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Abstract

plate reactor coated with P25 DEGUSSA TiO,, was used.

aquaculture systems.

Background: Outbreaks of infectious diseases by microbial pathogens can cause substantial losses of stock in
aquaculture systems. There are several ways to eliminate these pathogens including the use of antibiotics, biocides
and conventional disinfectants, but these leave undesirable chemical residues. Conversely, using sunlight for
disinfection has the advantage of leaving no chemical residue and is particularly suited to countries with sunny
climates. Titanium dioxide (TiO,) is a photocatalyst that increases the effectiveness of solar disinfection. In recent
years, several different types of solar photocatalytic reactors coated with TiO, have been developed for waste
water and drinking water treatment. In this study a thin-film fixed-bed reactor (TFFBR), designed as a sloping flat

Results: The level of inactivation of the aquaculture pathogen Aeromonas hydrophila ATCC 35654 was determined
after travelling across the TFFBR under various natural sunlight conditions (300-1200 W m™), at 3 different flow
rates (4.8, 84 and 16.8 L h'"). Bacterial numbers were determined by conventional plate counting using selective
agar media, cultured (i) under conventional aerobic conditions to detect healthy cells and (i) under conditions
designed to neutralise reactive oxygen species (agar medium supplemented with the peroxide scavenger sodium
pyruvate at 0.05% w/v, incubated under anaerobic conditions), to detect both healthy and sub-lethally injured
(oxygen-sensitive) cells. The results clearly demonstrate that high sunlight intensities (= 600 W m™) and low flow
rates (4.8 L h'") provided optimum conditions for inactivation of A. hydrophila ATCC 3564, with greater overall
inactivation and fewer sub-lethally injured cells than at low sunlight intensities or high flow rates. Low sunlight
intensities resulted in reduced overall inactivation and greater sub-lethal injury at all flow rates.

Conclusions: This is the first demonstration of the effectiveness of the TFFBR in the inactivation of Aeromonas
hydrophila at high sunlight intensities, providing proof-of-concept for the application of solar photocatalysis in

Background

Controlling infectious diseases is one of the main chal-
lenges faced by the fish farming industry [1]. A wide
range of pathogenic microbes cause a variety of diseases,
including furunculosis, infectious pancreatic necrosis,
infectious salmon anaemia and amoebic gill disease, each
of which results in extensive economic losses [2,3]. There
is a growing awareness of the need to eliminate such
pathogens by disinfecting the water in the aquaculture
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systems [4,5]. Disinfection is an effective treatment for
many types of pathogenic microorganisms, including
viruses, bacteria, fungi and protozoan parasites [6]. How-
ever, water disinfection remains a scientific and technical
challenge [7]. The most commonly used techniques for
water disinfection are chlorination, membrane filtration
and ozone treatment [8] but antibiotics and biocides
have also been used. Unfortunately all have disadvan-
tages, particularly in relation to the generation of toxic
by-products which may cause health risks to human con-
sumers [9]. Additionally, some viral vaccines have been
developed in the past two decades, but these are limited
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to selected viral pathogens and they are also extremely
costly to produce and to administer [10].

Solar radiation is an alternative, low-cost, effective
technology for water disinfection [11]. Solar disinfection
normally refers to exposure of contaminated water to
natural sunlight for a sufficient length of time to reduce
the number of pathogenic microbes below the infective
dose [5,12]. So far the most commonly employed
method for solar disinfection is to expose contaminated
drinking water kept in transparent plastic containers to
full sunlight for at least 6 h [11,13] which is slow, and is
not always feasible as a result of daily and seasonal var-
iations in weather conditions.

