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Abstract

Background: Avian pathogenic Escherichia coli (APEC) and uropathogenic E. coli (UPEC) are the two main subsets
of extraintestinal pathogenic E. coli (ExPEC). Both types have multiple iron acquisition systems, including heme and
siderophores. Although iron transport systems involved in the pathogenesis of APEC or UPEC have been
documented individually in corresponding animal models, the contribution of these systems during simultaneous
APEC and UPEC infection is not well described. To determine the contribution of each individual iron acquisition
system to the virulence of APEC and UPEC, isogenic mutants affecting iron uptake in APEC E058 and UPEC U17
were constructed and compared in a chicken challenge model.

Results: Salmochelin-defective mutants E058ΔiroD and U17ΔiroD showed significantly decreased pathogenicity
compared to the wild-type strains. Aerobactin defective mutants E058ΔiucD and U17ΔiucD demonstrated reduced
colonization in several internal organs, whereas the heme defective mutants E058ΔchuT and U17ΔchuT colonized
internal organs to the same extent as their wild-type strains. The triple mutant ΔchuTΔiroDΔiucD in both E058 and
U17 showed decreased pathogenicity compared to each of the single mutants. The histopathological lesions in
visceral organs of birds challenged with the wild-type strains were more severe than those from birds challenged
with ΔiroD, ΔiucD or the triple mutants. Conversely, chickens inoculated with the ΔchuT mutants had lesions
comparable to those in chickens inoculated with the wild-type strains. However, no significant differences were
observed between the mutants and the wild-type strains in resistance to serum, cellular invasion and intracellular
survival in HD-11, and growth in iron-rich or iron-restricted medium.

Conclusions: Results indicated that APEC and UPEC utilize similar iron acquisition mechanisms in chickens. Both
salmochelin and aerobactin systems appeared to be important in APEC and UPEC virulence, while salmochelin
contributed more to the virulence. Heme bounded by ChuT in the periplasm appeared to be redundant in this
model, indicating that other periplasmic binding proteins likely contributed to the observed no phenotype for the
heme uptake mutant. No differences were observed between the mutants and their wild-type parents in other
phenotypic traits, suggesting that other virulence mechanisms compensate for the effect of the mutations.
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Background
Extraintestinal pathogenic Escherichia coli (ExPEC)
refers to a group of strains capable of causing diseases
outside the intestinal tract, including uropathogenic
E. coli (UPEC), sepsis-associated E. coli, and neonatal
meningitis-associated E. coli [1]. Among ExPEC strains,
UPEC is the most common cause of human urinary tract
infections (UTIs) [2,3]. Avian pathogenic E. coli (APEC)
is the main cause of avian colibacillosis, which refers to
any localized or systemic infections such as acute fatal
septicemia or subacute pericarditis and airsacculitis.
APEC and UPEC possess similar virulence factors for
colonizing and invading the host, including adhesins,
toxins, polysaccharide coatings, protectins, invasins, and
iron acquisition systems [4,5].
Iron is an essential element for survival of E. coli. It

facilitates numerous cellular activities, such as peroxide
reduction, electron transport, and nucleotide biosyn-
thesis [6-9]. As iron exists at low concentrations in
extraintestinal sites of infection, the ExPEC strains have
evolved multiple strategies for sequestering iron from
the host.
The direct way is to take up iron from either free

heme or from heme-containing proteins, such as
hemoglobin or hemopexin. Heme is the most abundant
iron source in vivo, and the presence of a heme system
in ExPEC strains may be important for the acquisition of
iron from heme or hemoglobin. Specific outer mem-
brane receptors Hma and ChuA bind host hemoproteins
and transfer the coordinated heme molecule into the
periplasm, where an ABC transport system delivers it to
the cytoplasm. Once taken up by ChuA and transported
across the outer membrane, heme is internalized into
the periplasm and then bound by heme-specific periplas-
mic transport protein ChuT, which mediates heme
transfer to the cytoplasm through an ATP-binding cas-
sette (ABC) transporter [10].
The indirect strategy for iron acquisition is based on a

