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Abstract

Background: Enterococci are among the leading causes of hospital-acquired infections in the United States and
Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from
enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has
steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual
replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using
genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of
E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E.
faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references.

Results: In this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO,
which belongs to multilocus sequence type (ST) 18, and was the first E. faecium strain ever sequenced. Whole
genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak,
and hospital-associated (HA) strains (including STs 16, 17, 18, and 78), in addition to strains of non-hospital origin,
group in the same clade (referred to as the HA clade) and are evolutionally considerably more closely related to
each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA)
clade with approximately a 3–4% average nucleotide sequence difference between the two clades at the core
genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade.
380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile
elements such as IS16 and transposons were also found almost exclusively in HA strains, as previously reported.

Conclusions: Our findings along with other studies show that HA clonal lineages harbor specific genetic elements
as well as sequence differences in the core genome which may confer selection advantages over the more
heterogeneous CA E. faecium isolates. Which of these differences are important for the success of specific E. faecium
lineages in the hospital environment remain(s) to be determined.
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Background
Enterococci are normal constituents of the gastro-
intestinal flora of humans and other animals [1-3]. Al-
though they only occasionally cause infections in healthy
individuals, they are the third most commonly isolated
gram positive organisms from hospital-associated (HA)
infections in the United States and are increasingly
reported in other countries [4,5]. Enterococcal infections
are often difficult to treat due to the number of anti-
biotics to which these organisms are resistant. Some
antibiotic resistances are intrinsic, such as resistances to
cephalosporins, while other antibiotic resistances are
acquired through mutations or horizontal gene transfer,
most notably the van systems that encode vancomycin re-
sistance [6-12]. Several recent studies also confirmed that
enterococci can transfer their resistance to even more
virulent organisms, such as Staphylococcus aureus [13].
Enterococcus faecalis is the most common enterococ-

cal species recovered from infections. However, in the
last decade, infections with Enterococcus faecium have
been on the rise in the United States, Europe, and South
America [2-5,14]. In the US, isolates of E. faecium now
account for ca. 35% of nosocomial enterococcal isolates
identified to the species level [4]. It is still not clear what
has caused the ecological replacement of E. faecalis with
E. faecium in the nosocomial setting, but it is speculated
that the intense use of antibiotics in hospitals and the
multiple antibiotic resistances of E. faecium have been
major contributing factors [11,15]. A few genes have
been suggested as being virulence determinants in E.
faecium due to their enrichment in clinical isolates, such
as the fms or hyl genes [16-22]. However, only three
genes have been experimentally implicated to have an
impact on virulence in animal models, namely esp,
which has a role in biofilm, urinary tract infection, and
endocarditis [23,24]; acm, encoding a collagen binding
adhesin contributing to endocarditis [25,26]; and the
ebpfm operon which encodes pili that are important in
biofilm and urinary tract infection [27]. In addition, con-
jugative transfer of a plasmid with a hyl-like gene not
only conferred increased resistance to vancomycin but
also increased virulence in transconjugants in the mouse
peritonitis model [28], and a different hyl-plasmid con-
ferred colonization in the murine gut [29]. While the
gene(s) responsible for this increase in virulence and
colonization have yet to be determined, the deletion of
the hyl gene did not cause attenuation in the peritonitis
model [19].
Molecular epidemiological studies of outbreaks of E.

faecium using MLST initially indicated that there was a
specific lineage or genogroup of strains, designated
clonal complex 17, that was predominant in the hospital
environment [2,5,15,30]. Other studies using pyrose-
quencing and whole-genome microarray subsequently
indicated that, while there appeared to be a globally dis-
persed clade containing the vast majority of epidemic
and clinical isolates which harbor a large content of
accessory genes specific to this clade [31,32], isolates
associated with healthcare settings were not strictly
clonally related to each other. In particular, while CC17
genogroup isolates are part of the HA subpopulation,
not all HA isolates are considered part of the ST17
lineage [33]. Recent studies in our laboratory and others
have shown large differences (~3–4%) in the sequence of
the core genome, as well as differences in the 16-S
rRNA, between two different clades which were named
the hospital-associated clade (HA) and community-
associated (CA) clade strains, (also known as clade A
and B [34])[32,33]. The HA clade contains most clinical
and HA-associated strains but also included strains from
non-hospital origin [35,36].
Molecular studies and comprehensive comparative

genomic studies of E. faecium have long been hindered
by the lack of a complete genome sequence. The TX16
(DO) genome was initially sequenced at the Department
of Energy’s Joint Genome Institute (JGI) in Walnut
Creek, Ca. in 1999 in an effort to demonstrate capabil-
ities of the sequencing technology at that time by se-
quencing the genome in only 1 day. However, the
genome was far from closed and the past decade has
been spent on annotation, final assembly, and analyses
of this genome. Recently, while this manuscript was in
review, a closed E. faecium genome was published by
Lam et al. using the ST17 isolate Aus0004, which was
isolated from the bloodstream of a patient in Melbourne,
Australia [37].
In this study, we report the closed genome of the US

E. faecium endocarditis isolate TX16 (DO), and a com-
parative analysis of this strain’s genome with 21 other
available E. faecium draft genomes [32,38], as well as the
recently published Aus0004 [37]. Due to the fact the
TX16 genome has been used in multiple pathogenesis
studies and is a part of the clonal group representing the
majority of clinical strains globally [2,5,30,36], the
complete genome sequence of E. faecium TX16 will fa-
cilitate future research by providing a critical starting
point for genome-wide functional studies to determine
the molecular basis of pathogenesis and to further
understand the evolution and molecular epidemiology of
E. faecium infective strains.

Results
E. faecium TX16 general genome features
The E. faecium TX16 genome consists of one chromo-
some and three plasmids. The chromosome (Figure 1)
contains 2,698,137 bp with 2,703 protein-coding ORFs,
62 tRNAs, 6 copies of ribosomal rRNA and 32 other
non-coding RNAs (Table 1). The chromosome has a GC



Figure 1 Circular map of the E. faecium TX16 genome. Tracks from inside to outside are as follows: GC skew (G-C)/(G + C), GC content,
forward and reverse RNA, reverse genes, and forward genes.
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content of 38.15%, and it shows a clear GC skew at the
origin of replication (Figure 1). The sizes of the three
plasmids (pDO1, pDO2, and pDO3) are 36,262, 66,247
and 251,926 bp, encoding 43, 85, and 283 ORFs, respect-
ively (Table 1).
To investigate the conservation of the gene order of E.

faecium compared to its close relative E. faecalis, a
BLASTP alignment of all the predicted proteins from
the TX16 and V583 genomes was performed followed by
Table 1 General features of E. faecium TX16 genome

Features Chromosome Plasmid
pDO1

Plasmid
pDO2

Plasmid
pDO3

Size (bp) 2698137 36262 66247 251926

G+C % 38.15 36.51 34.38 35.97

ORFs 2703 43 85 283

rRNA
operons

6 0 0 0

tRNAs 62 0 2 0

ncRNAs 32 1 0 0
ORF synteny analysis using DAGchainer [39]. The result
showed that E. faecium TX16 gene order is very differ-
ent from that of E. faecalis strain V583 (and therefore
OG1RF, which has a very similar synteny to V583
[40,41]) and all ORF synteny blocks were relatively short
(Additional file 1: Figure S1).
Interestingly, when comparing TX16 to the closed

genome Aus0004, which was published while this paper
was in review, Mauve genome alignment analysis
resulted in 5 locally collinear blocks for both TX16 and
Aus0004 ranging from 33,563–836,291 bp for TX16 and
32,326–905,025 bp for Aus0004 (Additional file 2:
Figure S2). The two isolates had very similar synteny,
although two regions found in TX16 were inverted in
Aus0004. Two site-specific tyrosine family recombi-
nases (EFAU004_01466 and EFAU004_02416) were
found flanking these two inversions (Additional file 2:
Figure S2).
The genome size of the E. faecium strains vary sub-

stantially from 2.50 Mb (E1039) to 3.14 Mb (1,230,933),
while the number of ORFs varies from 2,587 (E1039) to
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3,118 (TX0133A). Ortholog analysis of TX16 compared
to TX1330 and all the available but unfinished E. fae-
cium genomes using BLASTP of predicted protein
sequences and orthoMCL resulted in 3,169 distributed
genes shared among some strains (Figure 2), 2,543
unique genes (Figure 2), and 1,652 core gene families, of
which 1,608 genes are present in a single copy in all
strains and 44 gene families are present in multiple cop-
ies. The number of core genes (including those in single
and multiple copies) converged to 1,726 at the 22nd gen-
ome, while the number of pan genes reached 6,262
genes at the 22nd genome (Figure 3A and B). The extra-
polated number of core genes is very close to the num-
ber of core genes (1,772 genes) Leavis et al. reported in
their microarray-based study which used 97 isolates, yet
the estimated number of pan genes is higher in the
present analysis [31]. Furthermore, this study differs
slightly from the analysis of van Schaik et al. which esti-
mates the E. faecium core genome to be 2172 ± 20 CDS
[32]. Our data do, however, concur with the conclusion
that a sizeable fraction of the E. faecium genome is
accessory and that the pan genome is considered to open.

Phylogenetic, multi-locus sequence typing (MLST) and
gene content similarity analysis
Analysis of the 22 E. faecium genomes (Table 2) showed
that the isolates separate into two clades, one branch
consisting mostly of CA isolates, with most HA isolates
found in the other, as was noted in our previous study
[33] (Figure 4A and B). When analyzing the phylogenetic
distances among these 22 isolates using 628 single-copy
ortholog genes of the same length (Figure 4A), similar
clade patterns were observed for the E. faecium strains
as seen in the 100 core gene analysis by Galloway-Pena
et.al [33]. All isolates predicted to be part of the CC17
genogroup [2,5,30] cluster more closely together and
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Figure 2 Distribution of orthologs in 22 E. faecium strains. The ortholo
Methods. ORFs of the 3 plasmids in E. faecium TX16 were not included in t
branched more distantly than other HA-clade isolates
(Figure 4A). The dendogram construction from the gene
content dissimilarity represented by Jaccard distance
(Figure 4B) also showed most hospital-isolated strains
cluster together except hospital- isolated strain 1,141,733
which was shown genetically to belong to the CA clade.
In addition, although E1039 is a community- isolated
fecal strain, it is genetically closer to the HA strains. The
phylogenetic and gene content dissimilarity analysis
results all support the existence of two very distinct
clades of E. faecium, which has been previously described
using pyrosequencing, microarray, and the concatenation
of a 100 core genes, estimated to have diverged anywhere
from 300,000 to 3 million years ago [31-33].
Comparison of E. faecium TX16’s predicted proteins

to predicted proteins from the other 21 E. faecium
genomes using BLASTP revealed a mosaic-like struc-
ture, as previously described [16,33], and many highly
variable regions. Some of the TX16 variable regions
are HA clade specific (Figure 5). Notably, regions
from 27 to 38 kb, from 581 to 606 kb, from 702 to
717 kb, from 997 to 1,042 kb, from 1,737 to 1,802 kb
and from 2,629 to 2,642 kb on the TX16 genome are
missing or have low identity in the CA strains. Inter-
estingly, region 1737 to 1802 kb encodes 4 surface
proteins (HMPREF0351_11775, HMPREF0351_11776,
and HMPREF0351_11777 which are the 3-gene pilus
cluster, fms11-fms19-fms16 and HMPREF0351_11828
which is fms18, also known as EcbA, a collagen and
fibrinogen binding MSCRAMM). Another notable re-
gion with low ORF identity hits or missing in strain
D344SRF and TC6 is a ~145-kb region from 1,364
to 1,509 kb on the TX16 genome. Containing the
pilus subunit protein EbpCfm (fms9) and other 2
pilus subunit proteins (EbpAfm and EbpBfm)
(Figure 5).
11 12 13 14 15 16 17 18 19 20 21 22

 in number of strains

gs were determined by orthoMCL as described in the Material and
he ortholog analysis.