Solar disinfection can be enhanced substantially by
using certain photocatalysts such as the photoactive
semiconductors TiO,, ZnO, Fe;03, WO3 and CdSe.
These photocatalysts produce highly reactive oxygen spe-
cies (ROS) which destroy microbial pathogens; this is
known as solar photocatalytic disinfection [14,15]. Tita-
nium dioxide (TiO,) is one of the most widely used,
stable and active photocatalysts in water disinfection [8].
It has shown its effectiveness not only in small-scale solar
disinfection reactors but also in pilot studies of large-
scale solar photocatalysis for drinking water and waste
water [16-19].

Typically, TiO, slurries are used for chemical and
microbial photodegradation [9,19]. However, such slurries
create problems in separating the photocatalyst from the
treated water, leading to the development of reactors con-
taining an immobilised photocatalyst. Different types of
solar photocatalytic reactors have been developed for
water treatment [20]. The most frequently used types of
reactors are: (i) the parabolic trough reactor (PTR), (ii) the
double skin sheet reactor (DSSR), (iii) the compound para-
bolic collecting reactor (CPCR) and (iv) the thin-film
fixed-bed reactor (TFFBR). The most important part of a
TFFBR is a sloping plate coated with P25 TiO, DEGUSSA
over which flows the contaminated water during use. The
TFFBR also contains a pump, by which the water flow rate
can be controlled. The main advantages of this TFFBR are
(i) its high optical efficiency, (ii) it's simple construction
method and (iii) the low investment costs involved in
development. Further advantages are that oxygen transfers
effectively into the water film and there is no need for
TiO, separation from the treated water, in contrast to
reactors based on TiO, slurries.

An understanding of the mechanism of microbial photo-
inactivation during solar photocatalysis comes mostly
from studies of bacteria [5,7,21]. The most common
photocatalytic inactivation mechanism described is based
on inactivation due to hydroxyl radicals and other reactive
oxygen species (ROS) when bacteria come in contact with
a solar-excited photosensitiser. This photooxidation pro-
cess causes cell membrane disruption and increase cellular
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permeability, with significant cell damage that eventually
results in complete inactivation of the bacteria [13].

The conventional approach to assessing the viability of
bacteria during solar disinfection is to enumerate samples
after exposure to sunlight, using conventional plate counts
on a suitable agar-based growth medium with incubation
of plates in standard aerobic conditions (e.g. 24 h incuba-
tion at a suitable temperature). However, recent studies
have demonstrated that reactive oxygen species (ROS),
derived mainly from aerobic respiration during the enu-
meration process, may inactivate sub-lethally damaged
bacteria and prevent their growth and enumeration under
aerobic conditions [22]. Such injured cells can only be cul-
tured and counted under conditions where reactive oxy-
gen species are neutralised (ROS-neutralised conditions) e.
g. by supplementing the growth medium with the peroxide
scavenger sodium pyruvate and incubating under anaero-
bic conditions to prevent cellular respiration, allowing the
bacteria to grow by fermentation [22-24]. This approach
was taken in the present study; uninjured bacteria were
enumerated under aerobic conditions while uninjured plus
injured (ROS-sensitive) bacteria were enumerated under
ROS-neutralised conditions, with the difference between
the counts under both sets of conditions representing the
number of injured bacteria in the sample.

Even though bacteria have received more attention than
other groups of microbes in solar photocatalysis research,
bacterial pathogens of fish have been largely ignored in
these studies, prompting the study reported here. Aeromo-
nas hydrophila is a Gram-negative bacterium, known to
be a primary fish pathogen [25]. A. hydrophila tends to be
virulent towards most cultured and wild freshwater fish,
especially trout, salmon, carp, catfish and tilapia. Red fin
diseases and haemorrhagic septicaemia are mainly asso-
ciated with A. hydrophila [26). Antibiotics and several vac-
cines have been used to treat these infections, but
extensive use of antibacterial agents has caused A.hydro-
phila to develop resistance towards certain antibiotics
including, ampicillin, tetracycline, chloramphenicol and
sulphonamides, [27]. Consequently, it is now important to
develop alternative treatments for this pathogen.