shuttle mechanism, which uses small-molecule com-
pounds called siderophores as high-affinity ferric iron
chelators [11], including the catecholates enterobactin,
salmochelin, the hydroxamate aerobactin, and yersinia-
bactin [12]. Salmochelin molecules were first discovered
in Salmonella enterica [13]. The iroA locus responsible
for salmochelin production was also first identified in
Salmonella spp. [14]. Salmochelins are C-glucosylated
derivatives of enterobactin, encoded by the iroBCDEN
gene cluster [15]. Among E. coli isolates, iro sequences
have been described in ExPEC strains isolated from
patients with neonatal meningitis [16], UTIs, and prosta-
titis in humans [17,18], as well as from APEC isolates from
poultry. Compared to enterobactins, salmochelins are
superior siderophores in the presence of serum albumin,
which may suggest that salmochelins are considerably
more important in the pathogenesis of certain E. coli
and Salmonella infections than enterobactins [19]. In
ExPEC strains, the gene cluster responsible for salmo-
chelin biosynthesis and transport is generally found on
ColV or ColBM virulence plasmids, and has also been
identified on chromosomal pathogenicity-associated
islands (PAI) in some strains [20]. The salmochelin gene
cluster contains a gene encoding a cytoplasmic esterase,
IroD. IroD can hydrolyze the ester bonds of both enter-
obactin and salmochelin molecules, which is required
for subsequent iron release from salmochelin [21,22].
Aerobactin is a hydroxamate siderophore produced by

most APEC strains and other pathogenic E. coli. It is
synthesized by the iucABCD-encoded gene products and
taken up by the iutA-encoded receptor protein [23-25].
Despite the chemical differences among these distinct
siderophores, each system is comprised of components
mediating the specific steps required for ferric iron up-
take, including siderophore synthesis in the cytoplasm,
secretion, reception of the ferri-siderophore at the outer
membrane surface, internalization, and iron release in
the cytoplasm [26].
While both APEC and UPEC strains have multiple iron

acquisition systems, the role of distinct iron uptake sys-
tems in the pathogenesis of both APEC and UPEC has
not been illustrated in the same chicken challenge model.
In this study, the genes chuT, iroD and iucD were chosen
to assert the roles of heme, salmochelin and aerobactin in
the virulence of APEC E058 and UPEC U17.

Results
Iron acquisition systems in APEC E058 and UPEC U17
APEC E058 belongs to the O2 serogroup and B2 phylo-
genetic group, while UPEC U17, isolated from the urine
of a patient, was found to belong to the B2 phylogenetic
group, but was non-typable by the standard O sera test.
Previous work in our laboratory has shown that E058
and U17 share similar virulence gene profiles and that
both cause a typical avian colibacillosis, with bacteria in-
vading the air sacs, blood, and pericardial fluid, with typ-
ical fibrinous lesions. Both strains possess the same iron
uptake systems, including heme, enterobactin, salmoche-
lin, aerobactin, and yersiniabactin [5].

Effect of iron acquisition system mutations on chicken
virulence
Because iron acquisition systems were associated with
E. coli isolates from extraintestinal infections, we investi-
gated the importance of distinct iron uptake systems to
the virulence of APEC E058 and UPEC U17 in chickens.
In the single-strain challenge model, 5-week-old chick-
ens were inoculated in the left thoracic air sac with wild-
type strains or their isogenic mutant derivatives. From
the inoculation site, virulent strains can typically invade
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deeper tissues, generate gross lesions, and cause sys-
temic infection. However, in this model, attenuated
strains are impaired in their capacity to colonize deeper
tissues. Compared to wild-type parent strains, both the
mutants E058ΔiroD and U17ΔiroD were attenuated, and
significantly reduced bacterial numbers were recovered
from all internal organs tested: 10–100 times lower than
those of the wild-type strains (P<0.01) (Figure 1).
E058ΔiucD showed significantly reduced bacterial num-
bers in the heart (Figure 1a), liver (Figure 1b), kidney
Figure 1 Colonization in organs of chickens challenged with APEC E0
challenge model. Data are presented as log10(CFU/g) of tissues. Horizonta
represents a tissue sample from an individual infected chicken at 24h post-
(d), and kidney (e). Statistically significant decreases in bacterial loads are in
(Figure 1e) (P<0.01), and spleen (Figure 1c) (P<0.05).
Meanwhile, U17ΔiucD had significantly decreased bac-
teria counts in both the liver (Figure 1b) and kidney
(Figure 1e) (P<0.05). The E058ΔchuT and U17ΔchuT col-
ony forming units (CFU) isolated from the organs of
the chickens were similar to those of the wild-type
strains (Figure 1) (P>0.05), except for E058ΔchuT in
liver tissue (Figure 1b) (P<0.05). Challenge with the
E058ΔchuTΔiroDΔiucD and U17ΔchuTΔiroDΔiucD triple
mutants led to greatest reductions in bacterial loads in all
58, UPEC U17, or their isogenic mutants in the single-strain
l bars indicate the mean log10 CFU.g