Figure 3 E. faecium core and pan genomes. A. E. faecium core genes. The number of shared genes is plotted as the function of number of
strains (n) added sequentially. An open circle represents the number of shared genes for each permutation at a give number of strains (n). 1,608
single copy genes are shared by all 22 genomes. The red line represents the least-squares fit to the exponential decay function Fc= κc exp[−n/
τc] +Ω (κc = 1871± 25, τc= 1.751 ± 0.027, Ω= 1726± 2). B. E. faecium pan-genes. The number of total genes is plotted as the function of strains (n).
The open circle represents the number of total genes for each permutation at a give number of strains (n). The red line represents the least-
squares fit to the power law function n= κ Nγ (κ= 2876 ± 7, γ= 0.2517 ± 0.009).
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Assessment of genomic rearrangements among E. fae-
cium strains was more difficult because other genomes
are not complete. We further investigated the genes that
are unique to the HA-clade based on clade assignment
of the strains in the phylogenetic analysis, and identified
378 ORFs (14% of TX16 ORFs) that are unique to the
HA clade (shared at least between 2 HA clade isolates)
(Additional file 3: Table S1). Of the 378 ORFs, 282 ORFs
are conserved in at least half of the HA clade strains in-
cluding 61 ORFs which are shared among all HA-clade
isolates. Most of the HA clade unique genes are
transposon-related genes, transporters, and prophage
genes. Interestingly, a Cna B-type gene, the enterocin A
operon, and two fms genes (see MSCRAMMs below) are
among the HA-clade specific genes. Strain 1,231,408 was
excluded from the HA unique gene analysis because it
was previously shown to be a hybrid strain that con-
tained both HA (~2/3) and CA (~1/3) alleles based on
our 100 core gene analysis [33].

Mobile genetic elements
E. faecium isolates from patients typically have many
mobile genetic elements which often contain antibiotic
resistance genes that are easily transferable between
strains. Bacteriophage-mediated transduction can trans-
fer antibiotic resistance between enterococci [44,45] and
many bacteriophages have also been identified in E. fae-
cium [44]. To identify phage genes on the TX16 genome,
Prophinder and Prophage Finder were used to search for
prophage loci [46,47]. Both programs identified that two
chromosomal regions (821–858 kb and 2,073–2,088 kb)
with a total size of about 62 kb contain phage-related
genes. Sixty-one and twenty one phage-related genes
were identified in these regions, respectively (Additional
file 4: Table S2). All CA strains have low identity ORF hits
or missing ORFs in the predicted prophage locus from
821 to 857 kb, while most HA strains have similar ORFs
in this locus. All CA strains and most HA strains lack
similar ORFs in the other predicted prophage locus from
2,073 to 2,087 kb (Figure 5 and Additional file 3: Table
S1). In addition to these two main regions, small numbers
of phage-related genes were also identified throughout
the chromosome, but these were not further analyzed.
IS elements and transposases are major mobile genetic

elements in E. faecium and about 180 IS element and
transposase-related genes were identified in the TX16
genome (Additional file 5: Table S3). About half of these
IS elements and transposases are present on the three
plasmids. Considering the sizes of the chromosome and
three plasmids (chromosome, 2,698,137 bp; plasmid 1,
36,262 bp; plasmid 2; 66,247 bp; plasmid 3, 251,926 bp),
plasmid DNAs appear to be more susceptible to IS
element/transposase insertions. Some IS elements/trans-
posases exist as multiple copies in specific locations on
the chromosome or plasmids. Four copies of ISEnfa3
sequence (HMPREF0351_10172, HMPREF0351_10364,



Table 2 The 22 sequenced Enterococcus faecium genomes

Strain ST CC17 Country Year Source Reference

1,231,408a 582 Yes NAb NA Blood Culture of Hospitalized Patient [38]

1,231,501 52 No NA NA Blood Culture of Hospitalized Patient [38]

Com15 583 No USA (MA) 2006 Healthy Volunteer Feces [38]

1,141,733 327 No NA NA Blood Culture of Hospitalized Patient [38]

1,230,933 18 Yes NA NA Wound Swab of Hospitalized Patient [38]

1,231,410 17 Yes NA NA Skin and Soft Tissue Infection [38]

1,231,502 203 Yes NA NA Blood Culture of Hospitalized Patient [38]

Com12 107 No USA (MA) 2006 Healthy Volunteer Feces [38]

E1039 42 No Netherlands 1998 Healthy Volunteer Feces [32]

E1162 17 Yes France 1997 Blood Culture of Hospitalized Patient [32]

E1071 32 No Netherlands 2000 Hospitalized Patient Feces [32]

E1679 114 No Brazil 1998 Swab of Vascular Catheter [32]

E1636 106 No Netherlands 1961 Blood Culture of Hospitalized Patient [32]

E980 94 No Netherlands 1998 Healthy Volunteer Feces [32]

U0317 78 Yes Netherlands 2005 UTI of Hospitalized Patient [32]

D344SRFc 21 No France 1985 Clinical (Site not specified) [42]

TC6 21 No USA (OH) NA Transconjugant of C68 and D344SRF [29]

C68 16 Yes USA (OH) 1998 Endocarditis Patient (Feces) [9]

TX0133 17 Yes USA (TX) 2006 Endocarditis Patient (Blood) This study

TX82 17 Yes USA (TX) 1999 Endocarditis Patient (Blood) [25]

TX16 18 Yes USA (TX) 1992 Endocarditis Patient (Blood) [43]

TX1330 107 No USA (TX) 1994 Healthy Volunteer Feces [17]
aHybrid genome with ~1/3 of the core genes from the CA clade and 2/3 from the HA clade.
bIndicates this information was not available.
cA rifampin- and fusidic acid-resistant derivative of clinical strain E. faecium D344S in which the spontaneous loss of pbp5 and its surrounding region resulted in
an ampicillin-susceptible phenotype.
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HMPREF0351_11866, and HMPREF0351_11868)
were identified in the chromosome but not in the
3 TX16 plasmids whereas the sequences of
IS1216 (HMPREF0351_12707, _12726, _12729, _12749,
_12763, _12794, _12807, _12813, _12818), IS1297
(HMPREF0351_12910, _12920, _12891, _12875), and
ISEfa4 (HMPREF0351_13111) were identified in the
three plasmids but not in the chromosome. IS elements
and transposases were found more frequently in HA
strains than in CA strains. Previously, IS16 was sug-
gested as a molecular screening marker to predict E.
faecium pathogenicity because of its presence in clinical
E. faecium isolates [31,48]. We performed a BLAST
search of the 22 E. faecium genomes to identify the IS/
transposase elements showing the same presence or ab-
sence patterns of IS16 (HMPREF0351_11812, _11855,
_12352, and _12809). Many IS/transposase elements
were found to have the same pattern of presence/ab-
sence in different strains as IS16; including ISEnfa3
(IS3/IS911 transposase: HMPREF0351_10172, _10364,
_11866, and _11868), IS116/IS110/IS902 family transpo-
sases (HMPREF0351_11035, _11528, _12768, and
_13088), IS66 transposases (HMPREF0351_10928,
_11787, _11933, _12004, _12887, and_12948), and trans-
posases (HMPREF0351_10878, _10880, _10927, _11934,
and _12005). Therefore, all these IS elements and trans-
posases (in addition to IS16) have potential as molecu-
lar markers to identify clinical E. faecium. However,
these IS elements and transposases are not found in all
HA-clade strains as 1,231,501; E1039; and E1071 do not
have these IS elements and transposases, although they
are present in all of the isolates considered to be part of
the CC17 genogroup (Figure 4A).

Genomic islands
A pathogenicity island containing the esp gene has previ-
ously been reported in E. faecium [32,49]. The esp gene is
not present in the TX16 genome but a search for other
possible genomic islands (GIs) in TX16 using GI predic-
tion programs including IslandPath-DIMOB [50], SIGI-
HMM [51], and IslandPick [52,53], identified a total of 9
regions totaling 62,290 bp predicted as GIs. The GIs are
shown in Figure 5, and the genes encoded by GIs are listed
in Additional file 4: Table S2 and Additional file 6: Table
S4. GIs 6, 7 and 8 might be a single GI, since they are
located very close together. GIs 6 and 7 are separated by
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Figure 4 Enterococcus faecium phylogenetics. 4A. A maximum-likelihood phylogenetic tree using 628 core genes. Distance bar indicates the
sequence divergence. Strains isolated from the community are labeled with branches in red. An asterisk (*) indicates a strain within the HA clade
lacking IS16. 4B. A hierarchical clustering using Jaccard distance of gene content by unweighted pair group method with arithmetic mean
(UPGMA) (see Materials and Methods). The core, distributed and unique gene counts are also presented in the right panel. 1:1 ortholog, orthologs
present with one copy in all strains; N:N ortholog, orthologs present with multiple copies in all strains; N:M ortholog, orthologs present in some
strains.
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only 2 ORFs and 7 ORFs are present between GIs 7 and 8.
The 9 predicted GIs have hypothetical proteins and
transposon-related proteins in common. Among these pu-
tative GIs, islands 2, 3, 4, and 5 were frequently present in
E. faecium of HA origin (data not shown). Island 2 con-
tains 9 genes (6 genes encoding hypothetical proteins, and
a predicted transposase and two transcriptional regula-
tors). Island 3 contains 12 genes including 4 hypothetical
proteins, 3 predicted ABC transport genes, a transposase,
a Mg-dependent DNase, a LysM family protein, a cell wall
protein, and a predicted fosfomycin resistance protein. Is-
land 4 and 5 are composed of 7 and 9 genes, respectively.
Island 4 contains 5 hypothetical proteins, a putative mem-
brane protein, and a putative transposase. Four hypothet-
ical proteins and 5 transposase related proteins were
present in Island 5. The presence of a transposase in each
island supports that these islands were acquired through
horizontal gene transfer. While a potential role in patho-
genesis has been suggested, there are many hypothetical
proteins in each island and no genetic or experimental



Figure 5 ORF comparisons of the 22 E. faecium genomes. A circular map of BLASTP identity of predicted proteins from TX16 against the
predicted proteins from other 21 E. faecium strains. Tracks from inside to outside: forward and reverse RNAs, reverse genes, foward genes, and
genomic islands. In outer strain circles from inside to outside are the BLASTP precent identity of TX16 against ORFs from TX82, TX0133A,
1,141,733, 1,231,408, 1,231,501, 1,231,502, E1162, E1636, E1679, D344SRF, TC6, C68, E1071, 1,231,410, U0317, 1,230,933, Com12, Com15, E1039, E980,
and TX1330. Red is 90–100% identity, purple is 60–89% identity, green is 0–59% identity.
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evidence to indicate such a role. However, island 3 which
contains a predicted fosfomycin resistance protein might
be important in promoting E. faecium colonization be-
cause of the selective advantage conferred when this anti-
biotic is used. The remaining GIs 1, 6, 7, 8, and 9 exist
only in the TX16 genome or in a limited number of E. fae-
cium strains.
We also searched for previously reported GIs [17,49]

and pathogenicity islands [32] in the 22 E. faecium gen-
omes. As reported [32], a pathogenicity island including
the esp gene was observed in E1162; E1679; and U0317. In
addition to these three strains, an island with a partial esp
gene was also found in 1,231,502; C68; 1,231,410;
TX0133A; and 1,230,933 strains when we performed a
BLAST search. The esp gene could possibly be intact in
these strains but interrupted in the draft assemblies, pos-
sibly as a consequence of the next-generation sequencing
technology problems. A GI previously found to be specific
to CC17 [49] was also observed in the HA clade strains
TX0133A; TX82; C68; 1,231,410; 1,230,933; E1162; TX16;
1,231,502; U0317; and E1679. Intrestingly, 1,231,408, which
is the mosaic strain [33], lacked this GI. The presence of a
putative three-gene pilus-encoding cluster, fms11-fms19-
fms16, previously proposed as a small GI [17], is described
within the subsequent section on MSCRAMM-like proteins.