The present research reports on the development of a
system for the disinfection of water contaminated with
A. hydrophila ATCC 35654 as a model for solar photo-
catalysis in aquaculture systems. The result presented
here show for the first time that solar photocatalysis can
provide an effective means of inactivation of A.hydro-
phila, which provides proof-of-concept for the applica-
tion of solar photocatalysis in aquaculture systems.

Methods
Reactor

A pilot-scale thin-film fixed-bed reactor (TFEFBR) system
has been developed, based on two previous researches
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[28,29]. The overall experiment was set-up as a single-pass  immobilised photocatalyst, P25 TiO, DEGUSSA and a col-
process and the reactor consisted of a water reservoir  lector vessel for the treated water (Figure 1). As in previous
(representing an aquaculture pond in the model system), studies of chemical degradation [28,29] and recent studies
an air-controlled pump, a solar collector (glass plate) with  of microbial inactivation [7,21], the reactor angle was
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Figure 1 (a) schematic diagram and (b) photograph of the thin-film fixed-bed reactor (TFFBR) used in this study.
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maintained at 20° throughout, and the light intensity was
measured from the same angle as that of the reactor. The
illuminated surface area was 1.17 m in depth and 0.40 m in
width; the irradiated volume was 200 mL in 2.5 min (irradi-
ance time) and the density of the TiO, photocatalyst 20.50
g m? and the photocatalyst layer was not covered during
the experiments.

The TiO, P25 Degussa photocatalyst was coated on four
pieces of 3.3 mm thick Borofloat 33 glass plates (Schott,
Australia). Plates were degreased using a reagent grade
Piranha solution (3:1 sulphuric acid and 30% hydrogen
peroxide). Then a slurry of TiO, was prepared with
methanol and the glass was coated by spraying. Then it
was baked at 450°C for 2 h to anneal the TiO, to the glass.

Bacterial culture

Aeromonas hydrophila ATCC 35654 was purchased from
Oxoid, Australia. This was maintained by repeated sub-
culture on trypticase soy agar (TSA) (Oxoid, Australia) at
25°C. The stock cultures were stored at-70°C in sterile
saline containing 20% (v/v) glycerol. For experimental
use, cultures were prepared by loop inoculation of bac-
teria into 100 mL of trypticase soy broth (TSB) (Oxoid,
Australia) on a shaking water bath for 24 h at 25°C. To
obtain a working cell suspension, the overnight culture
was centrifuged at 13000 g for 1 min. The supernatant
was discarded and the cell pellet was rinsed twice with
water prepared by reverse osmosis, to remove all traces
of the growth medium. Then 6 mL of this cell suspension
was added to the 6 L of sterile natural spring water
(Satur8 Pty. Ltd, Australia) to give an initial bacterial
count of 10° CFU/ml added to the reservoir of the
reactor.

Experimental procedure

For each experiment water containing A.hydrophila
ATCC 35654 was run from the reservoir through the reac-
tor for at least 30 min with different flow rates (4.8 L h'%,
8.4 L h''and 16.8 L h™') controlled by an air-pressure
pump. Every 10 min a water sample was collected in a
sterile McCartney bottle from the outflow of the TiO,-
coated plate, labelled and returned to the laboratory,
shielded from further exposure to sunlight. Reservoir sam-
ples were also collected at 0 min and 30 min to provide
the untreated (dark) control counts for each experiment.
During the experiment, every 2 min, total sunlight inten-
sity readings were obtained in W/m?” using a Pyranometer
(model SP1110, Skye instruments, UK). At the same time
solar ultra-violet (UV) light intensity readings were also
measured using a Solarmeter (model 5.0, UV meters,
Solartech, Inc, USA). Experiments were carried out under
different sunlight conditions with a range of total sunlight
of 300-1200 W m™ and UV intensities of 20-60 W m™.
A comparative experiment was also carried under full
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sunlight (> 1000 W m?) with the same procedure using a
glass plate of the same size but without TiO, in the
TFFBRat 4.8 Lh™.