-1 values. Each data point
infection. Organs sampled were the heart (a), liver (b), spleen (c), lung
dicated with asterisks (*, P<0.05; * *, P<0.01).
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the tested internal organs (Figure 1) (P<0.01). To deter-
mine whether the defect in the triple mutants was mainly
mediated by the salmochelin system, we constructed a
complementation plasmid for the triple mutants using
the native iroD gene. Results showed that the recovered
colony numbers of ReE058TripiroD isolated from organs
were similar to those of the wild-type strain in liver
(Figure 1b), spleen (Figure 1c), lung (Figure 1d) (P>0.05).
Meanwhile, the recovered CFU of ReU17TripiroD in
heart (Figure 1a), liver (Figure 1b), spleen (Figure 1c),
and lung (Figure 1d) were similar to those of the wild-
type strain (P>0.05).
Compared to the single-strain challenge model, the

competitive co-infection model using both parent strain
and its isogenic mutant can demonstrate more sensitiv-
ity to differences in colonization or virulence. In co-
infection experiments, both E058ΔchuT and E058ΔiucD
did not demonstrate any significant decrease in patho-
genicity compared to E058 wild-type in organs (Figure 2)
(P>0.05), while E058ΔiroD was highly attenuated and
showed a significantly reduced competitive index (CI),
with mean decreases of 77–fold, 70-fold, and 37–fold
compared to E058 in liver (Figure 2b), lung (Figure 2d)
and kidney (Figure 2e) (P<0.01), respectively. For U17
and its isogenic mutants, U17ΔchuT demonstrated no
significant decreases compared to U17 in all internal
organs tested (Figure 2) (P>0.05), while U17ΔiroD CFU
counts were highly reduced, with mean decreases of
105-fold, 49-fold, 80-fold, and 46-fold compared to the
wild-type strain in liver (Figure 2b), spleen (Figure 2c),
lung (Figure 2d), and kidney (Figure 2e) (P<0.01), re-
spectively. U17ΔiucD showed significantly reduced CI in
the heart, with a mean 4.2-fold decrease compared to
U17 (Figure 2a) (P<0.05), but demonstrated no signifi-
cant differences in all the other organs (P>0.05). In
co-infection assays using the triple mutants, the ΔchuT-
ΔiroDΔiucD mutants in E058 and U17 were both sig-
nificantly more attenuated than each of the single
mutants, with average decreases of 147-fold and 196-
fold in organs tested (Figure 2) (P<0.01), respectively.
Bactericidal effect of specific-pathogen-free (SPF) chicken
serum on E058 and U17 and isogenic mutants
The ability of the isogenic mutants defective in iron ac-
quisition systems to survive in SPF chicken serum was
not affected, as tested by bactericidal assay, indicating
that the iron acquisition systems may be unrelated to
serum complement resistance.
Growth of iron acquisition mutants in iron-rich and
iron-restricted medium
All mutants were grown in LB with or without 200 μM
2,2'-dipyridyl (DIP). Growth patterns of the mutants
were similar to those of the parent strains in both iron-
rich and iron-restricted medium (data not shown).

Bacterial invasion and intracellular viability
Analysis of the capability of mutants to enter avian
macrophages was carried out using an invasion assay in
the avian macrophage HD-11 cell line. Results showed
no significant differences between mutant strains and
the parent strains E058 and U17, with the invasion ratios
varying from 0.24–0.26 (P>0.05).
To determine whether the iron uptake systems are

required for intracellular survival, we compared the CFU
of the wild-types and isogenic mutants recovered at 2, 4,
6, 12, and 24 hours post infection (h.p.i.). We observed
similar intracellular bacterial proliferation rates, with
rates of 62–65% at 2 h.p.i., which then decreased to a
rate of approximately 50% at 4 h.p.i.. Rates fell sharply to
approximately 10% at 6 h.p.i.. The numbers of recovered
CFU at 12 and 24 h.p.i. were below detectable levels.
Since iron acquisition systems are assumed to be func-
tionally redundant, this may permit intracellular survival
in the absence of one or several systems. Further, there
may be TonB-independent transport systems that could
compensate for the mutations in the intracellular
environment.