Genetic loci in E. faecium TX16 predicted to be involved
in biosynthesis of surface polysaccharides
Our analysis of the E. faecium TX16 genome did not iden-
tify close homologs of the cpsC-K cluster of E. faecalis.
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Figure 6 Comparison of the homologous epa-like loci of E. faecium TX16 and E. faecalis OG1RF. Orthologs of epaP and epaQ, located at
different positions in the E. faecium and E. faecalis genomes, are indicated by black arrows. Genes epaI, epaJ and epaK, present only in E. faecalis,
are indicated by light grey arrows. The epaN homolog of E. faecium, which is shorter than epaN of E. faecalis, is shown by a dark grey arrow. The
TX16 ORF (HMPREF0351_10906) with relatively low similarity to the β-lactamase superfamily is shown by a hatched arrow. The epaA to epaR
region of E. faecium TX16 corresponds to locus tags HMPREF0351_10891 to HMPREF0351_10907.
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Homologs of the two genes, cpsA and cpsB, were found
and well conserved in TX16, but were recently reported to
not be sufficient for capsule production in E. faecalis [54].
Similarly, homologs of cpsA-cpsB but not of cpsC-K were
found in the 21 other E. faecium draft genomes.
In contrast, a locus homologous to the epa locus,

which was shown to produce a rhamnose, glucose, gal-
actose, N-acetylgalactosamine and N-acetylglucosamine-
containing antigenic cell wall polysaccharide in E. faecalis
OG1RF[55,56], was found in the TX16 genome (Figure 6).
However, identities of the encoded Epa-like proteins vary
widely between orthologs of TX16 and OG1RF (ranging
from 31% (EpaQ) to 92% (EpaE)). In addition, gene com-
position and order of the epa-like locus are partially dif-
ferent in these two organisms; the homologs of the three
genes in the middle of the E. faecalis epa cluster, epaI,
epaJ and epaK, are not present in TX16, while two other
epa-like genes, epaP and epaQ are located at this site. All
15 epa-like genes of TX16 were found to be present,
highly conserved and similarly organized in all 21 avail-
able E. faecium draft genomes (aa identities of the
encoded proteins range from 88% to 100%), indicating
that they are part of the core genome of this species.
However, the absence of three epa genes in E. faecium,
one encoding a glycosyl hydrolase (epaI), suggests the
Epa polysaccharides of the two species have different
sugar compositions.
Genes encoding proteins predicted to be an initiating

transferase of polysaccharide biosynthesis (undecaprenyl-
phosphate sugar phosphotransferase), glycosyl trans-
ferases, acetyl transferases, sugar phosphate transferases
and repeat unit polymerases are typically clustered to-
gether in loci that mediate polysaccharide synthesis in
gram-positive bacteria. Our search for these features in
the TX16 genome identified two additional regions that
might be involved in polysaccharide production.
The first of these regions found in TX16 (Locus 4) is

a downstream extension of the epa-like region
(HMPREF0351_10908 - HMPREF0351_10923), immedi-
ately preceded by an undecaprenyl-phosphate galactose-
phosphotransferase (encoded by epaR) (Additional file
7: Figure S3). Unlike the epa region, however, the ex-
tension (HMPREF0351_10908 - HMPREF0351_10923;
Locus 4) is present in only 5 of the other E. faecium
draft genomes; all except one of these strains (E980)
belong to the HA clade . This Locus was also observed
in these strains by Palmer et al. [34]. TX16 and these
5 draft genomes also have an additional ORF
(HMPREF0351_10906 in TX16), encoding a putative
member of the large beta-lactamase-like superfamily
(Pfam PF00144, e = 9.4 × 10−17) between epaO and epaR
on the upstream side of this region (Figure 6) and a
transposase (HMPREF0351_10924) in 5 of the 6 gen-
omes on its downstream side.
Analysis of the remaining 16 draft genomes for a cor-

responding region revealed a predicted polysaccharide-
encoding gene cluster downstream of the epa region in
all of them, (Locus 1, 2, and 3 also described by Palmer
et al. [34]), although these regions have only low simi-
larities to those of TX16 and the 5 genomes above and
extensive sequence variation among each other (Add-
itional file 7: Figure S3). Locus 3 (HMPREFD9522_
02513–02504) was found in only HA clade strains,
while Locus 1 (EFWG_01379-01370) and Locus 2
(HMPREF0352_0048-0457), although found in some
HA-clade strains, were only found in non-CC17 isolates
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as well as in four of the five CA-clade isolates, indicating
some specificity of polysaccharide biosynthesis genes for
certain lineages or niches. Of note, none of Locus 2
strains have IS16, only two of the Locus 1 strains have
IS16, while all that had Locus 3 or 4 have IS16.
The second region found in TX16 that appears

likely to be involved in polysaccharide biosynthesis
(HMPREF0351_11938 - HMPREF0351_11970) is largely
unique to this genome, with only the first four ORFs
present in 20 of the genomes and the whole region com-
pletely absent in one of the genomes (E1039). However,
each of the 20 other genomes has additional genes pre-
dicted to be involved in polysaccharide biosynthesis at
this location.

Distribution of genes encoding MSCRAMM-like proteins,
putative virulence genes, antibiotic resistance
determinants, and CRISPRs
Previous studies of E. faecium TX16 identified 15 genes
encoding LPXTG family cell-wall anchored proteins with
MSCRAMM-like features, such as immunoglobulin-like
folding; 11 of these were found in four gene clusters,
each predicted/demonstrated to encode a different pilus,
and four were found as individual MSCRAMM-
encoding genes [18,21,22]. Our search for these genes in
21 unique E. faecium draft genomes in this study found
all of the MSCRAMM-encoding genes to be widely dis-
tributed except fms18 (ecbA) and fms15 which were only
in HA-clade isolates (although some are present as var-
iants or pseudogenes within the HA-clade) (Additional
file 8: Table S5). Moreover, our analysis revealed that
ebpA-ebpB-ebpCfm, fms14-fms17-fms13, fms20, scm, and
fms18 (the latter present in only HA isolates) all have se-
quence variants in some of the 21 strains, with identities
of the encoded variant proteins ranging from 39%
(fms20 homolog) to 94% (ebpC) versus their counter-
parts in TX16 (Additional file 8: Table S5). In general,
most of the MSCRAMMS followed the CA/HA clade
groupings with a variant representing each clade. Variant
1 of the fms11-fms19-fms16 locus was strictly found in
the HA-clade, and variant 2 in the CA-clade except for
1,231,501 which only had one of the three proteins
(fms16) as a CA-variant, suggesting recombination by
this isolate. Variant 1 of fms14-fms17-fms13 was found
in all but one HA clade isolate (1,231,408, a hybrid of
HA and CA clades, has variant 2) and variant 2 in all 5
CA-clade strains. Variant 1 of scm was found to be ex-
clusively carried by all 16 HA clade strains and variant 2
by 4 of the 5 CA clade strains. Although the differences
between these MSCRAMMs in CA- vs. HA-clade strains
are generally greater (ranging from 2 to 27% with an
average of 10%) than the differences (3–4%) previously
reported for the clade-specific differences in a set of core
genes that excluded predicted surface proteins, they are
comparable to the differences seen in several other sur-
face proteins that have been studied [33,57].
Interestingly, the majority of HA clade strains (12/16,

including TX16) were found to have variant 1 of the ebp
pilus operon, while variant 2 was exclusively found in
the 5 CA-clade strains in addition to variant 1 in three
of the five isolates. In contrast, variation within fms20
was restricted to the HA clade; all CA clade isolates car-
ried fms20 variant 1, but the percent identity between
these two variants is much smaller (39%), possibly indi-
cating the need for a new gene name. Also of note was
the acm gene, which is present as a pseudogene in all of
the CA-clade isolates except 1,141,733 which is the only
CA-clade isolate that is from a hospitalized patient; acm
pseudogenes were also found in non-CC17 HA-clade
isolates.
Of note, our search for MSCRAMMs and potential

pilus proteins also found one to three new individually
encoded CnaB domain-containing MSCRAMMs in five
of the E. faecium draft genomes and a new pilus encod-
ing gene cluster in strain E1071; the latter consists of
three genes one of which is a relatively distant homolog
of bee1 (35% aa identity) and two are identical or highly
homologous to bee2 or bee3 (100% and 98%, respect-
ively) of a plasmid-encoded bee pilus gene cluster found
in a small percentage of E. faecalis isolates [58].
To identify possible virulence genes in the E. faecium

genomes, the enterococcal virulence factors listed in the
Virulence Factors Database (VFDB) [59] were aligned to
the ORF protein sequences using BLASTP and filtered
with 50% identity and 50% match length. The homologs
of efaA, EF0954 (a homolog of BopD which is a tran-
scriptional regulator involved in biofilm production of E.
faecalis[42,60] ), cpsA and cpsB genes are present in all
E. faecium strains (see surface polysaccharides above for
cpsA and cpsB), and espEfm and hylEfm are exclusively
present in some HA clade strains while the homolog of
EF0818 (a putative hyaluronidase and annotated as a
Family 8 polysaccharide lyase, also similar to the LPXTG
protein EF3023) is exclusively present in the CA-clade
strains (except strain 1,141,733). Homologs of other E.
faecalis virulence factors listed in the VFDB were not
found in TX16 genome.
We also searched the 22 E. faecium isolates for the

presence and absence of 13 resistance genes. Our data
correspond to previously published data for some of the
isolates [32,61]. We observed that there is a clear dis-
tinction between the isolates of the genetically defined
CA clade and those of the HA clade with none of the
CA clade isolates having any of the antibiotic resistance
determinants analyzed (Table 3). On the other hand, all
of the HA-clade isolates have multiple resistance deter-
minants, including the pbp5-R allele that confers ampi-
cillin resistance previously reported by Galloway-Pena