Laboratory enumeration
Each sample was processed by serial decimal dilution to
cover the range 10°-107. Then three aliquots of 20 uL of
each dilution were plated by the droplet spread technique
[23] on TSA with or without 0.05% w/v sodium pyruvate
and incubated at 25°C for 48 h. Plates without sodium pyr-
uvate were incubated in a conventional aerobic incubator
(Cotherm, Biocell 1000, Thermo Fisher Scientific Ltd.
Australia), to provide counts of healthy bacteria. Plates
with sodium pyruvate were incubated under anaerobic
condition in a dedicated anaerobic cabinet (Model 10,
CQY Inc., USA) to create ROS-neutralised conditions, giv-
ing the count of healthy bacteria plus injured bacteria.
Plates were counted using a colony counter and converted
to log;o CFU/mL. To provide a measure of the inactivation
that occurred due to solar photocatalysis, the log-trans-
formed count of sunlight-treated water at each time point
were subtracted from the log-transformed count of
untreated water (dark control) to give an overall value for
log inactivation. As an example, for a treated log count of
3.83 and an untreated log count of 5.16, then log inactiva-
tion = 5.16-3.83 = 1.33, which represents (antilog 1.33) a
reduction in absolute count of around twenty-fold.
Statistical comparisons of different data sets were car-
ried out using regression analysis of log-transformed
data.

Results

Effectiveness of TiO, photocatalyst on inactivation of A.
hydrophila inactivation

In Figure 2, spring water with an initial level of 5.16 Log
CFU ml™ Aeromonas hydrophila (ATCC 35654) showed
only 0.06 log inactivation with a single pass across the
glass plate reactor (no TiO,) with a final average concen-
tration of 5.1 log CFU ml ™" and with no detectable cell
injury, under high sunlight intensity of (1032-1187) W m™
(UV light intensity = 52.8-62.8 W m™). On the other
hand, a single pass across the TFFBR with TiO, showed
1.33 log inactivation, with minimal cell injury, with an
average final concentration of 3.83 Log CFU ml™ from a
similar 5.16 Log CFU ml™, initial level of A. hydrophila.

Interrelationship of flow rate and total sunlight on
inactivation of Aeromonas hydrophila

Figure 3a shows the log inactivation data for A.hydrophila
ATCC 35654 in sterile spring water run through the
TFFBR at 4.8 L h™ flow rate under various total sunlight
conditions, from 300 W m™2 to 1200 W m2, and then
enumerated under (i) aerobic and (ii) ROS-neutralised
conditions. Thus, each experiment provides two sets of log
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Figure 2 Effect of TiO, photocatalyst on inactivationof A. hydrophila (ATCC 35654) under high sunlight condition (1032-1187) W m™
or (UV light intensity = 50.8-62.8 W m™) at 4.8 L h™", with and without TIO, coating on the TFFBR single pass reactor. Enumeration was
carried out under standard aerobic conditions (unfilled bars) and under ROS-neutralised condition (filled bars).

TiO2 coated plate

inactivation data, (i) an aerobic result, based on healthy
cells only and (ii) a ROS-neutralised result, representing
healthy and injured cells together. At low total sunlight
intensities of < 600 W m™, there was a far larger difference
between the log-inactivation values obtained using aerobic
and ROS-neutralised counts than was the case for sunlight
intensities above 600 W m™2 This demonstrates a far
greater proportion of injured (ROS-sensitive) cells at lower
sunlight conditions (< 600 W m™). In contrast, higher
sunlight intensities ranging from 600 W m™ to 1100 W
m? resulted in greater proportional inactivation (higher
log inactivation values), whether quantified both in aerobic
or ROS-neutralised conditions, with minimal differences
in log inactivation values. This demonstrates that at high
sunlight intensities, inactivation is not accompanied by
sub-lethal injury, in contrast to the findings at lower sun-
light intensities (< 600 W m ™).

