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Abstract

(GH23, GH73, GH102, GH103 and GH104).

on-going process.

sequenced organisms with high predictive values.

Background: To derive post-genomic, neutral insight into the peptidoglycan (PG) distribution among organisms,
we mined 1,644 genomes listed in the Carbohydrate-Active Enzymes database for the presence of a minimal
3-gene set that is necessary for PG metabolism. This gene set consists of one gene from the glycosyltransferase
family GT28, one from family GT51 and at least one gene belonging to one of five glycoside hydrolase families

Results: None of the 103 Viruses or 101 Archaea examined possessed the minimal 3-gene set, but this set was
detected in 1/42 of the Eukarya members (Micromonas sp., coding for GT28, GT51 and GH103) and in 1,260/1,398
(90.1%) of Bacteria, with a 100% positive predictive value for the presence of PG. Pearson correlation test showed
that GT51 family genes were significantly associated with PG with a value of 0.963 and a p value less than 10, This
result was confirmed by a phylogenetic comparative analysis showing that the GT51-encoding gene was
significantly associated with PG with a Pagel’s score of 60 and 51 (percentage of error close to 0%). Phylogenetic
analysis indicated that the GT51 gene history comprised eight loss and one gain events, and suggested a dynamic

Conclusions: Genome analysis is a neutral approach to explore prospectively the presence of PG in uncultured,
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Background

The macromolecule peptidoglycan (PG) is a component
of the bacterial cell wall that participates in withstanding
osmotic pressure, maintaining the cell shape and
anchoring other cell envelope components [1] PG is
composed of linear glycan strands cross-linked by
short peptides, with glycan strands of alternating N-
acetylglucosamine (GlcNAc) and N-acetylmuramic acid
(MurNACc) residues linked by f-1—4 bonds [1]. PG is at
the basis of the first classification of bacteria using the
staining procedure developed by Hans Christian Joachim
Gram in 1884 [2]. This method reveals the presence of
PG, with blue-colored Gram-positive bacteria having a
thick PG layer, red-colored Gram-negative bacteria
having a thin PG layer and poorly stained bacteria lack-
ing PG. However, Gram staining lacks sensitivity and
specificity for the detection of PG: for example,
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Mycobacterium organisms show variable results with
Gram staining, despite the fact that they do have PG [3].
In addition, PG-less Planctomycetes and Chlamydia bac-
teria stain red like Gram-negative bacteria [4,5]. Further
exploration of PG using electron microscopy observation
of the cell wall refined previous optic microscopy obser-
vations, and biochemical analyses further allowed ana-
lyzing the cell wall PG composition, contributing to the
description of additional Gram-positive species [6].

PG biosynthesis is a dynamic complex process involv-
ing 20 enzymatic reactions, including the formation of
GlcNAc-MurNAc dimers by a glycosyltransferase (GT)
of family GT28 (in this report, we adopted the family
classification described in the CAZy database [7,8]) and
the polymerization of the dimers to form the linear gly-
can strands by family GT51 glycosyltransferase [9].
These two glycosyltransferase families were the only
ones evolved in the PG synthesis. Furthermore, PG lysis
involves enzymes that may belong to six different glyco-
side hydrolase (GH) families, GH23, GH25, GH73,
GH102, GH103 and GH104. Indeed, GH23 and GH25
families include enzymes called lysozyme known to lyse
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the PG. GH73 family enzymes showed a similar folding
as GH23 and GH102, 103 and 104 families showed simi-
lar catalytic activities. So, we supposed that the six GHs
could be isofunctional. Therefore, to be able to
synthesize and to degrade PG, an organism needs a min-
imal set of three genes, comprising one GT28 gene, one
GT51 gene and at least one gene of the five GH families
mentioned above.

To circumvent the limitations associated with the
aforementioned morphological and biochemical ap-
proaches to assess the presence of PG in living
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organisms, we aimed to develop a post-genomic, neu-
tral approach to depict its presence among sequenced
representatives of the four domains of life [10] by
screening the Carbohydrate-Active Enzymes database
(CAZy) [8] for the presence of the minimal set of three
genes.