Histopathological lesions caused by iron acquisition
defective mutants in chickens
Histopathological lesions in chickens challenged with
virulent wild-type strains or iron acquisition defective
mutants were compared. The lesions in the tested
organs were graded according to the lesion severity and
character (Table 1). The pathological characteristics of
the tested visceral organs from chickens challenged with
wild-type strains were as follows. In the heart sections,
unequal-sized focal necrotic lesions were present in the
disintegrated muscle fibers, and fibrous exudates
appeared in the epicardium (Figure 3A and Figure 3F).
The liver sections showed that inflammatory cell infiltra-
tions were present in the hepatic lobule, and numerous
small fat granule vacuoles were observed in the cyto-
plasm (Figure 4A and Figure 4F). The lung sections
revealed numerous inflammatory exudates in the bron-
chial cavity (data not show). However, no obvious patho-
logical lesions were observed in the heart or liver
sections of birds challenged with any of the mutant
strains, except for the ΔchuT mutants (Figure 3 and
Figure 4). The ΔchuT mutants caused lesions in both
the heart and liver of the challenged birds that were
equivalent to the wild-type strains. This was in accord-
ance with the results obtained in chicken colonization
and persistence assays, from which the chuT mutation
did not affect the virulence of the wild-type strains
(Figure 1).
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Discussion
APEC and UPEC are the two main subsets of ExPEC
bacteria, causing diseases outside the gastrointestinal
tract. Previous studies have investigated the similarities
of APEC and UPEC strains by determining serogroups,
virulence genotypes, and assignments to phylogenetic
Figure 2 Competitive co-infection model was used in which E058 or U
24 h post-infection, tissues were sampled, and results are presented as the
the two test strains from the tissues sampled (the output ratio) compared
Negative CI values indicate a decreased capacity for the mutant to compet
log10 CI values. Organs sampled were the heart (a), liver (b), spleen (c), lung
indicated with asterisks (*, p<0.05; **, p<0.01).
groups [27-30]. It has been proposed that poultry may
be a candidate vehicle for E. coli capable of causing
human urinary tract disease, based on the possible trans-
mission of avian E. coli from poultry to humans, and
similarities between APEC and UPEC [31-34]. Interest-
ingly, the human UPEC isolate CFT073 was shown to be
17 and isogenic mutants were inoculated simultaneously. At
log10 competitive index (CI). The CI represents the relative numbers of
to the initial numbers of the strains in the inoculum (input ratio).
e with the virulent wild-type strain. Horizontal bars indicate the mean
(d), and kidney (e). Statistically significant decreases in CI values are



Table 1 Distribution and severity of histological lesions in
heart, liver and lung stained with HE at 24 h post-
infection in chickens challenged with wild-type strains
and isogenic mutants

Strain Heart Liver Lung

E058 +++ +++ +++

E058ΔchuT +++ ++ +++

E058ΔiroD - - -

E058ΔiucD - + ++

E058ΔchuTΔiroDΔiucD - - -

U17 +++ +++ +++

U17ΔchuT +++ +++ +++

U17ΔiroD - - -

U17ΔiucD + + ++

U17ΔchuTΔiroDΔiucD - - -

HE, hematoxylin and eosin.
-, no lesions; +, mild lesions; ++, moderate lesions; +++, severe lesions.
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virulent in an avian respiratory infection model, but
APEC isolates have not yet been found to cause disease
in humans [35]. Although previous studies have been
devoted to the contribution of iron uptake systems to
pathogenesis of APEC or UPEC individually, the contri-
bution of these systems to the virulence of APEC and
UPEC has not been clarified simultaneously in a chicken
challenge model. In this study, the roles of heme,
A B
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Figure 3 Heart sections of chickens infected via air sac inoculation wi
Magnification,×400. Heart sections of chickens infected with E058 (A), E058
U17 (F), U17ΔchuT (G), U17ΔiroD (H), U17ΔiucD (I), U17ΔchuTΔiroDΔiucD (
salmochelin and aerobactin systems in the virulence of
APEC E058 and UPEC U17 were assessed. Results indi-
cated that the contribution of these three distinct iron
acquisition systems to APEC E058 pathogenesis was
quite similar to that of UPEC U17 when assessed simul-
taneously in chickens. Drawing conclusions from this
study, ChuT-mediated heme transport system was gen-
erally redundant both in APEC E058 and UPEC U17
colonization and histopathological lesion formation in
chickens. The IucD- mediated aerobactin synthsis played
an important role in the pathogenesis of both E058 and
U17, while the IroD-dependent salmochelin system pro-
vided a more critical contribution to the virulence of
APEC E058 and UPEC U17.
Heme is the most abundant iron source in vivo, and