Table 3 Antibiotic resistance gene profiles of the 21 E. faecium strains

Gene cat ermA ermB aad6 aad9 aadE aacA- aphD tetL tetM vanA gyrAb parCc pbp5-Rd

Resistance CHL ERY ERY SPC/ STR SPC/ STR SPC/ STR GEN TET TET VAN CIP CIP AMP

Strains

1,141,733

Com12

Com15

E980

TX1330

1,230,933 X X X X X X X X X

1,231,408 X X X X X X X

1,231,410 X X X X X X

1,231,501

1,231,502 X X X X X X X X

C68 X X X X X X X X

D344SRFa X X X X X

TX16 X X X X X X X

E1039 X

E1071 X X X X X X X X

E1162 X X X

E1636 X X

E1679 X X X X X X X X X

TX82 X X X X X X X X

TX0133A X X X X X X X X X

U0317 X X X X X X X
aA rifampin- and fusidic acid-resistant derivative of clinical strain E. faecium D344S in which the spontaneous loss of pbp5 and its surrounding region resulted in
an ampicillin-susceptible phenotype.
bAmino acid change (E to K/G) in residue 87 or (S to R/Y/I) in residue 83 of GyrA.
cAmino acid change (E to K) in residue 86 or (S to R/I) in residue 82 of ParC.
dConsensus sequence of the pbp5-R allele encoding the low affinity Pbp5-R.
eTC6 was not included in this analysis as it is a transconjugant of C68 and D344SRF, so therefore is not a unique genome.
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et al. [57], except for strains 1,231,501 and E1039.
1,231,501, which is in the HA-clade but lacks all anti-
biotic resistances including pbp5-R, may have lost the al-
lele via recombination and acquired pbp5-S or may even
represent a more ancestral isolate. Indeed, 1,231,501 was
shown to be a hybrid of HA and CA genomes by Palmer,
et al., with the replacement (hybrid) region including
pbp5-S, which could explain the origin of pbp5-S in this
strain [34]. E1039, which has the pbp5-R allele but none
of the other resistance genes, is genetically defined as a
HA-clade isolate, but came from a healthy volunteer,
perhaps explaining its lack of other antibiotic resistances.
Interestingly, neither of these strains has IS16. D344SRF
is the only other HA-clade isolate that lacks the pbp5-R
allele; however, this strain is known to have spontan-
eously lost pbp5 and the surrounding region and con-
tains many other resistances [62]. Of note, E1636 only
has two of the 13 resistances analyzed (tetM and pbp5-
R); however, this could possibly be explained by its early
isolation in 1961. This again suggests that these isolates
are more distantly related to the other strains within the
HA-clade.
Two groups have previously analyzed CRISPR-

associated genes within E. faecalis and E. faecium gen-
omes [32,61]. Partial CRISPR-like loci were previously
described in E1071, E1679, and U0317; however, these
loci were within a gene and were considered non-
functional [32]. In addition, Palmer et al. identified
CRISPR-cas predicted proteins in the Broad Institute
strains Com12; 1,141,733; and 1,231,408 [61]. Similarly,
we only found a CRISPR-cas locus in strain TX1330
(Additional file 9: Table S6) out of the 6 strains not pre-
viously studied (TX1330; TX16; TX0082; TX0133A;
D344SRF; and C68). In summary, out of the 22 available
genomes, only one of the HA-clade isolates contained
CRISP-loci, namely the hybrid strain 1,231,408. The
three other strains containing CRISPR-loci of the CA-
clade (Com12; 1,141,733; and TX1330) all lacked
antibiotic resistance determinants. Therefore, our data
coincide with the previous observation that members of
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the recently emerged high-risk enterococcal lineages lack
CRISPR-loci and the inverse relationship between the
presence of a CRISPR-cas locus and acquired antibiotic
resistance [61].

Metabolic pathway
Metabolic pathways of E. faecium might have contribu-
ted to the recently increased incidence of E. faecium
colonization and infection. To help understand E. fae-
cium metabolism, the KEGG pathway (with EC number)
and KAAS (with amino acid sequences) databases were
used. Both databases predicted more than 100 pathways
using TX16 genomic information. E. faecium exhibits
major genomic differences in the genes involved in en-
ergy metabolism compared to that of other facultative
anaerobic bacteria. However, like other species in the
Lactobacillaceae order, genes for typical aerobic energy
(ATP) generation through the TCA cycle and electron
transport chain do not exist, i.e., genes encoding com-
plex I (NADH dehydrogenase), II (succinate dehydro-
genase,), III (cytochrome bc1 complex), and IV
(cytochrome c oxidase).
When we compared the metabolic pathways of TX16 to

those of E. faecalis V583 using the KEGG database, all 82
metabolic pathways of E. faecalis were also predicted in
TX16. Indeed, more diverse metabolic activities were
observed in TX16 (Additional file 10: Table S7 and Add-
itional file 11: Table S8). Additional files 10: Table S7 and
Additional files 11: Table S8 show lists of enzymes that
only exist in E. faecium TX16 or E. faecalis V583 when
KEGG enzymes from both strains were compared. Many
of these enzymes were also described by van Schaik et al.
who compared 7 European strains (also included in this
study) to E. faecalis V583. They found 70 COGs present
in their E. faecium genomes lacking in V583, whereas we
found 176 predicted enzymes present in TX16 lacking in
E. faecalis V583 according to KEGG analysis. Additionally,
they found 140 COGs specific for E. faecalis V583, com-
pared to the European strains, whereas we found only 112
enzymes specific to V583 when compared to TX16
according to KEGG analysis [32].

Plasmids
Alignment of ORFs from the three plasmids of TX16 to
the ORFs from the other 21 E. faecium genomes by
BLASTP showed that all strains shared some ORFs that
are similar to the ORFs of the three E. faecium TX16
plasmids (pDO1, pDO2 and pDO3), but none of them
have more than 90% of the ORFs from any of the plas-
mids. It is likely that some strains may have similar but
not identical plasmids as TX16, but identification of
plasmids in other strains is difficult since those genomes
are draft sequences. Alignment of ORFs of the three
TX16 plasmids to 22 complete E. faecium plasmid
sequences available in NCBI using TBLASTN with 90%
identity and 50% match length cutoffs showed that
pDO1 is most similar to plasmid pM7M2, a 19.5 kb
plasmid which shared 27 ORFs of the 43 ORFs (62.8%)
from pDO1, and that pDO2 is somewhat similar to plas-
mids pRUM and pS177 with 44.7% and 41.2% match to
pDO2 ORFs respectively. TX16 plasmid pDO3 does not
seem to be similar to any completely sequenced E. fae-
cium plasmids but has similarity to the partially
sequenced E. faecium large plasmid pLG1, Both pDO3
and pLG1plasmids harbor the hyaluronidase gene
(hylEfm), The hylEfm gene was also found in HA strains
1,230,933, 1,231,410, 1,231,502, C68, TC6 and U0317.

Discussion
TX16 was the first E. faecium strain sequenced and has
been used in various studies since [26,28,63,64]. The
TX16 genome is characterized by numerous hyper vari-
ant loci and a large number of IS elements and transpo-
sons. Ortholog analysis as well as core and pan-genome
analysis of TX16 and the other 21 sequenced strains
revealed that E. faecium genomes are highly heteroge-
neous in gene content and possess a large number of
dispensable genes. Similar to the findings by van Schaik
et al. [32], pan and core genome analysis predict the pan
genome to be open. Phylogenetic analysis using single-
copy orthologs of the same length and gene content dis-
similarity analysis in addition to recent studies [33,57]
looking at core genes, SNPs and 16S rRNA, all indicate
a large divergence between CA-clade isolates and HA-
clade isolates. Furthermore, our previous analysis [33,57]
and analyses within this study show that CC17 gen-
ogroup isolates cluster more closely together and further
away from the CA-clade isolates than the other non-
CC17 HA-clade isolates, indicating the CC17 genogroup
is a more recently evolved genogroup.
Genomic island analysis by codon usage bias and com-

position variation showed that TX16 has 9 GIs, although
TX16 also possesses a large number of hyper variant
loci, suggesting that most of the genomic variable loci in
TX16 were acquired through lateral gene transfer, pos-
sibly through mobile elements such as transposons. In
general, strains in the HA clade harbored more transpo-
sons than the CA strains and certain IS elements such
as IS16. These findings are consistent with a previous
study using whole genome microarray [31].
Although IS16 presence has been proposed as an indi-

cator of hospital-associated strains such as those apart
of the CC17 genogroup [48], IS16 was not found in all
HA-clade strains. Of note, however, all HA-clade strains
contained the pbp5-R allele (except for 1,231,501 and
D344SRF which is a spontaneous deletion mutant of
pbp5) which may indicate that this is a reliable marker
for hospital-associated isolates. Indeed, the pbp5-R allele
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is also found in animal and community isolates that are
considered within the HA-clade, but not considered
clinically associated [35,36]. The exception, 1,231,501 is
interesting in that it is the HA-clade isolate from the
blood of a hospitalized patient with no resistance genes,
possibly supporting the concept that the genomic con-
tent of a strain, not just antibiotic resistance, adds to the
survival in the hospital environment. In the 100 gene
analysis by Galloway-Pena et al., it was found that 5 of
the 92 genes of this strain studied grouped with the
community clade, indicating it is a hybrid strain [33] as
also reported in a recent study [34].
Capsular and other cell envelope polysaccharides of sev-

eral gram-positive bacteria are known to have important
roles in virulence and protective immunity [65-67]. Al-
though the majority of studies on enterococcal surface
polysaccharides have focused on E. faecalis, similar mole-
cules have also been identified in E. faecium and suggested
as targets for opsonic antibodies and as potential vaccine
candidates [43,68], and also implicated in resistance of
TX16 to phagocytosis in normal human serum [63]. Two
such gene clusters, cps and epa, have been identified in E.
faecalis [55,56,69,70]. Although a 7-9-gene cps region
(cpsC to cpsK) was recently determined necessary for the
production of an E. faecalis capsular polysaccharide [54]
and shown to contribute to pathogenesis and evasion of
the host innate immune response [67,69], TX16 only con-
tains two homologs of the genes in this locus (cpsA-cpsB)
[54]. In contrast, 15 of the 18 E. faecalis epa polysacchar-
ide genes have homologs in TX16 and the other 21 E. fae-
cium genomes, although their sequences vary between the
two species. Therefore, it is likely that E. faecalis and E.
faecium produce compositionally related, but not identi-
cal, Epa surface polysaccharides.
The hyper variable nature of the two polysaccharide