Results

Whereas none of the 103 tested Viruses and none of the
101 tested Archaea genomes exhibited the 3-gene set
(Table 1, Additional file 1), some representatives encode

Table 1 Distribution of peptidoglycan metabolism genes among all of the domains of life and among 21 bacteria

phyla
Bacteria phyla GT28 GT51 GH23 GH25 GH73 GH102 GH103 GH104 Complete
set
Archae (n=101) 4(39%) 0 0 1 (0.9%) 1 (1%) 0
Viruses (n=103) 2 (1.9%) 1(09%) 0 0
Eukaryotes 5(11.9%) 2 (4.7%) 3 (7.1%) 5(11.9%) 0 0 1(24%) 0 1(2.4%)
(n=42)
Bacteria 1342 1284 1224 419 (30%) 707 467 528 95 (7%) 1260
(n=1398) (96%) (91.8%) (87.5%) (51%) (33%) (37.7%) (90.1%)
Actinobacteria (n=136) 134 135 (99%) 130 77 8 (6%) 0 0 0 133 (97.8%)
(99%) (95.6%) (56.6%)
Aquificae (n=9) 9 (100%) 9 (100%) 9 (100%) 0 3(33%) O 0 0 9 (100%)
Bacteroides-Chlorobi (n=59) 58 (98%) 59 (100%) 53 (90%) 25 40 0 57 (98%)
(42.4%) (68%)
Chlamydia (n=27) 27 0 0 0 0 0 0 0 0
(100%)
Chloroflexi (n=14) 9 (64%) 9 (64%) 9 (64%) 1(71%) 0 0 0 0 9 (64%)
Cyanobacteria (n=42) 42 40 (95%) 32 (76%) 2 (4.7%) 7(17%) 19 0 23 32 (76%)
(100%) (45%) (55%)
Deferribacteres (n=3) 3 (100%) 3 (100%) 3 (100%) 0 0 0 3(100%) O 3 (100%)
Deinococcus-Thermus (n=13) 13 13 (100%) 10 (77%) O 0 0 0 0 10 (77%)
(100%)
Dictyoglomi (n=2) 2 (100%) 2 (100%) O 0 0 0 0 0 0
Elusimicrobia (n=2) 2 (50%) 2 (100%) 1 (50%) 0 0 0 1 (50%)
Fibrobacteres-Acidobacteria 6 (86%) 6 (86%) 7(100%) O 2(29%) 0 6 (86%)
(n=7)
Firmicutes (n=318) 315 314 (99%) 264 (83%) 189 256 0 0 0 309 (97.2%)
(99%) (59.4%) (81%)
Fusobacteria (n=5) 5(100%) 5 (100%) 3 (60%) 3 (60%) 2 (40%) O 0 0 5 (100%)
Nitrospirae (n=2) 2 (100%) 2 (100%) 2 (100%) O 0 0 0 2 (100%)
Planctomycetes (n=6) 3(50%) O 0 0 0 1(17%) 0 0 0
Proteobacteria (n=673) 664 644 (96%) 658 (98%) 121 (18%) 370 442 524 (78%) 72 644 (96%)
(99%) (55%) (66%) (11%)
Spirochaetes (n=27) 27 26 (96%) 26 (96%) 1 (37% 11 4(15%) 0 0 26 (96%)
(100%) (41%)
Synergistetes (n=3) 3 (100%) 2 (67%) 3 (100%) 0 0 0 0 2 (67%)
Tenericutes (n=32) 0 0 0 0 0 0 0 0
Thermotogae (n=11) 11 10 (91%) 10 91%) O 8(73%) O 0 0 10 (91%)
(100%)
Verrucomicrobia (n=4) 4 (100%) 1 (25%) 2 (50%) 0 0 0 0 0 0
Unclassified (n=3) 3 (100%) 2 (67%) 2 (67%) 0 0 1(33%) 1(33% 0 2 (67%)

