of
serogroup D. J Bacteriol 2012, 194:3292–3293.

50. Muhairwa AP, Christensen JP, Bisgaard M: Investigations on the carrier rate
of Pasteurella multocida in healthy commercial poultry flocks and flocks
affected by fowl cholera. Avian Pathol 2000, 29:133–142.

51. Christensen H, Bisgaard M, Bojesen AM, Mutters R, Olsen JE: Genetic
relationships among avian isolates classified as Pasteurella haemolytica,
Actinobacillus salpingitidis' or Pasteurella anatis with proposal of
Gallibacterium anatis gen. nov., comb. nov. and description of additional
genomospecies within Gallibacterium gen. nov. Int J Syst Evol Microbiol
2003, 53(Pt 1):275–87.

52. Hatfaludi T, Al-Hasani K, Boyce JD, Adler B: Outer membrane proteins of
Pasteurella multocida. Vet Microbiol 2010, 14:1–17.

53. Bosch M, Garrido ME, Llagostera M, Perez De Rozas AM, Badiola I, Barbe J:
Characterization of the Pasteurella multocida hgbA gene encoding a
hemoglobin-binding protein. Infect Immun 2002, 70:5955–64.

54. Cox AJ, Hunt ML, Boyce JD, Adler B: Functional characterization of HgbB,
a new hemoglobin binding protein of Pasteurella multocida. Microb
Pathog 2003, 34:287–96.

55. Garcia N, Fernandez-Garayzabal JF, Goyache J, Dominguez L, Vela AI:
Associations between biovar and virulence factor genes in Pasteurella
multocida isolates from pigs in Spain. Vet Rec 2011, 169:362.

56. Rocha EP, Smith JM, Hurst LD, Holden MT, Cooper JE, Smith NH, Feil EJ:
Comparisons of dN/dS are time dependent for closely related bacterial
genomes. J Theor Biol 2006, 239:226–35.

57. Gardy JL, Spencer C, Wang K, Ester M, Tusnady GE, Simon I, Hua S, DeFays
K, Lambert C, Nakai K, et al: PSORT-B: Improving protein subcellular
localization prediction for Gram-negative bacteria. Nucleic Acids Res 2003,
31:3613–7.

58. Harper M, Cox AD, Adler B, Boyce JD: Pasteurella multocida lipopolysaccharide:
The long and the short of it. Vet Microbiol 2011, 153:109–15.

59. Harper M, St Michael F, John M, Vinogradov E, Adler B, Boyce JD, Cox AD:
Pasteurella multocida Heddleston serovars 1 and 14 express different
lipopolysaccharide structures but share the the same lipopolysaccharide
biosynthesis outer core locus. Vet Microbiol 2011, 150:289–96.

60. Harper M, St Michael F, Vinogradov E, John M, Boyce JD, Adler B, Cox AD:
Characterization of the lipopolysaccharide from Pasteurella multocida
Heddleston serovar 9; identification of a proposed bi-functional dTDP-3
-acetamido-3,6-dideoxy-a-D-glucose biosynthesis enzyme. Glycobiology
2012, 22:332–44.

61. St Michael F, Harper M, Parnas H, John M, Stupak J, Vinogradov E, Adler B,
Boyce JD, Cox AD: Structural and genetic basis for the serological
differentiation of Pasteurella multocida Heddleston serotypes 2 and 5.
J Bacteriol 2009, 191:6950–59.

62. St Michael F, Li J, Cox AD: Structural analysis of the core oligosaccharide
from Pasteurella multocida strain X73. Carbohydr Res 2005, 340:1253–57.

63. Harper M, St Michael F, Vinogradov E, John M, Steen JA, Van Dorsten L,
Boyce JD, Adler B, Cox AD: Structure and biosynthetic locus of the
lipopolysaccharide outer core produced by Pasteurella multocida
serovars 8 and 13 and the identification of a novel phosphoglycero
moity. Glycobiology 2013, 23:286–294.

doi:10.1186/1471-2180-13-106
Cite this article as: Johnson et al.: Comparative genome analysis of an
avirulent and two virulent strains of avian Pasteurella multocida reveals
candidate genes involved in fitness and pathogenicity. BMC Microbiology
2013 13:106.


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Bacterial strains
	Genome sequencing and annotation
	Comparative genomics

	Results and discussion
	Overview of the P. multocida P1059 and X73 genomes
	Unique regions of virulent avian P. multocida
	Known virulence factors and antigens
	Single nucleotide polymorphisms
	LPS genes

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