loci found in TX16 raises the possibility that they are
involved in biosynthesis of antigenically diverse surface
polysaccharides which could help protect E. faecium
against host immune responses. Similar to other gram-
positive bacteria, various MSCRAMM-like cell wall
anchored proteins have been previously identified in E.
faecium; these include the collagen adhesin Acm and
biofilm-associated Ebp pili, shown to be important for
endocarditis and UTI in animal models [26,71], respect-
ively, as well as two other collagen-binding
MSCRAMMs, Scm and Fms18 (EcbA) [21,72]. Our
comparison of 15 previously described MSCRAMM and
pilus encoding genes of TX16 [17,18,21] with those of
21 E. faecium draft genomes found them to be common
among these strains and the majority of them (12/15) to
be enriched among HA clade strains or have a sequence
variant mostly/exclusively carried by CA clade strains.
Thus, these findings agree with previous hybridization
results [14,16,17,22] and with the presence of two
distinct subpopulations of E. faecium. Furthermore, one
of these genes, acm, was previously found to be
expressed more often by clinical versus non-clinical iso-
lates, whereas a pseudogene was often found in isolates
from the community [26,64]. Taken together, these data
indicate a clear difference in the MSCRAMM and pilus
gene profiles of the HA and CA clades, suggesting that
these genes may have favored the emergence of HA-
clade E. faecium in nosocomial infections.
When we combined our finding with previously pub-

lished results, four of the 21 E. faecium genomes contain
the CRISPR-cas locus. Three of these strains are within
the CA clade and lack all antibiotic resistances analyzed
in this study. One of the strains, 1,231,408, is a unique
strain in which its genome is a hybrid of CA and HA
genes. However, it does have 8 antibiotic resistance asso-
ciated genes, showing there is not always an inverse rela-
tion between the number of antibiotic resistance
determinants and the presence of CRISPR loci. More
strains containing CRISPR-loci will need to be studied in
order to determine if 1,231,408 is just an exception to
the rule, or if the highly recombinant nature of E. fae-
cium makes it different from E. faecalis with respect to
the presence of CRISPR-loci in relation to antibiotic re-
sistance determinants.
Overall, there seem to be some patterns that point to

specific evolutionary events throughout E. faecium’s his-
tory as a species. First and foremost, there is a large an-
cestral split between the CA- and HA-clade strains
which are separated by at least a 3–4% difference in their
core genome [33]. The CA-clade isolates, except one, do
not have either polysaccharide synthesis Locus 3 or 4
downstream of the epa region, antibiotic resistance
genes, certain genomic islands, or IS elements. After the
HA-clade diverged from CA-clade there was further
evolution within the HA clade and some HA-clade
strains studied here may represent phylogenetic transi-
tional lineages (Figure 4B and C). Like the CA-clade
strains, these transitional lineages are characterized by a
lack of IS16 (E1039; 1,231,501; and E1071) and have nei-
ther Locus 3 nor 4 (E1039; 1,231,501; E1071; E1636;
E1679) in the epa extension. Although the data are lim-
ited, one scenario that could explain these observations
is if Locus 1 replaced Locus 2 in a HA-clade ancestral
strain, after the split from the CA clade, which later
acquired IS16 and then, subsequently, Locus 3 or 4
replaced Locus 1 in the epa extension region. Even if
this is not the case, it seems clear that only strains fur-
ther along in the phylogenetic trees, indicating a division
within the HA-clade (Figure 4A and B), acquired IS16
and the polysaccharide biosynthesis Loci 3 and 4. The
exception is E980, a strain previously shown to have 8 of
92 genes from the HA-clade, which could have gained
Locus 4 via recombination. Also of note, three of the
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four strains that have Locus 1 downstream of the epa
locus lack the ebp genes, possibly suggesting there may
have been some kind of gain and loss through homolo-
gous recombination.
Figure 7 shows the projected scenarios for the evolution

of the two clades of E. faecium as can be envisioned using
our data as well as other previous publications
[31,33,34,57]. The hypothesis is that there was a primor-
dial type of E. faecium which split many millinea ago and
evolved into two early community groups which had hom-
ologous genes e.g. the pbp5-S or pbp5-R alleles, the latter
representing community sources of ARE (ampicillin resist-
ant E. faecium). These lineages could recombine with each
other resulting in hybrid strains (i.e. 1,231,408 and
1,231,501) (scenario 1). The divergence between the two
community groups eventually reached a core genomic dif-
ference of approximately 3–4%, creating a HA clade,
which includes both ampicillin- resistant, community-
based isolates, such as those from some canine and feline
origins, as well as most of the clinical-, hospital- and
outbreak- associated isolates and a CA clade, which con-
sists mostly of community derived isolates. Most likely,
community and hospital ARE isolates split from the same
ancestor, as represented by scenario two. However, it is
also possible that ARE clones evolved from the animal
reservoir (scenario 3), or that animal ARE isolates repre-
sent evolutionary descendants of hospital ARE transferred
from humans to their pets (scenario 4).

Conclusions
In conclusion, the completion of the TX16 genome has
provided insight into the intricate genomic features of E.
faecium, and will surely serve as an important reference
for those studying E. faecium genomics in the future. By
studying TX16, an endocarditis isolate belonging to
CC17, and comparing the TX16 genome to the other 21
draft genomes, we have been able to confirm the high
genomic plasticity of this organism. The HA-clade iso-
lates contain a number of unique IS elements, transpo-
sons, phages, plasmids, genomic islands, and inherent
and acquired antibiotic resistance determinants, most
likely contributing to the emergence of this organism in
the hospital environment that has occurred in the last
30 years.

Methods
Bacterial strains and DNA sequencing
The E. faecium strain TX16 (DO) was isolated from the
blood of a patient with endocarditis [63] and E. faecium
TX1330 was isolated from the stool of a healthy
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volunteer [18,73]. Routine bacterial growth was on BHI
agar or broth, and genomic DNA was isolated from
overnight culture using the method previously described
[74].
Both E. faecium TX16 and TX1330 were sequenced,

assembled and annotated as part of the reference gen-
ome project in the Human Microbiome Project (HMP).
E. faecium TX16 was initially sequenced by traditional
Sanger sequencing technology to 15.6x read sequence
coverage, and subsequently by 454 GS20 technology to
11x read sequence coverage of fragment reads, 7.5x se-
quence coverage of 2 kb insert paired end reads, and by
454 FLX platform to 73x sequence coverage of 8 kb in-
sert paired-end reads. Both Sanger and 454 reads were
assembled using 454 Newbler assembler. The gaps be-
tween contigs in scaffolds were closed using the unas-
sembled mate paired reads or by PCR sequencing of the
DNA products amplified from the primers flanking the
gaps. The assembly and gap closure of TX16 was diffi-
cult due to large number of repetitive sequences in the
genome. The addition of the large insert 8 kb library
with deep clone coverage was able to facilitate the as-
sembly and scaffolding to generate high quality contigs
and scaffolds in the de novo assembly. E. faecium strain
TX1330 was sequenced by 454 GS20 technology to 6x
sequence coverage for fragment reads and by 454 FLX
to 69.8x sequence coverage for paired end reads, re-
spectively. TX1330 was also assembled using 454 New-
bler assembler.
Plasmids were identified by circularization of DNA

sequences by paired end reads, and were also experi-
mentally verified by PFGE analysis of SmaI and ApaI
digested genomic DNA followed by hybridization with
PCR-generated probes complementary to 5′ and 3′ ends
of plasmid contigs. PFGE hybridization profiles were
then compared to identify neighboring plasmid contigs.
The gene prediction for both E. faecium TX16 and

TX1330 was accomplished by Glimmer 3 [75] and
GeneMark [76]. tRNAScan [77] was used for tRNA
prediction, RNAmmer [78] for rRNA prediction, and
RFAM/infernal for other non-coding RNA genes [79].
Manual annotation was facilitated by Genboree gen-
ome browser (http://www.genboree.org). Conserved
protein domains were searched using Pfam [80], COG
[81], and InterProScan [82]. Other tools such as
PsortB [83,84], ExPASy ENZYME [85], and the Trans-
port Classification Database [86] were also used to fa-
cilitate the annotation. For manual annotation, each
entry was annotated by two annotators independently
and the differences were reconciliated at the end of
the annotation.
Genomic sequences and annotations for 20 other draft

E. faecium strains, including 1,141,733; 1,230,933;
1,231,408; 1,231,410; 1,231,501; 1,231,502; C68; Com12;
Com15; D344SRF; E1039; E1071; E1162; E1636; E1679;
E980; TC6; TX82; TX0133A; U0317, were obtained from
NCBI. A complete list of the strains and their clinical
sources is provided in Table 2.

Genome characterization
DNA and protein sequence alignments were performed
using BLASTN and BLASTP [87], respectively, unless
otherwise stated. Prophage loci were identified using
both Prophinder program [47] and Prophage Finder
[46]. Prophinder uses BLASTP to search phage proteins
in the ACLAME database while Prophage Finder uses
BLASTX to search input DNA sequence to an NCBI
database of phage genomes. Possible prophage loci were
also reviewed manually. IslandViewer [52] server was
used to analyze possible genomic islands on the chromo-
some. IslandViewer integrated sequence composition
based genomic island prediction programs including
IslandPath-DIMOB [50] and SIGI-HMM [51] as well as
comparative genome based program IslandPick [53] for
genomic island prediction. Genes and DNA sequence in
the identified genomic regions were used to perform the
BLAST search against the other 21 E. faecium genomes
to investigate the presence or absence of clade specific
genomic islands. Repeat sequences were identified by
RepeatScout [88]. Circular genome maps were generated
using the CGView program [89].
BLASTN and BLASTX as well as ISfinder server [90]

were used to identify IS sequences and transposons in
the TX16 chromosome and plasmids. Genomic regions
with homology to IS and transposon sequences from
both BLAST analyses were verified with the gene anno-
tation of TX16. Both BLAST searches identified many
small regions as a part of IS elements and transposons.
Regions with shorter than 60% match length to reference
sequences were excluded from further analysis. Identi-
fied genes/regions by analyses above were also used to
perform the BLAST search against the other 21 E. fae-
cium genomes to investigate whether there are clade
specific presences or absences.
Chromosomal DNA sequences of TX16 and

Aus0004 were aligned using Mauve 2.3.1 and per-
formed a comparative genomic analysis [91,92]. Junc-
tion sites of 5 locally collinear blocks (LCB) of Mauve
alignment were further investigated with genome anno-
tation to identify possible reasons of two inversions
and DNA insertions.
Six genomes that had yet to be studied for CRISPR-

loci were analyzed for CRISPR loci (TX1330, TX16,
TX82, TX0133A, D344SRF, and C68). We searched for
CRISPR loci in the six genomes by performing BLAST
using the sequences from the ORFs previously described
for CRISPR-loci in E. faecium EFVG_01551 to
EFVG_01555 [61], as well as using CRISPRfinder (http://

http://www.genboree.org
http://crispr.u-psud.fr/Server/CRISPRfinder.php
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crispr.u-psud.fr/Server/CRISPRfinder.php) and the CRT
program [93] to detect prophage CRISPR palindromic
repeats in TX16.
Conserved gene orders between E. faecium TX16, E.

faecalis V583 [41] and E. faecalis OG1RF genomes [40]
were identified using BLASTP with E value of 1e-3 and
DAGchainer with default parameters [39].
The extrapolation of core-genome and pan-genome

was performed as described previously [94,95]. ORF
protein sequences were aligned using BLASTP, and a
gene pair was considered present in two strains if the
alignment covered at least 50% length of the shorter
gene with at least 70% sequence identity. Due to the
large number of possible combinations of 22 strains,
only 100 permutations were performed for each nth
genome.
Metabolic pathways of the TX16 genome were ana-

lyzed with enzyme commission (EC) numbers as well as
with the predicted amino acid sequences of all TX16
ORFs. 528 unique EC numbers of TX16 genome are
analyzed at the KEGG server (http://www.genome.jp/
kegg/pathway.html) to predict the metabolic pathway.
Also, KEGG automatic annotation server (http://www.
genome.ad.jp/kaas-bin/kaas_main) was used for func-
tional annotation of the TX16 ORFs. Metabolic pathways
and enzymes identified from TX16 were compared to
that of E. faecalis V583 (KEGG genome T00123) in
KEGG pathway database.