The corresponding percentage of the genome explored is indicated in parentheses.
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one or two genes of this 3-gene set. Indeed, the Pseudo-
monas phage ]G024 and Burkholderia ambifaria phage
Bcep F1 genomes encode one GH23 gene each. For Ar-
chaea, the Methanosaetaconcilii GP-6 genome contained
one GH73, and the Methanothermobacter marburgensis
str. Marburg, Methanobacterium sp. AL-21, Metha-
nothermus fervidus DSM 2088 and Methanopyrus kan-
dleri AV19 genomes encode one GT28 gene. Among 42
tested Eukaryota, only the Micromonas sp. genome
encodes GT28, GT51 and GH103 (Table 1,
Figure 1, Additional file 1). A total of 4 other photosyn-
thetic eukaryotic genomes do not contain the complete
3-gene set but do encode a portion of these genes: the
Ostreococcus lucimarinus CCE9901 and Oryza sativa ja-
ponica group nuclear genomes encode one and four
GT28 genes, respectively; and the Arabidopsis thaliana
nuclear and chloroplastic genomes encode a total of four
GT28 genes. The Paulinella chromatophora chromato-
phore genome encodes one GT28 and one GT51 gene.
Three non-photosynthetic Eukaryota genomes encode
one GH23 gene, i.e. Cryptococcus bacillisporus WM276,
Cryptococcus neoformans var. neoformans and Homo
sapiens. By analyzing the presence of at least one gene of
the 3-gene set in 42 Eukaryota genomes, we found that
these genes were significantly more present in the
photosynthetic Eukaryota genomes (5/7, 71.4%) than in
the non-photosynthetic Eukaryota genomes (3/35, 8.5%)
(P-value=0.0001). Comparing the presence of each gene
family between Bacteria and the other domains of life
yielded a significant association between Bacteria and
the presence of GH23, GH73, GH102, GH103, GT28 (P-
value <107) and GH104 (P-value <2.107°). The 3-gene
set was found in 1,260/1,398 (90.1%) bacteria, whereas
138 (9.9%) bacteria appeared to lack at least one of these
three genes (Table 1; Additional file 2 and Additional file
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3). A review of the literature indicated that all Bacteria
possessing the 3-gene set have been previously demon-
strated to have PG, resulting in a 100% positive predict-
ive value of the 3-gene set for the presence of PG in an
organism. For 30/138 (21.7%) organisms lacking the 3-
gene set, PG information was lacking in the literature,
whereas a literature review confirmed the absence of PG
in 84/138 (60.9%) and the presence of PG in 24/138
(17.4%) organisms (Additional file 3). These data yielded
a 77.8% negative predictive value of the 3-gene set for
the presence of PG (Table 1).

The Pearson correlation test indicated a significant
correlation between the absence of any gene of the 3-
gene set and the absence of PG, with the highest correl-
ation value (0.963) for GT51 (P<107®), as confirmed by
the principal component analysis (Figure 2).

The phylogenetic comparative analysis yielded 13 clus-
ters (Table 2, Additional file 4). Two of the clusters
aggregated the loss of PG with some PG metabolism
genes: one involved PG loss and GT51 loss, with a
Pagel’s score of 60, a percentage of error close to zero
and five positive dates (cluster III) and another cluster
involved PG loss, the loss of GT51 and GH23 genes,
with a Pagel’s score of 51, a percentage of error close to
zero and four positive dates (cluster IV).

Based on the GT51 criterion, 5/114 (4.4%) organisms
(Coprococcus sp. ART55/1 [11], Ruminococcus torques
L2-14 [11], Prochlorococcus marinus str. NATL1A, Pro-
chlorococcus marinus str. NATL2A [12], Thermobacu-
lum terrenum ATCC BAA-798 [13] were misidentified
as PG-less, lending to the absence of GT51 a 100% sens-
ibility, a 99.53% specificity, a 94.38% positive predictive
value and a 100% negative predictive value for the pres-
ence of PG in the organism. We observed that 114/1,398
(8.2%) Bacteria lacking GT51 were distributed into 13/

a) PG
Pearson's
correlation  significativity
value
GT28 0.656 0.000
GT51 0.963 0.000
GH23 0.643 0.000
GH25 0.178 0.000
GH73 0.286 0.000
GH102 0.182 0.000
GH103 0.203 0.000
GH104 0.078 0.008
an orange circle. GT51 gene loss events are presented by a red square.

