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Staphylococcus aureus and Escherichia coli have
disparate dependences on KsgA for growth and
ribosome biogenesis
Heather C O’Farrell1 and Jason P Rife1,2*
Abstract

Background: The KsgA methyltransferase has been conserved throughout evolution, methylating two adenosines
in the small subunit rRNA in all three domains of life as well as in eukaryotic organelles that contain ribosomes.
Understanding of KsgA’s important role in ribosome biogenesis has been recently expanded in Escherichia coli;
these studies help explain why KsgA is so highly conserved and also suggest KsgA’s potential as an antimicrobial
drug target.

Results: We have analyzed KsgA’s contribution to ribosome biogenesis and cell growth in Staphylococcus aureus.
We found that deletion of ksgA in S. aureus led to a cold-sensitive growth phenotype, although KsgA was not as
critical for ribosome biogenesis as it was shown to be in E. coli. Additionally, the ksgA knockout strain showed an
increased sensitivity to aminoglycoside antibiotics. Overexpression of a catalytically inactive KsgA mutant was
deleterious in the knockout strain but not the wild-type strain; this negative phenotype disappeared at low
temperature.

Conclusions: This work extends the study of KsgA, allowing comparison of this aspect of ribosome biogenesis
between a Gram-negative and a Gram-positive organism. Our results in S. aureus are in contrast to results
previously described in E. coli, where the catalytically inactive protein showed a negative phenotype in the
presence or absence of endogenous KsgA.
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Background
Ribosome biogenesis in bacteria involves a small number of
extra-ribosomal biogenesis factors [1]. Depletion or loss of
many of these factors leads to impaired ribosome assembly,
and in many cases leads to growth defects or even loss of
virulence in pathogenic bacteria. Understanding ribosome
biogenesis in bacteria is an active field of study; the bulk of
this work has taken place in the model organism Escheri-
chia coli, a Gram-negative γ-proteobacterium, while lesser
study has occurred in other organisms, principally the
Gram-positive organism Bacillus subtilis. One ribosome
biogenesis factor in particular, KsgA, has been studied in-
tensively for many years in E. coli. KsgA dimethylates each
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of two adenosines in the 3’-proximal helix (helix 44) of the
small subunit rRNA [2] and serves as an important check-
point in the assembly of the 30S subunit [3]. Cells lacking
functional KsgA are often disadvantaged for growth when
compared to wild-type cells. Specifically, knockout or muta-
tion of ksgA in the organisms E. coli [3], B. subtilis [4],
Mycobacterium tuberculosis [5], Yersinia pseudotuberculosis
[6], Chlamydia trachomatis [7] and Erwinia amylovora [8]
is deleterious to cell growth, producing strains that either
grow slower than or are unable to compete efficiently with
wild-type strains. In addition, knockout of ksgA in Y. pseu-
dotuberculosis confers an attenuated virulence phenotype
on the knockout strain [6]; inactivating mutations of ksgA
in the plant pathogen E. amylovora decrease virulence [8].
A key observation to come out of the body of work on

KsgA is that overexpression of catalytically inactive KsgA
produces a dominant negative phenotype, being deleteri-
ous to both ribosome biogenesis and cell growth, thus
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suggesting KsgA might serve as a potential antimicrobial
drug target [3]. In this context KsgA and its role in ribo-
some biogenesis and growth have been studied most ex-
tensively in E. coli. While ksgA gene knockouts have been
tangentially studied in other organisms, no systematic
study has been made of KsgA and its role in ribosome bio-
genesis and growth in another bacterial organism. In order
to expand our knowledge of this system, we have extended
studies of KsgA into the important Gram-positive human
pathogen Staphylococcus aureus.
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Figure 1 Activity assay. Experiments were performed in triplicate;
error bars indicate standard deviation.
Results
Knockout of ksgA leads to a cold-sensitive phenotype
To investigate the role KsgA plays in ribosome assembly
and growth we generated an in-frame deletion of the
ksgA gene in the S. aureus strain RN4220. The knockout
strain was resistant to the antibiotic kasugamycin
(Table 1); this resistant phenotype is also seen in E. coli.
We confirmed the loss of KsgA activity in the cell by
assaying purified 30S ribosomal subunits from both the
wild-type (RN) and the knock-out (ΔksgA) strains for
their ability to be methylated by exogenously added
KsgA (Figure 1). As expected, subunits from the RN
strain could not be further methylated by recombinant
E. coli KsgA, while subunits from the ΔksgA strain could
be efficiently methylated, albeit not to the same extent
as E. coli 30S subunits. In addition to confirming the
gene deletion, this experiment demonstrated that the
structural requirements for KsgA binding to and methy-
lating the small ribosomal subunit are conserved be-
tween E. coli and S. aureus.
Next we compared the growth rates of the ΔksgA