Ortholog, phylogenetic and multi-locus sequence typing
(MLST) analysis
Protein ortholog groups of E. faecium genomes were
identified using OrthoMCL program [96] using BLASTP
E value of 1e-5 and default MCL inflation parameter of
1.5 with 80% sequence identity and 60% match length
cutoffs. The match length percentage was set relatively
low because all the genomes except TX16 are draft
sequences. The dissimilarity in gene content among the
E. faecium genomes was calculated using Jaccard dis-
tance (1- Jaccard coefficient) as described previously
[97], and the Jaccard distance matrix was used for hier-
archical clustering using the unweighted pair group
method with arithmetic mean (UPGMA). Single-copy
orthologs with the same length in all strains were chosen
for phylogenetic analysis after removing genes that may
have undergone recombination detected by PHI pro-
gram [98]. Multiple sequence alignments were per-
formed by MAFFT program [99] and the topology of the
phylogenetic tree was inferred by maximum-likelihood
algorithm using PhyML [100] with bootstrap value of
100. 16S rRNA phylogenetic analysis was performed in
another manuscript [33]. iTOL program [101] was used
for phylogenetic tree visualization.
The in silico multi-locus sequence types were deter-
mined either by extracting the allele types of adk, atpA,
ddl, gdh, gyd, pstS, and purK from the genomic sequence,
or using the allele numbers previously obtained through
experimentation [57]. The allele numbers and sequence
types were used to construct an UPGMA dendogram
using S.T.A.R.T.2 software (http://pubmlst.org/).
Identification of putative virulence-associated genes and
antibiotic resistance determinants
Putative virulence genes were identified by BLASTP of
E. faecium ORF protein sequences to the enterococcal
virulence factors in the Virulence Factors Database
(VFDB) [59], and hits were manually inspected.
To identify antibiotic resistance genes, BLASTN was

performed using the nucleotide sequences of 13 antibiotic
resistance genes including cat (chloramphenicol O-
acetyltransferase) using the EfmE1071_2206 sequence
which is an ortholog to the cat gene found on the E. fae-
cium plasmid pRUM [102] ermA (rRNA adenine N-6-
methyltransferase) using the EfmE1679_0214 sequence
and located on Tn554 [103]; ermB (rRNA adenine N-6-
methyltransferase) using the EfmE1071_2296 sequence, an
ortholog to the ermB gene found on the E. faecalis plas-
mids pRE25 and pSL1[104]; aad6 (aminoglycoside 6-
adenylyltransferase) using the EfmE1071_1021 sequence
an ortholog to the genes found on the E. faecalis plasmid
pEF418 (Genbank:AF408195); aad9 (streptomycin 300-
adenylyltransferase) using EfmE1679_0213 sequence and
located on Tn554 [103]; aadE (aminoglycoside 6-
adenylyltransferase) using EfmU0317_2169 sequence an
ortholog to the gene found on the E. faecalis plasmid
pRE25 [104]; aacA-aphD (bifunctional aminoglycoside
modifying enzyme) using the EfmU0317_2161 sequence;
tetL using the EfmE1071_1017 sequence [105]; tetM using
the EfmE1162_0404 sequence [105]; vanA using the
EfmE1071_0104 to EfmE1071_0110 sequence which is
identical to the vanA gene cluster found on Tn1546 [106];
gyrA using EfmE1679_2520 to determine amino acid
changes of E87K/G or S83R/Y/I [107]; parC using
EfmE1679_0369 to determine amino acid changes of
E86K or S82R/I [107]; and pbp5 (GenBank accession no.
ZP_00603984) to search for the low-affinity pbp5 consen-
sus sequence [57,108].
Database submission
The genome sequences, plasmid sequences, and the
gene annotation of E. faecium TX16, pDO1, pDO2,
and pDO3, were submitted to GenBank with the ac-
cession numbers of CP003583, CP003584, CP003585,
and CP003586 respectively. The draft sequence of
TX1330 was submitted to GenBank with the accession
number ACHL01000000.

http://crispr.u-psud.fr/Server/CRISPRfinder.php
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://www.genome.ad.jp/kaas-bin/kaas_main
http://www.genome.ad.jp/kaas-bin/kaas_main
http://pubmlst.org/


Qin et al. BMC Microbiology 2012, 12:135 Page 17 of 20
http://www.biomedcentral.com/1471-2180/12/135
Additional files

Additional file 1: Figure S1. Gene order synteny of E. faecium TX16
compared to E. faecalis V583. A figure ploting the synteny blocks
between TX16 and V583 with the coordinates of each genome.

Additional file 2: Figure S2. Genome alignment of TX16 and
Aus0004. A figure comparing the two closed E. faecium genomes
sequences available using Mauve genome alignment analysis.

Additional file 3: Table S1. Hospital-associated clade unique genes.
A table listing the genes and their corresponding ORF in TX16 that are
unique to the hospital clade and how many of the HA clade strains the
gene is present in.

Additional file 4: Table S2. Prophage loci and genes on E. faecium
TX16 genome. A table listing the two prophage loci, the predicted gene
products within these two loci, and the corresponding ORFs in TX16.

Additional file 5: Table S3. Mobile elements in the E. faecium TX16
genome. A table listing all of the predicted mobile elements and their
corresponding locus tags in TX16.

Additional file 6: Table S4. E. faecium TX16 genomic islands and
genes. A table listing the nine genomic islands, the genes and predicted
products within those islands, and the corresponding ORFs and
coordinates within TX16.

Additional file 7: Figure S3. ORF composition of the downstream
extension of the epa gene cluster in the 22 E. faecium genomes
(HMPREF0351_10908 - HMPREF0351_10923 in TX16). A figure
depicting the predicted polysaccharide-encoding gene clusters found in
the E. faecium genomes.

Additional file 8: Table S5. Presence of genes encoding MSCRAMMs
and pilins among 21 E. faecium genomes. A table listing the different
MSCRAMM and pilin variants present in each of the 22 genomes.

Additional file 9: Table S6. Summary of CRISPRs found in E. faecium
sequenced strains. A table listing in what strains CRISPRs were found,
the locus tag, and the functional assignment.

Additional file 10: Table S7. Specific enzymes present in TX16 but
not in E. faecalis V583. A table listing enzymes, KEGG information, and
locus tags specific to TX16.

Additional file 11: Table S8. Specific enzymes present in E. faecalis
V583 but not in TX16. A table listing the enzymes and locus tags
specific to V583.
Authors’ contributions
XQ carried out the annotations, genome characterization, genome analyses,
closure of the genome and drafting of the manuscript. JGP carried out
annotations, phylogenetic, antibiotic resistance, and CRISPR analyses, and
writing /submission of the manuscript. JS carried out the annotations,
genome, MSCRAMM, virulence genes, and polysaccharide biosynthesis
analyses, and drafting of the manuscript. JHR carried out metabolic pathway,
genomic island, and mobile element analyses and drafting of the
manuscript. The rest of the authors contributed though annotating or
sequencing of the genome. GMW and BEM contributed their study design,
overseeing the study, and editing of the manuscript. All authors read and
approved the final manuscript.

Acknowledgments
This work was partially supported by NIH/NHGRI grant 1U54HG004973-0 and
NIH/NIAID grants R01 AI42399 and R01 AI067861. JGP was supported by T32
AI55449 and is currently supported by F31 AI092891.

Author details
1Human Genome Sequencing Center, Baylor College of Medicine, One Baylor
Plaza MSC-226, Houston, TX, USA. 2Department of Molecular Virology and
Microbiology, Baylor College of Medicine, One Baylor Plaza MSC-226,
Houston, TX, USA. 3Department of Medicine, Division of Infectious Disease,
Houston, TX, USA. 4Center for the Study of Emerging and Reemerging
Pathogens, Houston, TX, USA. 5Department of Microbiology and Molecular
Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, TX
77030, USA. 6The Genome Institute, Washington University, 4444 Forest Park
Avenue, Campus Box 8501, St. Louis, MO 63108, USA.

Received: 8 February 2012 Accepted: 14 June 2012
Published: 7 July 2012

References
1. Murray BE: The life and times of the Enterococcus. Clin Microbiol Rev 1990,

3(1):46–65.
2. Willems RJ, Hanage WP, Bessen DE, Feil EJ: Population biology of

Gram-positive pathogens: high-risk clones for dissemination of antibiotic
resistance. FEMS Microbiol Rev 2011, 35(5):872–900.

3. Willems RJ, van Schaik W: Transition of Enterococcus faecium from
commensal organism to nosocomial pathogen. Future Microbiol 2009,
4(9):1125–1135.

4. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin
SK: NHSN annual update: antimicrobial-resistant pathogens associated
with healthcare-associated infections: annual summary of data
reported to the National Healthcare Safety Network at the Centers for
Disease Control and Prevention, 2006–2007. Infect Control Hosp
Epidemiol 2008, 29(11):996–1011.

5. Leavis HL, Bonten MJ, Willems RJ: Identification of high-risk enterococcal
clonal complexes: global dispersion and antibiotic resistance. Curr Opin
Microbiol 2006, 9(5):454–460.

6. Boyd DA, Cabral T, Van Caeseele P, Wylie J, Mulvey MR: Molecular
characterization of the vanE gene cluster in vancomycin-resistant
Enterococcus faecalis N00-410 isolated in Canada. Antimicrob Agents
Chemother 2002, 46(6):1977–1979.

7. Boyd DA, Du T, Hizon R, Kaplen B, Murphy T, Tyler S, Brown S, Jamieson
F, Weiss K, Mulvey MR: VanG-type vancomycin-resistant Enterococcus
faecalis strains isolated in Canada. Antimicrob Agents Chemother 2006,
50(6):2217–2221.

8. Boyd DA, Willey BM, Fawcett D, Gillani N, Mulvey MR: Molecular
characterization of Enterococcus faecalis N06-0364 with low-level
vancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL.
Antimicrob Agents Chemother 2008, 52(7):2667–2672.

9. Carias LL, Rudin SD, Donskey CJ, Rice LB: Genetic linkage and cotransfer of
a novel, vanB-containing transposon (Tn5382) and a low-affinity
penicillin-binding protein 5 gene in a clinical vancomycin-resistant
Enterococcus faecium isolate. J Bacteriol 1998, 180(17):4426–4434.

10. Courvalin P: Vancomycin resistance in gram-positive cocci. Clin Infect Dis
2006, 42(Suppl 1):S25–S34.

11. Goossens H: Spread of vancomycin-resistant enterococci: differences
between the United States and Europe. Infect Control Hosp Epidemiol
1998, 19(8):546–551.

12. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A,
Klare I, Kristinsson KG, Leclercq R, Lester CH, et al: Emergence and spread
of vancomycin resistance among enterococci in Europe. Euro Surveill
2008, 13(47). pii: 19046 3.