Figure 1 Phylogenic 16S rDNA gene-based tree extracted from a 1,114 sequence tree from IODA. GT51 gene gain event is represented by
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Figure 2 Multiple variable analysis of peptidoglycan metabolism genes. a) Pearson correlation test results. We compared the absence
of each gene with the absence of PG. We excluded values obtained from genomes with no information for PG. b) Principal component
analysis results. We compared the absence of each gene with the absence of PG. We excluded values obtained from genomes with no
information for PG.
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21 (62%) Bacteria phyla, including Tenericutes (32/32;  organism), Prochlorococcus marinus str. NATL1A and
100%), Chlamydia (27/27; 100%), Planctomycetes (6/6;  Prochlorococcus marinus str. NATL2A (PG producing
100%), Verrucomicrobia (3/4;75%), Synergistetes (1/3;  organisms), Ruminococcus torques 12-4 (PG producing
33%), Fibrobacteres/Acidobacteria (1/7; 14.3%), Thermo-  organism), the node joining of Dehalococcoides organ-
togae (1/11; 9%), Chloroflexi (5/64; 7.8%), Cyanobacteria  isms (PG-less organisms), the node before Ternericutes
(2/42; 4.8%), Proteobacteria (29/674; 4.3%), Spirochaetes  and the node joining the Verrucomicrobia, Chlamydia
(1/27; 3.7%), Firmicutes (4/318; 1.3%), Actinobacteria (1/  and Planctomycetes phyla (Figure 1). The only one GT51
135; 0.7%) and Thermobaculum terrenum (Figure 3). gene gain event was observed for Akkermansia mucini-
Among the three phyla incorporating only GT51-less phila ATCC BAA 835 (Figure 1) (PG producing
bacteria, Planctomycetes and Chlamydia were closely organism).

related, and they belong to the same superphylum PVC The gain/loss phylogenetic trees are available on the
as Verrucomicrobia, together comprising 75% of GT51- IODA website [15].

less organisms. The apparent absence of GT51 gene was The multivariable analysis of life style, genome size,
confirmed by exploring each genome using basic local ~GC content and absence or presence of PG indicated
alignment search tool (BLAST) analysis [14]. The GT51 that a GC content <50%, genome size <1.5 Mb and an
gene gain/loss events analysis indicated eight loss events  obligate intracellular life style were significantly corre-
and only one gain event. Among Proteobacteria, one loss  lated with the absence of PG, with odds ratios of 7.7, 80
event involved Orientia tsutsugamusti stc. Ikeda (PG-less and 19.5 and confidence intervals of 3-15.5, 42.4-152.4
organism), and the Wolbacteria, Ehrlichia and Ana- and 11.7-32.5, respectively (P<10). Examples of such
plasma branches (Figure 4) (PG less organisms). In  GT51-negative, PG-less obligate intracellular Bacteria
other phyla, loss event was observed for Thermobacu- include Chlamydia [16], Anaplasma, Ehrlichia, Neorick-
lum terrenum ATCC BAA 798 (PG producing ettsia and Orientia [17,18].
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Table 2 Phylogenetic analysis of the gain and loss of peptidoglycan metabolism
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Clusters Number of dates* Event types Genes or function Pagel’s score Error percentage

I 2 Loss GH73 27.76 =0%
Gain GH25

I 6 Loss GH23 65.55 =0%
Loss GT51

Il 5 Loss GT51 59.95 =0%
Loss PG

Y 4 Loss GH23 52.35 =0%
Loss GT51 50.70 =0%
Loss PG 51.27 =0%

\ 2 Loss GH103 25.10 =0%
Loss GH102

Vi 2 Gain GH73 9.79 <5%
Gain GH25

Vil 2 Loss GT51 1999945.66 =0%
Loss G128

Vil 2 Loss GH23 334 <50%
Gain GH73

IX 2 loss GH104 23.29 =0%
loss GH25

X 2 Gain GH103 6.27 <20%
Gain GH73

Xl 2 Loss GH25 2344 =0%
Loss GH23

Xl 2 Loss GH102 19.18 <1%
Gain GH104

Xl 2 Loss GH103 25.51 =0%
Loss GH73

Pagel’s score was based on a chi? test, with four freedom degrees and was applied to two events. Functional PG corresponds to the presence of PG in the cell
wall. Date correspond to a node for which events were observed. *Detail of dates is given in the Additional file 4.