can be utilized by certain bacterial pathogens. Hagan
and Mobley demonstrated that both ChuA and Hma
contribute to CFT073 heme utilization, while a ChuA
heme receptor mutant was outcompeted by an Hma re-
ceptor mutant in a murine model of UTI, indicating that
the ChuA receptor contributes more to heme uptake
in vivo than does Hma [36]. Bonacorsi et al have pre-
sented evidence in support of the role of the chu heme
transport system in the virulence of extraintestinal E.
coli strains [37]. However, our results showed that ChuT
contributed to a lesser extent to the virulence of APEC
E058 and UPEC U17 in chickens, which implies that the
heme internalized in the periplasm may still be
C

F

I

th virulent wild-type strains or iron acquisition mutants.
ΔchuT (B), E058ΔiroD (C), E058ΔiucD (D), E058ΔchuTΔiroDΔiucD (E),
J). Heart section of a mock bird (K).



Figure 4 Liver sections of chickens infected via air sac inoculation with virulent wild-type strains or iron acquisition mutants.
Magnification,×400. Liver sections of chickens infected with E058 (A), E058ΔchuT (B), E058ΔiroD (C), E058ΔiucD (D), E058ΔchuTΔiroDΔiucD (E),
U17 (F), U17ΔchuT (G), U17ΔiroD (H), U17ΔiucD (I), U17ΔchuTΔiroDΔiucD (J). Liver section of a mock bird (K).
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transported by other periplasmic binding proteins or by
the Hma heme transport system, which suppresses the
effect of the ChuT-mediated heme transport defect.
Previous research showed that deletion of the iroA

locus in APEC strain χ7122 resulted in decreased viru-
lence in chickens [38]. Recent studies associated with iro
are mainly focused on the IroN salmochelin receptor
[16,39-42], while the roles of other iro-containing genes
in E. coli virulence are seldom reported. IroD demon-
strated higher affinity for Fe3+-loaded siderophores, and
efficiently processed cyclic salmochelins and enterobac-
tins into trimers, dimers, and monomers, favoring its
role in cytoplasmic release of iron [21]. In this study,
iroD was chosen to assert the role of salmochelin for
ExPEC virulence. Chicken pathogenicity assay results
showed that deletion of iroD in E058 and U17 led to
highly attenuated strains of the respective wild-type
strains, implying that the Iro iron uptake system plays a
critical role in virulence of APEC E058 and UPEC U17
in chickens. This is in agreement with previous studies
by Caza et al., showing that the IroD hydrolase appeared
to play a predominant role in virulence of APEC com-
pared to the IroE hydrolase [43].
When compared to commensal strains, aerobactin bio-

synthetic genes are more frequently detected in E. coli
pathogenic strains, and their incidence correlates with
highly pathogenic strains [44-46]. Moreover, compared
to the wild-type strain, the virulence of an APEC strain
deficient in aerobactin synthesis and uptake is reduced
in a chicken systemic infection model [38]. Similar re-
search showed that both salmochelin and aerobactin
appeared to play a significant role in APEC virulence
[38,47]. In our study, both E058ΔiucD and U17ΔiucD
showed significantly decreased colonization compared to
wild-type strains in several organs in the single-strain
challenge model. This suggests that IucD-mediated aero-
bactin synthesis plays an important role in pathogenesis
of APEC and UPEC. However, in the co-infection model,
the bacterial loads of the ΔiucD mutants in E058 and
U17 were similar to those of the wild-type strains
(P>0.05). Similarly, an ΔiucBΔentD double mutant, de-
fective in synthesis of both siderophores, was rescued by
co-infection with a wild-type strain in the mouse UTI
model, suggesting that the exogenous siderophores
synthesized by the wild-type strain are sufficient to sup-
press the effect of the siderophore synthesis mutations
[48]. In addition, our results showed that the triple mu-
tant ΔchuTΔiroDΔiucD of E058 or U17 was more atte-
nuated in the chicken challenge model than each of the
single mutants, which further proved that the iron ac-
quisition systems play important roles in the pathogen-
esis of APEC and UPEC in chickens. Complementation
of the triple mutants by the native iroD gene reinstated
the colonization ability of the mutant strains in most of
the tested organs, confirming that the pathogenesis de-
fect in the triple mutants is mainly mediated by the sal-
mochelin system.