strain and the parental RN cells. We grew both strains
in liquid media at a variety of temperatures (Additional
file 1) and calculated the doubling times for each strain,
shown in Table 2. The strains grew at similar rates at
30°C, 37°C, and 42°C. However, at the lower tempera-
tures of 25°C and 15°C the ΔksgA strain grew signifi-
cantly slower than the RN strain. We can conclude from
these data that while knockout of ksgA does not affect
cell growth using our test conditions at and around
human physiological temperatures the cells become
cold-sensitive upon loss of KsgA.
Table 1 Antibiotic resistance of RN4220 and ΔksgA
strains

MIC (μg/ml)

RN4220 ΔksgA

Kasugamycin 800 >3200

Kanamycin 4 2

Paromomycin 4 2

Streptomycin 16 16
We then performed polysome analysis of the riboso-
mal particles of both strains to ascertain the effects of
ksgA knockout on ribosome biogenesis. In these experi-
ments ribosomal material is separated into mature, func-
tional 70S ribosomes and free 30S and 50S subunits. In
this way we can visualize increases in immature subunits
as a portion of the total ribosomal material. As shown in
Figure 2, knockout of ksgA did not result in a significant
increase in relative amounts of free 30S subunits. Poly-
some profiles of the RN and ΔksgA strains were similar
at 42°C, 37°C, and 25°C; the proportion of free subunits
increased with lowering temperature in both strains.
Our laboratory previously observed that knockout of

ksgA in E. coli led to a difference in sensitivity to amino-
glycoside antibiotics [9]. Specifically, the ΔksgA strain
was more sensitive to the 4,6 class of aminoglycosides
and less sensitive to 4,5-aminoglycosides, with no change
in sensitivity to the aminoglycoside streptomycin. We
performed a similar experiment in S. aureus, growing
the RN and ΔksgA strains on increasing amounts of the
antibiotics kanamycin (a 4,6 aminoglycoside), paromo-
mycin (a 4,5-aminoglycoside) and streptomycin (Table 1).
The ΔksgA strain was more sensitive to both kanamycin
and paromomycin, with no change in sensitivity to
streptomycin.
Table 2 Doubling times of RN4220 and ΔksgA strains

Doubling time (min)

RN4220 ΔksgA

15°C 408.2 ± 18.2 473.0 ± 17.2

25°C 82.1 ± 4.1 93.4 ± 2.0

30°C 48.5 ± 0.6 50.2 ± 2.2

37°C 39.2 ± 1.8 39.4 ± 1.7

45°C 50.6 ± 1.5 54.3 ± 3.5
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Figure 2 Polysome analysis of the RN4220 and ΔksgA strains.
Each chromatogram was normalized to a value of 1.0 for the 70S
peak; successive chromatograms were offset by 0.2 on the y-axis.
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Overexpression of catalytically inactive KsgA is
deleterious
Overexpression of KsgA, as well as a catalytically inactive
mutant of KsgA, was deleterious to E. coli growth rates
under a variety of conditions [3]. In order to see if these
results extended to S. aureus we cloned the ksgA gene
from the RN4220 strain and constructed the equivalent
mutation, E79A. We expressed both WT and E79A pro-
tein in RN and ΔksgA cells, using the empty vector (pCN)
as a control. Growth experiments were performed as in
the previous section (Additional file 2), except that cells
were grown in the presence of erythromycin (for plasmid
maintenance) and CdCl2 (for protein induction). Under
these conditions, the difference in growth rate between
the RN and ΔksgA cells expressing the empty vector was
not significant, even at 25°C. Doubling times for each
strain are shown in Table 3.
Overexpression of wild-type KsgA did not affect cell