Discussion
In this study, mining the CAZy database allowed the de-
tection of a minimal set of three genes involved in PG syn-
thesis among the four different domains of life. The fact
that this complete 3-gene set was not detected in Archaea
and Viruses organisms is in agreement with the previously
known absence of PG in these organisms and validated
our method [19]. In Archae, family GT28 genes are only
very distantly related to the bona fide bacterial GTs
involved in PG synthesis, and it is possible that the
archaeal GT28 enzymes have a function unrelated to PG.
In viruses, detecting a few genes potentially involved in
the synthesis and in the degradation of PG was not sur-
prising: such viruses were indeed bacterial phages in
which GH genes could have recombined with the bacterial
host genome [20,21] and could be used to break through
the peptidoglycan layer to penetrate their bacterial hosts.
More surprising was the observation that the
Eukaryote Micromonas sp. encodes a complete 3-gene

set. Micromonas sp. is a photosynthetic picoplanktonic
green alga containing chloroplasts (Figure 5) [22]. A sig-
nificant association was observed between photosyn-
thetic Eukaryotes and the presence of genes involved in
PG metabolism. Chloroplasts are thought to descend
from photosynthetic Cyanobacteria ancestors, and their
presence in photosynthetic Eukaryotes is thought to re-
sult from Eukaryotes-Cyanobacteria symbiosis [23].
Moreover, PG has been detected in the cell wall of Glau-
cophytes chloroplasts [24,25]. We, therefore, interpreted
the presence of a complete 3-gene set in Micromonas sp.
as deriving from its chloroplast and the presence of
some PG metabolism genes in other photosynthetic
Eukaryotes as remnants of an ancient complete set. Add-
itionally, the Eukaryote GT28 gene could be a remote
homolog involved in plant-specific glycolipid biosyn-
thesis and not PG metabolism. In this scenario, Eukar-
yotes ancestors did not encode genes for PG
biosynthesis, some photosynthetic Eukaryotes further
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Figure 3 A 16S rDNA sequence phylogenetic tree-like representation. This representation features Bacteria phyla comprising organisms with
a GT51 gene (black), phyla including some close representatives without a GT51 gene (green), phyla including isolated representatives without a
GT51 gene (blue) and phyla for which all representatives lack a GT51 gene (red).
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acquired such a capacity after Eukaryotes-Cyanobacteria
symbiosis 1.5-1.2 billion years ago (Keeling 2004), and
lateral genetic transfer occurred between Eukaryotes and
chloroplasts [25-27]. GH23 is also encoded by free non-
photosynthetic Eukaryotes; in Eukaryotes, GH23 could
act as antimicrobial molecule [28]. Accordingly, we
found that the minimal 3-gene set was specific for Bac-
teria, with a 100% positive predictive value for the pres-
ence of PG. Its predictive negative value was low, but we
further determined that a lack of GT51 in the genome
had a predictive negative value of 100% for the lack of
PG in an organism. Moreover, our phylogenetic com-
parative analysis correlated the GT51 gene history and
the PG history. Indeed, we observed that among the
clusters including PG losses, GT51 gene losses were
involved with a good Pagel’s score (cluster III and cluster
IV) (Table 2). These results show that PG function is
strongly linked to the presence of the GT51 gene. Thus,
the GT51 gene could be used to predict the capacity of
an organism to produce PG in its cell wall.