Linear regression trend lines were plotted for each data
set (i.e. for log inactivation data obtained from counts
under aerobic and ROS-neutralised conditions). ROS-
neutralised condition predicted a best fit line with an
intercept close to zero and a strong fit of the data to the
trend line, based on a regression coefficient of 0.751
(Table 1). In contrast under aerobic conditions, the trend
line has a positive intercept and a weaker fit, with a
regression coefficient of 0.535. Given that the logical
expectation is that there would be no inactivation at 0 W
m? sunlight, this is consistent with the notion that data

based on ROS-neutralised counts provide a more appro-
priate measure of inactivation than standard aerobic
counts, with the latter give a substantial overestimate of
the effectiveness of solar photocatalysis at low sunlight
intensities (< 600 W m™).

Figure 3b and 3c showed the log inactivation data for
A. hydrophila ATCC 35654 in spring water run through
the reactor at flow rates of 8.4 L h™ and 16.8 L h},
respectively, under equivalent sunlight conditions to
those shown in Figure 3a. Both graphs show a similar
pattern of greater proportional cell injury, manifest as
ROS-sensitivity and lack of growth under aerobic condi-
tions, to the data for low flow rate (Figure 3a) when the
total sunlight intensity was < 600 W m™. Similarly,
when the total sunlight intensity was 600-1100 W m 2,
there was a greater log inactivation and less evidence of
sub-lethal injury.

Linear regression analyses were also carried out for
flow rate data at 8.4 and 16.8 L h™l. At both flow rates,
the trend lines based on aerobic counts gave positive
intercepts whereas the ROS-neutralised data showed an
intercept close to zero, in line with the outcome at 4.8 L
h' (Table 1). Similarly, the aerobic count data at 8.4
and 16.8 L h™ had lower regression coefficients than for
ROS-neutralised data. Overall, the interpretation of
these data is that aerobic counts overestimate the appar-
ent inactivation of A. hydrophila ATCC35654 and that
ROS-neutralised counts are required to provide counts



Khan et al. BMC Microbiology 2012, 12:5
http://www.biomedcentral.com/1471-2180/12/5

Page 6 of 11

1] auu U SuUd

(c) ;

4
-
u
@
c
Al
a
e

(b)

bl

l.cig

.4 A

A

Figure 3 Effect of different flow rates (a) 4.8 L h™", (b) 8.4 L h™" and (c) 16.8 L h™, on log inactivation of A.hydrophila ATCC 35654 in
spring water run through the TFFBR under different total sunlight conditions. Enumeration was aimed at under standard aerobic
conditions (open circle) and under ROS-neutralised conditions (closed circle).
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of injured and healthy cells, with trend lines that fit with
the logic of a zero intercept and a strong fit of the data
to the trend line. Based on ROS-neutralised data, there
is a strong effect of flow rate on photocatalysis using the
TFFBR-this is evident from the decrease in slope for the
linear regression analysis based on the ROS-neutralised
data from the slowest flow rate (4.8 L h™') to the fastest
flow rate (16.8 L h™'), shown in Table 1. An equivalent
change was not observed for aerobic data, which again

points to the issues around low aerobic counts at low
sunlight intensities and their effects on the overall trend
data.

The data in Figure 3 also demonstrate that the combi-
nation of a low flow rate of 4.8 L h™' combined with a
total sunlight intensity of 600 W m™ or more gave the
greatest log inactivation of A. hydrophila ATCC 35654,
pointing to such conditions as being most effective for
solar photocatalysis.
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Table 1 Linear regression analysis for inactivation of A.hydrophila ATCC 35654 under 3 different flow rates

Flow rate Enumeration condition Linear regression equation R? values

48 Lh" Aerobic Y = 0.0004X+0.976 0.535
ROS-neutralised Y = 0.0018X-0.010 0.751

84h' Aerobic Y = 0.0002X+0.981 0.179
ROS-neutralised Y = 0.0012X+0.084 0.650

168 L h' Aerobic Y = 0.0004X+0.496 0311
ROS-neutralised Y = 0.0009X+0.048 0.503

Interrelationship of flow rate and solar UV on inactivation
of Aeromonas hydrophila