growth under any of the conditions we tested. Overexpres-
sion of the E79A mutant in cells lacking ksgA had a nega-
tive impact on doubling time, but only in the absence of
WT enzyme. This effect was seen at 37°C but not at 25°C.
In the RN strain, which expresses endogenous KsgA,
Table 3 Doubling times of RN4220 and ΔksgA strains
containing pCN constructs

Doubling time (min)

25°C 37°C

RN4220 pCN51 95.5 ± 13.8 40.5 ± 2.7

pCN-WT 94.9 ± 11.0 39.6 ± 2.4

pCN-E79A 92.6 ± 9.5 39.2 ± 4.7

ΔksgA pCN51 106.1 ± 11.6 41.4 ± 2.7

pCN-WT 100.0 ± 8.0 38.3 ± 2.5

pCN-E79A 111.3 ± 11.5 51.0 ± 2.3
overexpression of mutant protein did not significantly affect
cell growth.
We next asked if there were any abnormalities in ribo-

some biogenesis in cells overexpressing WT or mutant
KsgA protein. In E. coli overexpression of WT protein
led to accumulation of immature 30S subunits even
when there was no measurable effect on cell growth,
and overexpression of the inactive mutant, E66A,
resulted in significant effects on ribosome biogenesis in
all cases. In S. aureus, overexpression of either WT or
E79A protein had very little effect on ribosome biogen-
esis under any conditions tested (Figure 3), with one ex-
ception. The S. aureus ΔksgA strain overexpressing the
E79A mutant protein showed an increase in free subu-
nits relative to the total ribosomal material when grown
at 37°C but not at 25°C.

Discussion
The existence of the ksgA gene was established about
forty years ago in E. coli [10]. It was shown to be the sole
methyltransferase that converts two adjacent 16S rRNA
adenosines (A1518 and A1519, E. coli numbering)
into N6,N6-dimethyladenosines [2], modifications that
appeared to hold wide phylogenetic distribution. It is
now known that those modifications and the responsible
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Figure 3 Polysome analysis of the pCN51 strains. Each
chromatogram was normalized to a value of 1.0 for the 70S peak;
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grown at 37°C. B) Cells grown at 25°C.
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methyltransferase are all but universally conserved
throughout life, thus making KsgA (known as Dim1 in
eukaryotes and archaea) a genetic element of the last
universal common ancestor. This level of conservation,
coupled with the knowledge that KsgA can be dispensed
with in several bacteria, albeit with obvious growth
defects [3-8], formed the basis of a sharp paradox. If
KsgA was not essential, why was it universally con-
served? Since evolution is not sentimental, the cellular
importance of KsgA and Dim1 was certain but remained
to be discovered. In time the stated paradox has partially
unraveled. In Saccharomyces cerevisiae (and most likely
other eukaryotic organisms) Dim1 is an important mem-
ber of the rRNA processome, and loss of Dim1 leads to
the accumulation of aberrant rRNA species at the ex-
pense of functional ribosomes [11]. In E. coli, KsgA
serves as a gate-keeper to prevent improperly assembled
pre-30S subunits from entering the translation cycle [3].
Under normal conditions, KsgA only provides modest
benefit to 30S maturation and function. However, KsgA’s
importance becomes clear under stress conditions, such
as growth at cold temperature.
In this work, we sought to define the importance of