A lack of GT51 was found in <10% of bacterial organ-
isms. Under a parsimony hypothesis, this observation
suggests that Bacteria ancestral genomes encoded GT51
and that the lack of GT51 gene in some bacteria results
from loss events. Surprisingly, such loss events are
observed in almost 2/3 Bacteria phyla, indicating that
several independent loss events occurred during the evo-
lutionary history of these different Bacteria phyla. These

scenarios were confirmed by the gain/loss analysis fea-
turing a GT51-containing Bacteria ancestor and eight
GT51 losses. Moreover, we noticed that GT51 loss oc-
curred in only few strains of the same species, as
observed for Prochlorococcus marinus. Our careful
examination of genomes did not find GT51 gene frag-
ment, validating GT51 loss events which are on-going. A
loss event could be counterbalanced by GT51 acquisi-
tion, as observed in Akkermansia muciniphila of the
Verrucomicrobia phylum. A. muciniphila is living within
intestinal microbiome a large microbial community
where several lateral gene transfers have been reported
[29]. GT51 gain/loss is a dynamic process dependent on
selection pressure due to a PG advantage/disadvantage
balance.

PG supports some important functions of the bacterial
cell, preserving cell integrity by withstanding turgor
pressure and maintaining a defined yet flexible shape.
PG also anchors other cell envelope components and in-
timately participates in cell growth and cell division pro-
cesses [1]. Nevertheless, PG is also an Achilles’ heel for
Bacteria, as some environmental organisms produce
molecules that inhibit PG synthesis. The mold Penicil-
lium notatum was shown by Alexander Fleming to pro-
duce penicillin, a PG synthesis inhibitor and the first
antibiotic used to treat bacterial infections in humans
[30]. Vancomycin is another PG synthesis inhibitor pro-
duced by the soil bacterium Streptomyces orientalis [31].
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However, PG is found in the vast majority of bacteria,
including bacterial organisms living in the same niches
as antibiotic-producing organisms. Accordingly, we
observed that the absence of PG correlates with the
intracellular life style and genome reduction [32]. In
addition, free-living PG-less Bacteria and Archaea organ-
isms use various osmoadapation strategies, such as the
intracellular accumulation of inorganic ions, salt-tolerant
enzymes or the accumulation of selected negative or
neutral organic molecules [33,34] to maintain cell shape
despite the absence of PG. Archaea cell walls could
also contain other polymers, such as pseudomurein,
methanochondroitin, heterosaccharide and glutaminyl-
glycan, participating in the mechanical strength of the
cell wall [19].

Conclusions

The exploration of PG in bacteria shows great hetero-
geneity in PG content. Genome analysis with ancestral
reconstructions and phylogenetic comparative analyses
offer a neutral tool to explore this heterogeneity and
trace the evolutionary history of PG. These analyses also

allowed the identification of genes that could be used to
predict functional features.

Methods

Screening the CAZY database

We extracted the GH23, GH73, GH102, GH103, GH10,
GT28 and GT51 gene content for each genome available
in CAZy in April 2011 [7], ie., 1 398 Bacteria genomes
distributed among 21 phyla, 42 Eukaryota genomes, 101
Archae genomes and 103 Viruses genomes. This data-
base is updating regularly GenBank finished genomes
for their content in carbohydrate active enzymes, provid-
ing with their EC number, gene name and product de-
scription. We then searched for the simultaneous
presence of one GT28, one GT51 and at least one GH
as evidence for PG metabolism. To assess the predictive
value of this minimal 3-gene set, we correlated its bio-
informatic detection with biological evidence for the
presence of PG. We searched biological evidence for the
presence of PG by screening Pubmed [35] using ‘pep-
tidoglycan; ‘cell wall; ‘life style’ and the name of the genus
as keywords. We further explored the HAMAP website



Cayrou et al. BMIC Microbiology 2012, 12:294
http://www.biomedcentral.com/1471-2180/12/294

Page 8 of 10

a) b)

Intracellular structure

Standard structure of eukarya
cell:

-Homo sapiens
-Cryptococcus bacillisporus WM276

Exception:
-Microsporidia

Arabidopsis

Standard stucture of
photosynthetic eukarya cell:
- Micromonas sp. RCC99
- Arabidopsis thaliana
- Oryza sativa japonica group
- Ostreococcus lucimarinus CCE9901
- Ostreococcus tauri OTTH0595

Photosynthetic eukarya
exception 1:
-Paulinella chromatophora

Photosynthetic eukarya
exception 2:
-Guillardia theta

C=Chloroplast, Cp= Chromatophore, Nm=Nucleomorph.