Conclusions
Taken together, the data presented here demonstrates
that both salmochelin and aerobactin systems appear to
play an important role in APEC E058 and UPEC U17
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virulence, while salmochelin contributed more to the
virulence. The ChuT-mediated heme transport system
appeared to be redundant. While no differences were
observed between the mutants and their wild-type par-
ents in other phenotypic traits tested, suggesting that
other virulence mechanisms compensate for the effect of
the mutations.
Methods
Bacterial strains, plasmids, media and culture conditions
Strains and plasmids used in this study are listed in
Table 2. Bacteria were routinely cultured in Luria Bertani
(LB) broth at 37°C with aeration. Antibiotics were added
at the following concentrations: zeocin (Zeo), 25 μg/ml;
Table 2 Bacterial strains and plasmids used in this study

Strain or plasmid Description

Strains

E058 APEC O2 (Ent+ Sal+ Aer+ Ybt+)

U17 UPEC nontypable (Ent+ Sal+ Ae

E058ΔchuT ΔchuT::kan, Kanr

E058ΔiroD ΔiroD ::cam, Camr

E058ΔiucD ΔiucD ::zeo, Zeor

E058ΔchuTΔiroDΔiucD ΔchuT::kan ΔiroD::cam ΔiucD::

U17ΔchuT ΔchuT::kan, Kanr

U17ΔiroD ΔiroD ::cam, Camr

U17ΔiucD ΔiucD ::zeo, Zeor

U17ΔchuTΔiroDΔiucD ΔchuT::kan ΔiroD::cam ΔiucD::

ReE058TripiroD pGEX-6p-1-iroD complementat

Ampr

ReU17TripiroD pGEX-6p-1-iroD complementat

Ampr

Plasmid

pMD18-T Simple Vector TA Cloning Vector

pMD-chuT chuT cloned into pMD 18-T Sim

pMD-iroD iroD cloned into pMD 18-T Sim

pMD-iucD iucD cloned into pMD 18-T Sim

pEM7/Zeo Zeocin-resistant cassette

pUC4K Kanamycin-resistant cassette

pKD3 λ red template vector; Camr Am

pKD46 Red recombinase helper plasm

pMD-chuT-Kan Kan -resistant gene inserted int

pMD-iroD-Cam Cam-resistant gene inserted in

pMD-iucD-Zeo Zeo-resistant gene inserted int

pGEX-6p-1 expression vector

pGEX-6p-1-iroD BamHI-EcoRIiroD fragment clon
aEnt, enterobactin; Sal, salmochelin; Aer, aerobactin; Ybt, yersiniabactin; Kan, kanam
Tc, tetracycline.
kanamycin (Kan), 50 μg/ml; chloramphenicol (Cam),
30 μg/ml and ampicillin (Amp), 60 μg/ml.

Mutant construction and cloning
The ΔchuT, ΔiroD, and ΔiucD mutants were generated
in APEC E058 and UPEC U17 by allelic exchange. To
enhance the numbers of recombinants, E058 and U17
were initially electroporated with pKD46 to express Red
recombinase [50]. The genes were PCR amplified as
described below and cloned into pMD18-T simple vector
according to manufacturer’s instructions. The antibiotic
resistance cassette was then inserted into the target gene.
Each of the resultant constructs was then introduced
into E058 or U17 by electroporation. All mutants were
confirmed by PCR and verified by sequence analysis.
Reference or source

[49]

r+Ybt+), Nalr Tcr [5]

This study

This study

This study

zeo, Kanr Camr Zeor This study

This study

This study

This study

zeo, Kanr Camr Zeor This study

ion to E058ΔchuTΔiroDΔiucD, This study

ion to U17ΔchuTΔiroDΔiucD, This study

Takara

ple Vector This study

ple Vector This study

ple Vector This study

Invitrogen

Invitrogen

pr [50]

id, temp sensitive; Ampr [50]