13. de Niederhausern S, Bondi M, Messi P, Iseppi R, Sabia C, Manicardi G,
Anacarso I: Vancomycin-resistance transferability from vanA enterococci
to Staphylococcus aureus. Curr Microbiol 2011, 62(5):1363–1367.

14. Panesso D, Reyes J, Rincon S, Diaz L, Galloway-Pena J, Zurita J, Carrillo C,
Merentes A, Guzman M, Adachi JA, et al: Molecular epidemiology of
vancomycin-resistant Enterococcus faecium: a prospective, multicenter
study in South American hospitals. J Clin Microbiol 2010, 48(5):1562–1569.

15. Top J, Willems R, Blok H, de Regt M, Jalink K, Troelstra A, Goorhuis B,
Bonten M: Ecological replacement of Enterococcus faecalis by
multiresistant clonal complex 17 Enterococcus faecium. Clin Microbiol
Infect 2007, 13(3):316–319.

16. Galloway-Pena JR, Nallapareddy SR, Arias CA, Eliopoulos GM, Murray BE:
Analysis of clonality and antibiotic resistance among early clinical
isolates of Enterococcus faecium in the United States. J Infect Dis 2009,
200(10):1566–1573.

17. Hendrickx AP, van Wamel WJ, Posthuma G, Bonten MJ, Willems RJ: Five
genes encoding surface-exposed LPXTG proteins are enriched in
hospital-adapted Enterococcus faecium clonal complex 17 isolates.
J Bacteriol 2007, 189(22):8321–8332.

18. Nallapareddy SR, Weinstock GM, Murray BE: Clinical isolates of Enterococcus
faecium exhibit strain-specific collagen binding mediated by Acm, a new
member of the MSCRAMM family. Mol Microbiol 2003, 47(6):1733–1747.

http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S1.ppt
http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S2.pptx
http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S3.doc
http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S4.doc
http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S5.doc
http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S6.doc
http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S7.ppt
http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S8.doc
http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S9.doc
http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S10.doc
http://www.biomedcentral.com/content/supplementary/1471-2180-12-135-S11.doc


Qin et al. BMC Microbiology 2012, 12:135 Page 18 of 20
http://www.biomedcentral.com/1471-2180/12/135
19. Panesso D, Montealegre MC, Rincon S, Mojica MF, Rice LB, Singh KV,
Murray BE, Arias CA: The hylEfm gene in pHylEfm of Enterococcus
faecium is not required in pathogenesis of murine peritonitis. BMC
Microbiol 2011, 11(1):20.

20. Rice LB, Carias L, Rudin S, Vael C, Goossens H, Konstabel C, Klare I,
Nallapareddy SR, Huang W, Murray BE: A potential virulence gene, hylEfm,
predominates in Enterococcus faecium of clinical origin. J Infect Dis 2003,
187(3):508–512.

21. Sillanpaa J, Nallapareddy SR, Prakash VP, Qin X, Hook M, Weinstock GM,
Murray BE: Identification and phenotypic characterization of a second
collagen adhesin, Scm, and genome-based identification and analysis of
13 other predicted MSCRAMMs, including four distinct pilus loci, in
Enterococcus faecium. Microbiology 2008, 154(Pt 10):3199–3211.

22. Sillanpaa J, Prakash VP, Nallapareddy SR, Murray BE: Distribution of genes
encoding MSCRAMMs and Pili in clinical and natural populations of
Enterococcus faecium. J Clin Microbiol 2009, 47(4):896–901.

23. Heikens E, Bonten MJ, Willems RJ: Enterococcal surface protein Esp is
important for biofilm formation of Enterococcus faecium E1162. J Bacteriol
2007, 189(22):8233–8240.

24. Heikens E, Singh KV, Jacques-Palaz KD, van Luit-Asbroek M, Oostdijk EA,
Bonten MJ, Murray BE, Willems RJ: Contribution of the enterococcal
surface protein Esp to pathogenesis of Enterococcus faecium
endocarditis. Microbes Infect 2011, 13(14–15):1185–1190.

25. Nallapareddy SR, Singh KV, Murray BE: Construction of improved
temperature-sensitive and mobilizable vectors and their use for
constructing mutations in the adhesin-encoding acm gene of poorly
transformable clinical Enterococcus faecium strains. Appl Environ Microbiol
2006, 72(1):334–345.

26. Nallapareddy SR, Singh KV, Murray BE: Contribution of the collagen
adhesin Acm to pathogenesis of Enterococcus faecium in experimental
endocarditis. Infect Immun 2008, 76(9):4120–4128.

27. Nallapareddy SR, Singh KV, Sillanpaa J, Zhao M, Murray BE: Relative
contributions of Ebp Pili and the collagen adhesin ace to host extracellular
matrix protein adherence and experimental urinary tract infection by
Enterococcus faecalis OG1RF. Infect Immun 2011, 79(7):2901–2910.

28. Arias CA, Panesso D, Singh KV, Rice LB, Murray BE: Cotransfer of antibiotic
resistance genes and a hylEfm-containing virulence plasmid in
Enterococcus faecium. Antimicrob Agents Chemother 2009, 53(10):4240–4246.

29. Rice LB, Lakticova V, Carias LL, Rudin S, Hutton R, Marshall SH: Transferable
capacity for gastrointestinal colonization in Enterococcus faecium in a
mouse model. J Infect Dis 2009, 199(3):342–349.

30. Top J, Willems R, Bonten M: Emergence of CC17 Enterococcus faecium:
from commensal to hospital-adapted pathogen. FEMS Immunol Med
Microbiol 2008, 52(3):297–308.

31. Leavis HL, Willems RJ, van Wamel WJ, Schuren FH, Caspers MP, Bonten MJ:
Insertion sequence-driven diversification creates a globally dispersed
emerging multiresistant subspecies of E. faecium. PLoS Pathog 2007,
3(1):e7.

32. van Schaik W, Top J, Riley DR, Boekhorst J, Vrijenhoek JE, Schapendonk CM,
Hendrickx AP, Nijman IJ, Bonten MJ, Tettelin H, et al: Pyrosequencing-
based comparative genome analysis of the nosocomial pathogen
Enterococcus faecium and identification of a large transferable
pathogenicity island. BMC Genomics 2010, 11:239.

33. Galloway-Pena J, Roh JH, Latorre M, Qin X, Murray BE: Genomic and SNP
Analyses Demonstrate a Distant Separation of the Hospital and
Community-Associated Clades of Enterococcus faecium. PLoS One 2012,
7(1):e30187.

34. Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J, Desjardins C, Cerqueira G,
Gevers D, Walker S, Wortman J, et al: Comparative genomics of
enterococci: variation in Enterococcus faecalis, clade structure in E.
faecium, and defining characteristics of E. gallinarum and E. casseliflavus.
MBio 2012, 3(1):e00318–00311.

35. Damborg P, Top J, Hendrickx AP, Dawson S, Willems RJ, Guardabassi L:
Dogs are a reservoir of ampicillin-resistant Enterococcus faecium
lineages associated with human infections. Appl Environ Microbiol 2009,
75(8):2360–2365.

36. de Regt MJ, van Schaik W, van Luit-Asbroek M, Dekker HA, van Duijkeren E,
Koning CJ, Bonten MJ, Willems RJ: Hospital and community ampicillin-
resistant Enterococcus faecium are evolutionarily closely linked but have
diversified through niche adaptation. PLoS One 2012, 7(2):e30319.
37. Lam MM, Seemann T, Bulach DM, Gladman SL, Chen H, Haring V,
Moore RJ, Ballard S, Grayson ML, Johnson PD, et al: Comparative
Analysis of the First Complete Enterococcus faecium Genome.
J Bacteriol 2012, 194(9):2334–2341.

38. Palmer KL, Carniol K, Manson JM, Heiman D, Shea T, Young S, Zeng Q, Gevers
D, Feldgarden M, Birren B, et al: High-quality draft genome sequences of 28
Enterococcus sp. isolates. J Bacteriol 2010, 192(9):2469–2470.

39. Haas BJ, Delcher AL, Wortman JR, Salzberg SL: DAGchainer: a tool for
mining segmental genome duplications and synteny. Bioinformatics 2004,
20(18):3643–3646.

40. Bourgogne A, Garsin DA, Qin X, Singh KV, Sillanpaa J, Yerrapragada S, Ding
Y, Dugan-Rocha S, Buhay C, Shen H, et al: Large scale variation in
Enterococcus faecalis illustrated by the genome analysis of strain OG1RF.
Genome Biol 2008, 9(7):R110.

41. Shankar N, Baghdayan AS, Gilmore MS: Modulation of virulence within a
pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature
2002, 417(6890):746–750.

42. Bourgogne A, Hilsenbeck SG, Dunny GM, Murray BE: Comparison of OG1RF
and an isogenic fsrB deletion mutant by transcriptional analysis: the Fsr
system of Enterococcus faecalis is more than the activator of gelatinase
and serine protease. J Bacteriol 2006, 188(8):2875–2884.

43. Rakita RM, Quan VC, Jacques-Palaz K, Singh KV, Arduino RC, Mee M, Murray
BE: Specific antibody promotes opsonization and PMN-mediated killing
of phagocytosis-resistant Enterococcus faecium. FEMS Immunol Med
Microbiol 2000, 28(4):291–299.

44. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW: Novel
Bacteriophages in Enterococcus spp. Curr Microbiol 2010, 60(6):400–406.

45. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW: Bacteriophage-
mediated transduction of antibiotic resistance in enterococci. Lett Appl
Microbiol 2011, 52(6):559–564.

46. Bose M, Barber RD: Prophage Finder: a prophage loci prediction tool for
prokaryotic genome sequences. In silico biology 2006, 6(3):223–227.

47. Lima-Mendez G, Van Helden J, Toussaint A, Leplae R: Prophinder: a
computational tool for prophage prediction in prokaryotic genomes.
Bioinformatics 2008, 24(6):863–865.

48. Werner G, Fleige C, Geringer U, van Schaik W, Klare I, Witte W: IS element
IS16 as a molecular screening tool to identify hospital-associated strains
of Enterococcus faecium. BMC Infect Dis 2011, 11:80.

49. Heikens E, van Schaik W, Leavis HL, Bonten MJ, Willems RJ: Identification of a
novel genomic island specific to hospital-acquired clonal complex 17
Enterococcus faecium isolates. Appl Environ Microbiol 2008, 74(22):7094–7097.

50. Hsiao WW, Ung K, Aeschliman D, Bryan J, Finlay BB, Brinkman FS: Evidence
of a large novel gene pool associated with prokaryotic genomic islands.
PLoS Genet 2005, 1(5):e62.

51. Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik K,
Meinicke P, Merkl R: Score-based prediction of genomic islands in
prokaryotic genomes using hidden Markov models. BMC Bioinforma 2006,
7:142.

52. Langille MG, Brinkman FS: IslandViewer: an integrated interface for
computational identification and visualization of genomic islands.
Bioinformatics 2009, 25(5):664–665.

53. Langille MG, Hsiao WW, Brinkman FS: Evaluation of genomic island
predictors using a comparative genomics approach. BMC Bioinforma
2008, 9:329.

54. Thurlow LR, Thomas VC, Hancock LE: Capsular polysaccharide production
in Enterococcus faecalis and contribution of CpsF to capsule
serospecificity. J Bacteriol 2009, 191(20):6203–6210.