PG gene repartition between cellular genomes

Micromonas sp RCC299

thaliana group

O

Ostreococcus tauri

Guillardia theta

Paulinella
chromatophora

Figure 5 Intracellular structure and genome distribution of the PG genes in photosynthetic Eukaryotes. N= Nucleus, M= Mitochondria,

©

©

Oryza sativa japonica Complete genome

1O

unavailable genome

(3

Genome contain a partial PG gene set
OTTHO0595

OOC

Genome contain a complete PG gene-set

Ostreococcus
lucimarinus CCE9901

J

[36], GenBank database [37] and Genome OnLine Data-
base GOLD [38] for additional strain and genomic infor-
mation. To confirm the absence of the GT51 gene in a
strain, the GT51 gene nucleotide sequence of the closest
strain was extracted and compared using National Cen-
ter for Biotechnology Information (NCBI) BLAST to the
complete genome of the strain.

Statistical analyses

We examined the significance of the association between
each gene family and each domain of life using the chi-
squared test and STATCALC from Epilnfo version 6.
The data were entered into an Excel spreadsheet and
were analyzed using PASW statistics 17.0 (SPSS Inc.,
Chicago, Illinois, USA). To assess the independent fac-
tors associated with the absence of PG, binary logistic
regression was performed. The dependent variable was
the absence of PG, and the independent variables were
life style, GC content and genome size. The goodness of
fit of the results of the regression analysis was tested
using the Hosmer-Lemeshow test. A correlation analysis
was performed using the Pearson correlation test to as-
sess the interaction between the absence of PG and the
absence of each PG metabolism gene in the study. Prin-
cipal component analysis (PCA) was used to identify

colinearity between the absence of PG and the absence
of each gene. The results of the PCA are shown on a
factor loading plot.

Phylogenetic tree construction

Bacteria phylogenetic trees were constructed based on
the 16S rRNA gene sequence. An initial phylogenetic
tree containing 111 16S rRNA gene sequences repre-
senting each Bacteria phylum was constructed and
rooted using the Archaea Methanobrevibacter smithii
16S rRNA gene sequence. Multiple sequence alignments
were performed using MUSCLE [39]. Phylogeny recon-
struction of aligned sequences was performed in MEGA
5 using the neighbor-joining method and the bootstrap-
ping method [40] after 1,000 iterations. To highlight dif-
ferent PG evolution events further, a second 16S rRNA
gene sequence-based phylogenetic tree was constructed
incorporating 1,114 sequences analyzed using the Max-
imum Likelihood method.

Phylogenetic comparative analysis

The gain/loss event analysis was conducted using
DAGOBAH multi-agents software system [41], integrat-
ing the PhyloPattern library [42] for Mirkin parsimony
[43] ancestral node annotation and for the automatic
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reading of trees. The parameters were arranged to
minimize the detection of gain events. To explore the
existing link between the selected genes and PG, two
vertical clustering calculations were conducted by
DAGOBAH, one focusing on dates (framing of two spe-
ciation events) and the other focusing on feature num-
ber (gene or PG). Clusters were verified using Pagel’s
method [44].

Additional files

Additional file 1: Results of genomes analysis for Archaea, virus
and Eukarya strains.

Additional file 2: Results of genomes analysis for 1398 bacteria
strains. The 1114 strains used for tree construction were highlighted in
grey. PG=peptidoglycan; Set= peptidoglycan metabolism module;
ND= not determined; + = presence; -= absence.

Additional file 3: Results of genomes analysis for 138 bacteria
strains without the peptidoglycan metabolism module.
PG=peptidoglyca;. ND=not determined; += presence; -=absence.

Additional file 4: Phylogenetic comparative analysis detailed dates.
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