Figure 4 shows the log inactivation rate of A.hydrophila
(ATCC 35654) in spring water run through the reactor
with 3 flow rates (4.8, 8.4 and 16.8 L h™*), with the data
plotted against solar UV intensity, ranging from 20 W
m2 to 80 W m2, to see whether the same results were
obtained as for total sunlight in Figure 3. This was car-
ried out because TiO, is specifically photoactivated by
UV light at 390-400 nm. Overall, the same trends of (i)
positive intercepts for log inactivation data based on
aerobic counts (ii) close-to-zero intercepts for log inacti-
vation data based on ROS-neutralised counts (Table 2)
and (iii) weaker fits of trend lines based on aerobic
counts were observed for results plotted against UV
light as those for total sunlight (Figure 3), with no evi-
dence of any stronger relationships based on UV data
than those for total sunlight. This demonstrates that
total sunlight is as good a predictor of solar photocataly-
sis in these TFFBR experiments as UV light.

Discussion

While earlier studies have mostly concentrated on the
application of TFFBR systems for chemical degradation,
TiO,-based photocatalysis has proved its ability to
enhance the rate of inactivation of microbes in contami-
nated drinking waters and waste waters, enabling such
waters to be disinfected [20,21]. The present study has
clearly shown that A. hydrophila ATCC 35654 can be
effectively inactivated in spring water using the TFFBR
under sunlight conditions of > 600 W m, demonstrat-
ing its potential for applications in aquaculture, espe-
cially in tropical and sub-tropical developing countries
where sunlight is abundant and the resources for alter-
native forms of disinfection are scarce.

The efficiency of the TFFBR was also investigated in
this study by flowing (at 4.8 L h™") contaminated spring
water sample under high sunlight intensities and by
using same sized glass with and without TiO, under the
same reactor conditions. The findings of this study con-
firm the results of two previous studies [7,21]. The pre-
sence of TiO, showed a clear enhancement in solar
photocatalysis [21]. The current study clearly shows that

solar energy alone is unsufficient to inactivate A. hydro-
phila and that a photocatalyst such as, TiO2 is required
for effective reduction in counts.

Microbial disinfection by solar photocatalysis is a
complex and challenging process [30]. The extent of
inactivation observed in A. hydrophila ATCC 35654
under high sunlight intensity was also found to be simi-
lar to that reported for other microbes in early studies
[8,16]. Thus one investigation showed that when the UV
irradiance was 20-43 W m?, the inactivation of the fun-
gus Fusarium sp. was faster than than at lower irra-
diances (cloudy weather condition), using a CPC reactor
[8]. Similar effects of solar irradiation on inactivation
were observed in the present study, under different sun-
light condition. For example, at lower sunlight condi-
tions (total sunlight intensity = 300-600 W m™ or UV
irradiance = 20-40 W m™) inactivation was considerably
less than was observed at the highest sunlight conditions
(> 1100 W m™2 and > 65 W m™) at 4.8 L h™'. Solar
photocatalytic activity was also demonstrated for various
pathogens in drinking water in a batch culture reactor
using simulated sunlight [16], in contrast to the TFFBR
system tested under natural sunlight used in the present
study. Similarly, recent studies have succeeded in photo-
catalysis but they required a long UV exposure times to
achieve a log inactivation of 6-fold for E.coli K12 using
a CPC pilot plant solar reactor [7,21]. Such inactivation
is far greater than that observed in the present study,
where the log inactivation was around 1.38 with an
average initial count of 1.36 x 10> CFU mL™ and aver-
age final count of 5.10 x 10°> CFU mL™, at the highest
sunlight intensities—this is most likely due to the rapid
transfer of contaminated liquid across the TFFBR plate,
which is around 2.5 min at 4.8 L h''flow rate, in the
present study. As most previous studies have used an
artificial UV light source for exposure, it is difficult to
make direct comparisons to the present study, where
natural sunlight has been used. Additionally, different
type of reactors will have different dynamics of inactiva-
tion and flow, as well as dissimilar kinetics of change
with light intensity.