KsgA to the survivability of the human pathogen S. aur-
eus and to compare our results to those in the model or-
ganism E. coli. Somewhat surprisingly, we found that S.
aureus has a lesser reliance on KsgA under the condi-
tions tested. In E. coli, overexpression of KsgA rescued
the cold-sensitive phenotype of ΔksgA cells at low
temperature but was deleterious for cell growth at 37°C
in both knockout and parental cells. Overexpression of a
catalytically inactive mutant of KsgA, E66A, was dele-
terious in both strains at both temperatures, even in the
presence of endogenous WT protein [3]. We showed
that in S. aureus the ksgA knock-out strain displayed a
slow growth phenotype at low temperature when com-
pared to the parental strain, similar to results in E. coli.
However, unlike in E. coli, catalytic inactivation of KsgA’s
enzymatic function has only mild phenotypic effects,
and these effects are not dominant in the presence of
WT KsgA. It is noteworthy that the negative growth ef-
fect was seen at 37°C but not at 25°C. This result was
unexpected, both because ksgA knockout led to cold
sensitivity and because negative effects in E. coli were
exacerbated at low temperature; however, it is possible
that growth at the lower temperature results in lower ex-
pression of the mutant protein and therefore a smaller
negative effect.
In S. aureus, KsgA also appears to be less critical for

the assembly of mature ribosomes. Experiments in E.
coli showed that loss or inactivation of KsgA had obvi-
ous effects on ribosome biogenesis even under condi-
tions where a growth phenotype was not apparent [3]. In
other words, ribosome biogenesis is sensitive to
disruptions in KsgA function that don’t affect overall cell
growth. We did not see this effect in S. aureus; knockout
or inactivation of KsgA resulted in, at most, slight dis-
ruption of polysome profiles even under conditions
where cell growth was slowed.
On the basis of the data presented here, it would ap-

pear that in S. aureus KsgA holds less promise as a drug
target than in E. coli. However, we did observe that
knockout of ksgA rendered S. aureus marginally more
sensitive to clinically used aminoglycoside antibiotics,
similar to results seen in E. coli. A1518 and A1519 are
located distal to the aminoglycoside binding site on the
small ribosomal subunit; we therefore hypothesize that
effects on antibiotic sensitivity are indirect, likely caused
either by conformational or dynamic changes that are
propagated from the site of KsgA methylation to the
aminoglycoside binding site. This experiment highlights
an additional difference between E. coli and S. aureus
ribosomes. While lack of methylation by KsgA leads to
increased sensitivity to the 4,6 class of aminoglycosides
in both organisms, we see opposite effects on 4,5 amino-
glycoside sensitivity. Both the KsgA target site and the
aminoglycoside binding site are among the most highly
conserved rRNA sequences; it is thus intriguing that dis-
tinct effects are seen between the two organisms.
Although ribosome biogenesis has not been well-studied

outside of the model organisms E. coli and, to a much
lesser extent, B. subtilis, it is possible that reported differ-
ences in ribosome biogenesis between Gram-negative and
Gram-positive organisms are representative of an evolu-
tionary divergence between the two groups of bacteria.
One such difference is the case of the ribonuclease RNase
III. RNase III is an endonuclease that is involved in pro-
cessing of the pre-rRNA transcript in both E. coli and B.
subtilis. However, this enzyme is strictly essential in B.
subtilis but not in E. coli [12]. Additionally, inactivation of
RNase III has different effects on the maturation of 16S
rRNA in the two organisms [12]. Further work is required
to demonstrate whether these results are more broadly ap-
plicable in other bacterial species. Our work suggests dif-
ferences in ribosome biogenesis between E. coli and S.
aureus; it remains to be seen if the differing reliance on
KsgA can be defined by a phylogenetic Gram-positive/
Gram-negative split.
KsgA plays a key role in ribosome biogenesis in E. coli,

which cannot be separated from its methyltransferase
function [3]. Further evidence of KsgA’s significance in
Gram-negative organisms comes from virulence studies in
pathogenic organisms. Disruption of ksgA in Y. pseudotu-
berculosis confers an attenuated virulence phenotype on
the knockout strain [6], and this attenuated strain confers
protection against subsequent challenge with the wild-
type strain [13]. Additionally, mutation of ksgA in the
plant pathogen E. amylovora decreases virulence [8] and
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disruption of KsgA in S. Enteriditis reduces invasiveness
[14]. These studies affirm that KsgA may be a novel drug
target in Gram-negative organisms.
Studies on KsgA’s role in virulence have not been done