o pMD-chuT This study

to pMD-iroD This study

o pMD-iucD This study

Amersham

ed into pGEX-6p-1 This study

ycin; Cam, chloramphenicol; Amp, ampicillin; Zeo, zeocin; Nal, nalidixic acid;
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The ΔchuT mutants, E058ΔchuT and U17ΔchuT, were
constructed as follows: the chuT gene was amplified by
PCR using the primers 5′-CTCGGATCCAGGATCAT
CACCAGGCCGTT-3′ and 5′-CTCAAGCTTTCAACG
GTGATAATGCGCTG-3′. The products were cloned
into pMD18-T simple vector to form pMD-chuT. To
insert the kanamycin cassette into chuT, reverse PCR
was adopted. The reverse PCR product was amplified
from pMD-chuT using the primers 5′-CTCGAATTCGG
TAATTACGCTATCCGG-3′ and 5′-CTCGAATTCCGT
TACAGGTTCCTGAAC-3′. The kanamycin cassette was
then introduced into the chuT genes at the EcoRI site.
The ΔiroD E058 and U17 mutants were constructed

by amplifying and cloning the fragment into pMD18-T
simple vector using the primers 5′-CTCGGATCCA
CCATGCGTAATCGTGAC-3′ and 5′-CTCAAGCTT
TACTGACTGACTTCTGGCGCGA-3′. The cam cas-
sette was introduced into the iroD genes at the internal
EcoRV site.
The aerobactin synthesis (iucD) mutants, E058ΔiucD

and U17ΔiucD, were constructed by amplifying and
cloning the iucD gene using the primers 5′- TCAGTC
GACTCAGCATTGCTGCGTTGT-3′ and 5′-CGCGAA
TTCTACGT GCAGATCTCCATG −3′. The reverse
PCR products were amplified from pMD-iucD using the
primers 5′-GACGATATCTCATATGCTTCACACAGG
-3′ and 5′-CCTGCATG CCTGGAGGAAGATATTCGC
−3′. The zeo cassette was introduced into the iucD
genes at the EcoRV and SphI sites.
To construct the triple knockout mutant, the ΔiroD-

ΔiucD double mutant was initially constructed by elec-
troporating the disrupted iroD genes into the
E058ΔiucD and U17ΔiucD competent cells. The dis-
rupted chuT gene was then electroporated into the
E058ΔiroDΔiucD and U17ΔiroDΔiucD double mutant
competent cells to form triple mutants E058ΔchuTΔir-
oDΔiucD and U17ΔchuTΔiroDΔiucD.

Complementation of the triple mutants using native iroD
For complementation analysis, the native iroD gene
was amplified using primers 5′-CTCGGATCCATGCT
GAACATGCAACAA −3′and 5′-CTCGAATTCTCAAC
CCTGTAGTAAACC-3′ from E058 and U17. To deter-
mine whether the sequences were in-frame, the
pGEMW-T Easy vector with the iroD insert was
sequenced by Sangon Co. (Shanghai, China). The iroD
PCR products and expression vector pGEX-6p-1 were
then digested with restriction enzymes BamHI and
EcoRI for 2 h at 37°C, and then ligated using T4 DNA
ligase overnight at 4°C. Five microliters of the ligation
mix were then transformed into E. coli DH5α and plated
on LB agar containing ampicillin. Colonies were tested
for the presence of iroD by PCR. The modified plasmid
pGEX-6p-1 with the iroD insert was isolated from
transformed DH5α and electroporated into E058ΔchuTΔ
iroDΔiucD and U17ΔchuTΔiroDΔiucD to complement
the deleted iroD gene. The complementation strains
were designated ReE058TripiroD and ReU17TripiroD,
respectively.
Experimental infection of chickens via the air sac
Chickens were maintained in specific-pathogen-free
conditions and all experiments were conducted under
the Regulations for the Administration of Affairs Con-
cerning Experimental Animals (Approved by the State
Council on October 31, 1988). Two different infection
models, a single-strain challenge model and a competi-
tive co-infection model, were used to investigate the
contribution of different iron acquisition systems to the
virulence of APEC and UPEC. For the single-strain chal-
lenge model, 5-week-old SPF chickens (White Leghorn,
Jinan SPAFAS Poultry Co., Jinan, China) were inoculated
in the left thoracic air sac with 108 CFU of the wild-type
strains or isogenic mutant derivatives. At 24 h post-
inoculation, chickens were euthanized and examined for
macroscopic lesions. The spleen, heart, anterior lobe of
the liver, lung, and kidney were aseptically collected,
weighed, and homogenized. Bacterial loads were deter-
mined by plating serial dilutions of the homogenates on
selective LB agar medium.
For the co-infection studies, cultures of mutants and

wild-type strains were mixed in a ratio of 1:1. The 5-
week-old SPF chickens were inoculated with 2 × 108