Counts of A. hydrophila ATCC 35654 exposed to the
TFFBR system at low sunlight (< 600 W m~2) under
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Figure 4 Effect of different flow rates (a) 4.8 L h™", (b) 8.4 L h™" and (c) 16.8 L h™, on log inactivation of A.hydrophila ATCC 35654 in
spring water run through the TFFBR under different Ultraviolet (UV) light conditions. Enumeration was aimed at under standard aerobic
condition (open circle) and under ROS-neutralised condition (closed circle).

Table 2 Linear regression equations and R? values of A.hydrophila ATCC 35654 inactivation against UV light intensities
under 3 different flow rates

Flow rates Enumeration condition Linear regression equation R? values

48 L 0" Aerobic Y = 0.0006X+0.985 0492
ROS-neutralised Y = 0.023X+0.050 0678

84 Lh' Aerobic Y = 0.004X+0.961 0410
ROS-neutralised Y = 0.018X+0.120 0.639

168 Lh" Aerobic Y = 0.009X+0415 0.395

ROS-neutralised Y = 0.018X-0.052 0611
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ROS-neutralised conditions were substantially higher
than those obtained from standard aerobic plate counts,
which validates the finding from previous studies of
E. coli and other bacteria [22-24]. This indicates that the
antioxidant system of many cells of A. hydrophila
ATCC 35654 was damaged by solar photocatalysis at
low sunlight intensities, resulting in their sensitivity
towards their own respiratory by-products. Such cells
were only able to form colonies when sodium pyruvate (a
scavenger of hydrogen peroxide) is added, coupled with
growth under anaerobic conditions, which will enable the
bacteria to use fermentative pathways, rather than aerobic
respiration, for energy generation. The findings of this pre-
sent study unequivocally demonstrate that at all three
different flow rates tested, at low sunlight intensities
(< 600 W m) there was a substantial difference between
the log inactivation results based on ROS-neutralised
and conventional aerobic counts (Figures 3 and 4). At
4.8 L h™', there was close to 1 log difference between the
ROS-neutralised and aerobic log inactivation results, sug-
gesting that the aerobic data provide an apparent inactiva-
tion that overestimates the true value. For other two flow
rates (8.4 and 16.8 L h™') the difference between the two
sets of data were around 0.9 and 0.5 (with similar initial
inoculam of 1.33 x 10°> CFU mL ! and final count of
9.40 x 10° and 1.75 x 10* CFU mL™) respectively, indicat-
ing a reduction in the amount of sub-lethal injury at
higher flow rates that is also coupled with a lower overall
inactivation (Table 1). While previous studies of solar dis-
infection have demonstrated sub-lethal injury and ROS-
sensitivity in batch culture with uncalatysed reactors, this
is the first study to do so for the TFFBR continuous flow
photocatalytic system. On the other hand, at higher sun-
light intensities (> 600 W m?), the differences between
the results based on aerobic counts and ROS-neutralised
counts were negligible for all flow rate conditions, demon-
strating the strength of high sunlight to provide powerful
inactivation, with no sign of sub-lethal injury.