in Gram-positive organisms, although in addition to the
modest growth defects seen in the S. aureus ΔksgA
strain disruption of the ksgA gene in the Gram-negative
Mycobacterium tuberculosis was shown to negatively
affect bacterial growth on solid media [5]. It should be
noted that disruption of ksgA in Y. pseudotuberculosis
produced only a slight growth defect and allowed the
bacteria to survive in infected mice, even though the
strain was not as virulent as the wild-type strain [6].
Likewise, E. amylovora mutants showed reduced viru-
lence despite only small growth defects in vitro and the
ability to grow in infected tissue [8]. Further studies will
be required to show whether KsgA is similarly correlated
with virulence in Gram-positive organisms.

Conclusions
Given the vital role that the ribosome plays in the cell, it is
unsurprising that it is an important target for antibiotic
drugs [15]. Although current antibiotic strategies are
directed at the functioning of the ribosome, it has been
suggested that the ribosome assembly presents a target for
novel drug discovery [16]. In support of this hypothesis,
knockout of the non-essential ribosome biogenesis factors
KsgA and YjeQ, a small-subunit associated GTPase, has
been shown to affect bacterial virulence [6,8,17]. There-
fore, a full understanding of these and other ribosome bio-
genesis factors in a variety of organisms is critical.
We have extended the study of KsgA into S. aureus

and found that KsgA is not as critical for bacterial
growth and ribosome biogenesis as was previously
shown to be the case in E. coli, although the ΔksgA
knockout does have some negative effects. Additionally,
overexpression of the catalytically inactive mutant did
not have a dominant effect on growth or ribosome bio-
genesis in the presence of wild-type protein. Although
knockout and mutation of KsgA did not lead to severe
growth defects, work in Y. pseudotuberculosis and E.
amylovora suggests that small growth defects in vitro
may correlate with larger effects on virulence. Many
researchers have suggested that targeting virulence may
be a better strategy for antimicrobial therapy than target-
ing cell growth or viability [18,19]. We believe that fur-
ther research on the role of KsgA in the virulence of S.
aureus and other pathogens will prove instructive and
may provide a viable drug development target.

Methods
Strains and plasmids
The RN4220 strain, the pCN51 expression vector, and
genomic DNA from S. aureus strain 8325 were gifts
from Dr. Gordon Archer, Virginia Commonwealth Uni-
versity. The pMAD shuttle vector for knockout of ksgA
was a gift from Dr. Gail Christie, Virginia Common-
wealth University.
We constructed a ksgA knockout of the S. aureus

RN4220 strain according to the method of Arnaud et al
[20]. Allelic replacement was performed using the pri-
mers in Additional file 3; chromosomal knockout was
confirmed by PCR.
The ksgA gene was amplified from genomic DNA from

S. aureus strain 8325, adding a ribosome binding se-
quence to ensure translation; primers used for cloning
are shown in Additional file 3. The resulting fragment
was subcloned into the pCN51 expression vector to pro-
duce pCN-WT. Mutagenesis was performed on this
plasmid according to the Stratagene Quikchange proto-
col to produce pCN-E79A. The pCN51 constructs were
transformed into strain RN4220 (RN) and the ksgA
knockout strain (ΔksgA) by electroporation. Expression
of active protein from the pCN51-KsgA plasmid was
confirmed in the ΔksgA strain by the kasugamycin resist-
ance assay (Additional file 4), as well as by showing that
30S subunits purified from this strain were not able to
be further methylated by KsgA (Additional file 5).

Antibiotic resistance assay
Cells were grown in tryptic soy broth (TSB) at 37°C over-
night; saturated culture was subcultured to an OD600 of
0.02 in TSB and grown with shaking at 225 rpm to an
OD600 of 0.6-0.8. The culture was then diluted 1:100 and
plated onto varying concentrations of antibiotic. Plates
were grown at 37°C overnight; the minimal inhibitory con-
centration (MIC) was read as the lowest concentration of
antibiotic which prevented growth.