CFU of the mixture (1 × 108 CFU for each strain, final
volume of 0.5 ml) into the left thoracic air sac. Chickens
were euthanized at 24 h post-infection and their spleen,
heart, liver, lung, and kidney were collected, weighed,
and homogenized. Serial dilutions of samples were pla-
ted on LB medium with and without appropriate anti-
biotics for selection of mutants or total bacteria,
respectively. Then the results were showed as the log10
competitive index (CI). The CI was calculated for each
mutant by dividing the output ratio (mutant/wild-type)
by the input ratio (mutant/wild-type).
Bactericidal assay using SPF chicken serum
All mutants were tested for their resistance to serum.
Complement-sufficient SPF chicken serum was prepared
and pooled from ten SPF chickens. A bactericidal assay
was performed in a 96-well plate as described previously
but with the following modifications [51]. SPF chicken
serum was diluted to 0.5, 2.5, 5, 12.5, and 25% in pH 7.2
phosphate-buffered saline (PBS). Bacteria (10 μl contain-
ing 106 CFU) were inoculated into reaction wells con-
taining 190 μl of the diluted SPF chicken serum, 25%
heat-inactivated SPF chicken serum, or PBS alone, and
then incubated at 37°C for 30 min. Serial dilutions (1:10)
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of each well were plated onto LB agar plates. The result-
ing colonies were counted after 24 h incubation.

Growth in iron-rich and iron-restricted medium
Growth of all strains in iron-rich and iron-restricted
medium was examined as previously described [52].
APEC E058 and UPEC U17 and their isogenic mutants
were cultured overnight in LB broth. Cultures were
washed once in PBS and standardized to an optical
density at 600 nm (OD600) of 1.0, and approximately 106

CFU was inoculated into 5 ml LB with or without
200 μM 2,2'-dipyridyl (DIP). Bacterial growth was mea-
sured every hour by spectrophotometry (OD600). The ex-
periment was performed in triplicate.

Invasion assay
For invasion assays, avian macrophage cell line HD-11
was grown in Dulbecco’s modified Eagle medium
(DMEM, Gibco, NY, USA) with 10% fetal bovine serum
(FBS, PAA, Pasching, Australia) in 24-well cell culture
plates. Cells were maintained at 37°C in a 5% CO2 envir-
onment and plates contained ~2 × 105 cells per well.
Plates were incubated for 24 h prior to invasion assay.
Bacteria were inoculated onto cells with a multiplicity of
infection (MOI) of 100 in cell culture medium. Inocu-
lated cells were incubated at 37°C for 1 h with 5% CO2

to allow the bacteria to invade the cells. Following incu-
bation, the medium was washed with PBS. Extracellular
bacteria were then eliminated by incubation in DMEM
medium containing gentamicin (100 μg/ml) at 37°C for
1.5 h. Monolayers were then washed using PBS, and the
intracellular bacteria released with 1 ml 0.1% Triton X-
100. One hundred microliter aliquots of the cellular sus-
pension was inoculated into 900 μl PBS. Serial dilutions
(1:10) of each well were plated onto LB agar plates. The
resulting colonies were counted after 24 h of incubation.
Wells containing only HD-11 were used as negative con-
trols. The assay was performed in triplicate. The inva-
sion ratio was determined by dividing the number of
invaded bacteria by initial inoculation bacterial number.
Intracellular survival assay
To quantify the number of viable internalized bacteria,
HD-11 cells were plated and infected as described for
the invasion assay. After 1 h of infection, cells were
washed three times with PBS and re-incubated with cell
culture medium containing 10 μg/ml of gentamicin for a
further 2, 4, 6, 12, or 24 h. At each time point, cells were
washed three times with PBS and lysed with 0.1% Triton
X-100 for 10 min at 37°C, diluted in PBS, and plated on
LB agar plates for CFU determination. The experiment
was carried out in triplicate for each strain. The prolif-
eration rate was determined by dividing the number of
proliferated bacteria at each time point by initial inva-
sion bacterial number.

Histopathology
Three chickens were chosen from every group of the
single-strain challenge model inoculated with the mutants
or the wild-type strains. The sections of heart, liver, and
lung were fixed in 13% neutral buffered formalin. Paraffin-
embedded sections were cut at 5 μm, stained with
hematoxylin and eosin, and examined for histological
lesions under a 400× microscope.
Statistical analysis
Between groups were analyzed using the Statistical Pack-
age for the Social Sciences (SPSS version 15.0, SPSS,
Chicago, IL, USA). P values less than 0.05 were consid-
ered to be significant.
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