Sometimes, sunlight itself is not sufficient for water dis-
infection, due to the effectiveness of photoreactivation
mechanisms in microorganisms [31]. A recent study has
demonstrated the effectiveness of immobilised TiO, reac-
tors in inactivating bacteria to such an extent that their
photoreactivation mechanisms are not able to repair the
damage [19], indicating that fixed-bed TiO, reactors
increase the extent of damage to bacteria from the very
beginning of the process, whereas TiO; slurry systems
required longer irradiation times to cause an equivalent
amount of cellular damage. In a slurry system, TiO,-
related damage occurs at the cell membrane of bacteria;
however, damage is distributed across the whole mem-
brane, so membrane permeability effects are not always
strong enough to cause irreversible inactivation in the
early stages of the process. On the other hand, in a fixed-
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bed reactor, while the free radicals generated may be
lower in number, the damage can be concentrated on the
cell membrane area, causing inactivation [19]. The result
of the current study can be interpreted in similar
approach, but with respect to sunlight intensity. Here it
was observed that while low sunlight resulted in substan-
tial sub-lethal injury, with results based on ROS-neutra-
lised counts being far lower than for aerobic data, at
higher light intensities, ROS neutralised data were similar
to those based on aerobic counts. As the data at high
sunlight intensities showed little evidence of sub-lethal
injury, this demonstrates that the TFFBR system will be
more efficient in full sunlight, where maximum inactiva-
tion is achieved.

The dynamics of flow rate in pilot-scale photocatalytic
reactors have not been well studied to date. In consider-
ing treating large volumes of water, as in aquaculture
systems, it is obvious that flow rate will be a crucial
parameter. A pilot-scale CPC reactor using TiO, in sus-
pension with different flow rates has been used to study
the inactivation of Fusurium sp. spores [18]; achieving
the highest inactivation rate of Fusurium spores at a
flow rate of 30.0 L min' with added TiO, at 100 mg L™
concentration. However, such systems require separation
of the suspended TiO, after treatment, which adds to
the complexity, in contrast to immobilised systems such
as the TFFBR. Another recent solar disinfection study
also showed the importance of evaluating different para-
meters including: flow rate; water volume within the
reactor; temperature; and solar energy [32]. They used a
CPC reactor with no added TiO, and suggested that
increasing flow rate has a substantial negative effect on
the inactivation of bacteria, which is in agreement with
the flow rate investigations of the present study. Here,
the lowest flow rate of 4.8 L h™' was found to be the
most effective for inactivation of A. hydrophila ATCC
35654 as the residence time of 2.5 minin the 4.8 L h™*
experiment is almost twice as high as the 8.4 L h™
experiment.(86 s) Similarly, when the total sunlight
intensity is at average of 1000 W m, the cumulative
energy, 150 K] m™ at 4.8 L h™" is higher than that of 86
KJ m? at 8.4 L h™' which will play a major role A.
hydrophila inactivation. In this study, the water tem-
perature in the reservoir was maintained at (22-23)°C
throughout the experiments. Due to the open structure
of the TFFBR, the temperature of the water on the reac-
tor plate was not measured, though it is logical to
expect that it would be positively related to sunlight
intensity.

Conclusion

The results clearly demonstrate that high sunlight inten-
sities (> 600 W m?) and low flow rates (4.8 L h™*) pro-
vide optimum conditions for the inactivation of the fish
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pathogen A. hydrophila ATCC 35653, with fewer
injured (ROS-sensitive) cells under such conditions than
at lower sunlight intensities. Using a TFFBR system to
disinfect these bacteria under natural sunlight is a novel
and alternative approach to conventional chemical disin-
fectants and antibiotics for control of this pathogen. The
present study is also the first to report sub-lethal injury
for a solar photocatalytic system at low sunlight intensi-
ties (< 600 W m™), which places a question mark over
conventional aerobic counts under such conditions and
demonstrates that ROS-neutralised conditions are
required to enumerate survivors of solar photocatalysis
at low sunlight levels. However, conventional aerobic
counts should be effective in enumerating A. hydrophila
ATCC 35653 surviving a TFFBR system operating under
high sunlight conditions, making it easier to assess effi-
ciency under such conditions. Overall, the use of solar
photocatalysis represents a potential low-cost, sustain-
able approach across all countries with consistent sunny
climates.
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