Activity assay
30S subunits were prepared from the S. aureus RN4220
and ΔksgA strains as well as from an E. coli wild-type
strain. Cells were grown in TSB (S. aureus) or LB (E.
coli) to mid-log phase. Cells were harvested and the cell
pellet resuspended in Buffer I (50 mM Tris, pH 7.4,
100 mM NH4Cl, 10 mM MgOAc, and 6 mM β-mercap-
toethanol). Glass beads (0.090-0.135 mm, Thomas Scien-
tific) were added to a final concentration of 1 mg/μl and
the suspension was vortexed for 10 minutes. The lysates
were cleared by centrifugation at 4°C, layered onto
1.1 M sucrose in Buffer II (50 mM Tris, pH 7.4, 1 M
NH4Cl, 10 mM MgOAc, and 6 mM β-mercaptoethanol),
and spun in a 70Ti rotor at 35,000 rpm for 22 hours at
4°C. The pellet of ribosomal material was resuspended
in Buffer III (50 mM Tris, pH 7.4, 500 mM NH4Cl,
2 mM MgOAc, and 6 mM β-mercaptoethanol) and
loaded onto a 10-40% sucrose gradient in Buffer III. The
gradients were spun in an SW-28 rotor at 19,000 rpm
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for 17 hours at 4°C and 30S fractions were collected,
dialyzed into Buffer K (50 mM Tris, pH 7.4, 500 mM
NH4Cl, 2 mM MgOAc, and 6 mM β-mercaptoethanol)
and stored at -80°C. E. coli KsgA was purified as pre-
viously described; activity assays were performed as pre-
viously described [21].
Growth experiments
Cells were grown in TSB at 37°C overnight; cultures of
strains transformed with pCN constructs included erythro-
mycin (10 μg/ml). Saturated culture was subcultured to an
OD600 of 0.1 in TSB; media contained cadmium (2 μM)
and erythromycin (10 μg/ml) for experiments with the
pCN constructs. Cells were incubated with shaking
(225 rpm) and the OD600 was monitored. Data were fit to
an exponential growth model using the Graphpad Prism
software and doubling times were calculated from the equa-
tion Y = Y0. × eK×X.
Polysome analysis
Cells were grown in TSB, containing cadmium (2 μM)
and erythromycin (50 μg/ml) as appropriate, to mid-log
phase. Cells were harvested and the cell pellet resus-
pended in Buffer PA μg/ml (20 mM Tris, pH 7.8, 100 mM
NH4Cl, 10 mM MgCl2, and 6 mM β-mercaptoethanol).
Glass beads (0.090-0.135 mm, Thomas Scientific) were
added to a final concentration of 1 mg/μl and the suspen-
sion was vortexed for 10 minutes. The lysates were
cleared by centrifugation at 4°C and loaded onto a 10-40%
sucrose gradient in Buffer PA. The gradients were spun in
an SW-28 rotor at 19,000 rpm for 17 hours at 4°C. Gradi-
ents were analyzed at 254 nm using a Biocomp Piston
Gradient Fractionator with a BIORAD Econo UV Moni-
tor with a Full Scale of 1.0. Data were recorded using
DataQ DI-158-UP data acquisition software and the 70S
peaks were then normalized to 1.
Additional files

Additional file 1: Growth curves of RN and ΔksgA strains. Data
represent experiments performed in triplicate; error bars indicate
standard deviation.

Additional file 2: Growth curves of pCN constructs. Data represent
experiments performed in triplicate; error bars indicate standard
deviation.

Additional file 3: Primers used in knockout construction, KsgA
cloning, and mutagenesis.

Additional file 4: Antibiotic resistance of RN4220, ΔksgA, and
ΔksgA + pCN51-KsgA strains.

Additional file 5: Activity assay. Experiments were performed in
triplicate; error bars indicate standard deviation.
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