55. Teng F, Singh KV, Bourgogne A, Zeng J, Murray BE: Further
characterization of the epa gene cluster and Epa polysaccharides of
Enterococcus faecalis. Infect Immun 2009, 77(9):3759–3767.

56. Xu Y, Murray BE, Weinstock GM: A cluster of genes involved in
polysaccharide biosynthesis from Enterococcus faecalis OG1RF. Infect
Immun 1998, 66(9):4313–4323.

57. Galloway-Pena JR, Rice LB, Murray BE: Analysis of PBP5 of early U.S.
isolates of Enterococcus faecium: sequence variation alone does not
explain increasing ampicillin resistance over time. Antimicrob Agents
Chemother 2011, 55(7):3272–3277.

58. Nallapareddy SR, Sillanpaa J, Mitchell J, Singh KV, Chowdhury SA,
Weinstock GM, Sullam PM, Murray BE: Conservation of Ebp-type pilus
genes among Enterococci and demonstration of their role in



Qin et al. BMC Microbiology 2012, 12:135 Page 19 of 20
http://www.biomedcentral.com/1471-2180/12/135
adherence of Enterococcus faecalis to human platelets. Infect Immun
2011, 79(7):2911–2920.

59. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q: VFDB: a reference
database for bacterial virulence factors. Nucleic Acids Res 2005,
33(Database issue):D325–328.

60. Creti R, Koch S, Fabretti F, Baldassarri L, Huebner J: Enterococcal
colonization of the gastro-intestinal tract: role of biofilm and
environmental oligosaccharides. BMC Microbiol 2006, 6:60. pii: e00227-10.

61. Palmer KL, Gilmore MS: Multidrug-resistant enterococci lack CRISPR-cas.
MBio 2010, 1(4).

62. Rice LB, Carias LL, Hutton-Thomas R, Sifaoui F, Gutmann L, Rudin SD:
Penicillin-binding protein 5 and expression of ampicillin resistance in
Enterococcus faecium. Antimicrob Agents Chemother 2001, 45(5):1480–1486.

63. Arduino RC, Jacques-Palaz K, Murray BE, Rakita RM: Resistance of
Enterococcus faecium to neutrophil-mediated phagocytosis. Infect Immun
1994, 62(12):5587–5594.

64. Nallapareddy SR, Singh KV, Okhuysen PC, Murray BE: A functional collagen
adhesin gene, acm, in clinical isolates of Enterococcus faecium correlates
with the recent success of this emerging nosocomial pathogen. Infect
Immun 2008, 76(9):4110–4119.

65. Ada G: Vaccines and vaccination. N Engl J Med 2001, 345(14):1042–1053.
66. Teng F, Jacques-Palaz KD, Weinstock GM, Murray BE: Evidence that the

enterococcal polysaccharide antigen gene (epa) cluster is widespread in
Enterococcus faecalis and influences resistance to phagocytic killing of
E. faecalis. Infect Immun 2002, 70(4):2010–2015.

67. Thurlow LR, Thomas VC, Fleming SD, Hancock LE: Enterococcus faecalis
capsular polysaccharide serotypes C and D and their contributions to
host innate immune evasion. Infect Immun 2009, 77(12):5551–5557.

68. Huebner J, Wang Y, Krueger WA, Madoff LC, Martirosian G, Boisot S,
Goldmann DA, Kasper DL, Tzianabos AO, Pier GB: Isolation and chemical
characterization of a capsular polysaccharide antigen shared by clinical
isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus
faecium. Infect Immun 1999, 67(3):1213–1219.

69. Hancock LE, Gilmore MS: The capsular polysaccharide of Enterococcus
faecalis and its relationship to other polysaccharides in the cell wall. Proc
Natl Acad Sci U S A 2002, 99(3):1574–1579.

70. Xu Y, Singh KV, Qin X, Murray BE, Weinstock GM: Analysis of a gene cluster
of Enterococcus faecalis involved in polysaccharide biosynthesis. Infect
Immun 2000, 68(2):815–823.

71. Sillanpaa J, Nallapareddy SR, Singh KV, Prakash VP, Fothergill T, Ton-That H,
Murray BE: Characterization of the ebp(fm) pilus-encoding operon of
Enterococcus faecium and its role in biofilm formation and virulence in a
murine model of urinary tract infection. Virulence 2010, 1(4):236–246.

72. Hendrickx AP, van Luit-Asbroek M, Schapendonk CM, van Wamel WJ, Braat
JC, Wijnands LM, Bonten MJ, Willems RJ: SgrA, a nidogen-binding LPXTG
surface adhesin implicated in biofilm formation, and EcbA, a collagen
binding MSCRAMM, are two novel adhesins of hospital-acquired
Enterococcus faecium. Infect Immun 2009, 77(11):5097–5106.

73. Coque TM, Tomayko JF, Ricke SC, Okhyusen PC, Murray BE: Vancomycin-
resistant enterococci from nosocomial, community, and animal sources
in the United States. Antimicrob Agents Chemother 1996, 40(11):2605–2609.

74. Wilson K: Preparation of Genomic DNA from Bacteria. Brooklyn, N.Y.: Green
Publishing Associates; 1994.

75. Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes
and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23(6):673–679.

76. Besemer J, Borodovsky M: Heuristic approach to deriving models for gene
finding. Nucleic Acids Res 1999, 27(19):3911–3920.

77. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer
RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955–964.

78. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW:
RNAmmer: consistent and rapid annotation of ribosomal RNA genes.
Nucleic Acids Res 2007, 35(9):3100–3108.

79. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A:
Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids
Res 2005, 33((Database issue)):D121–124.

80. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL,
Gunasekaran P, Ceric G, Forslund K, et al: The Pfam protein families
database. Nucleic Acids Res 2010, 38((Database issue)):D211–222.

81. Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool
for genome-scale analysis of protein functions and evolution. Nucleic
Acids Res 2000, 28(1):33–36.
82. Zdobnov EM, Apweiler R: InterProScan–an integration platform for
the signature-recognition methods in InterPro. Bioinformatics 2001,
17(9):847–848.

83. Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FS: PSORTb
v. 2.0: expanded prediction of bacterial protein subcellular localization
and insights gained from comparative proteome analysis. Bioinformatics
2005, 21(5):617–623.

84. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester
M, Foster LJ, et al: PSORTb 3.0: improved protein subcellular localization
prediction with refined localization subcategories and predictive
capabilities for all prokaryotes. Bioinformatics 2010, 26(13):1608–1615.

85. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A: ExPASy:
The proteomics server for in-depth protein knowledge and analysis.
Nucleic Acids Res 2003, 31(13):3784–3788.

86. Saier MH Jr, Tran CV, Barabote RD: TCDB: the Transporter Classification
Database for membrane transport protein analyses and information.
Nucleic Acids Res 2006, 34((Database issue)):D181–186.

87. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215(3):403–410.

88. Price AL, Jones NC, Pevzner PA: De novo identification of repeat families
in large genomes. Bioinformatics 2005, 21(Suppl 1):i351–358.

89. Stothard P, Wishart DS: Circular genome visualization and exploration
using CGView. Bioinformatics 2005, 21(4):537–539.

90. Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M: ISsaga is an
ensemble of web-based methods for high throughput identification and
semi-automatic annotation of insertion sequences in prokaryotic
genomes. Genome Biol 2011, 12(3):R30.

91. Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of
conserved genomic sequence with rearrangements. Genome Res 2004,
14(7):1394–1403.

92. Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome
alignment with gene gain, loss and rearrangement. PLoS One 2010,
5(6):e11147.

93. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P:
CRISPR recognition tool (CRT): a tool for automatic detection of
clustered regularly interspaced palindromic repeats. BMC Bioinforma
2007, 8:209.

94. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli
SV, Crabtree J, Jones AL, Durkin AS, et al: Genome analysis of multiple
pathogenic isolates of Streptococcus agalactiae: implications for the
microbial “pan-genome”. Proc Natl Acad Sci U S A 2005, 102(39):13950–13955.

95. Tettelin H, Riley D, Cattuto C, Medini D: Comparative genomics: the
bacterial pan-genome. Curr Opin Microbiol 2008, 11(5):472–477.

96. Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL: identification of ortholog groups
for eukaryotic genomes. Genome Res 2003, 13(9):2178–2189.

97. Suzuki H, Lefebure T, Hubisz MJ, Pavinski Bitar P, Lang P, Siepel A, Stanhope
MJ: Comparative genomic analysis of the Streptococcus dysgalactiae
species group: gene content, molecular adaptation, and promoter
evolution. Genome Biol Evol 2011, 3:168–185.

98. Bruen TC, Philippe H, Bryant D: A simple and robust statistical test for
detecting the presence of recombination. Genetics 2006, 172(4):2665–2681.

99. Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic
Acids Res 2002, 30(14):3059–3066.

100. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New
algorithms and methods to estimate maximum-likelihood phylogenies:
assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307–321.

101. Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online tool for
phylogenetic tree display and annotation. Bioinformatics 2007, 23(1):127–128.

102. Grady R, Hayes F: Axe-Txe, a broad-spectrum proteic toxin-antitoxin
system specified by a multidrug-resistant, clinical isolate of Enterococcus
faecium. Mol Microbiol 2003, 47(5):1419–1432.

103. Murphy E, Huwyler L: de Freire Bastos Mdo C: Transposon Tn554:
complete nucleotide sequence and isolation of transposition-defective
and antibiotic-sensitive mutants. EMBO J 1985, 4(12):3357–3365.

104. Schwarz FV, Perreten V, Teuber M: Sequence of the 50-kb conjugative
multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid
2001, 46(3):170–187.

105. Burdett V, Inamine J, Rajagopalan S: Heterogeneity of tetracycline resistance
determinants in Streptococcus. J Bacteriol 1982, 149(3):995–1004.



Qin et al. BMC Microbiology 2012, 12:135 Page 20 of 20
http://www.biomedcentral.com/1471-2180/12/135
106. Arthur M, Molinas C, Depardieu F, Courvalin P: Characterization of Tn1546,
a Tn3-related transposon conferring glycopeptide resistance by
synthesis of depsipeptide peptidoglycan precursors in Enterococcus
faecium BM4147. J Bacteriol 1993, 175(1):117–127.

107. Leavis HL, Willems RJ, Top J, Bonten MJ: High-level ciprofloxacin resistance
from point mutations in gyrA and parC confined to global hospital-
adapted clonal lineage CC17 of Enterococcus faecium. J Clin Microbiol
2006, 44(3):1059–1064.

108. Rice LB, Bellais S, Carias LL, Hutton-Thomas R, Bonomo RA, Caspers P, Page
MG, Gutmann L: Impact of specific pbp5 mutations on expression of
beta-lactam resistance in Enterococcus faecium. Antimicrob Agents
Chemother 2004, 48(8):3028–3032.

doi:10.1186/1471-2180-12-135
Cite this article as: Qin et al.: Complete genome sequence of
Enterococcus faecium strain TX16 and comparative genomic analysis of
Enterococcus faecium genomes. BMC Microbiology 2012 12:135.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	E. faecium TX16 general genome features

	link_Fig1
	link_Tab1
	Phylogenetic, &b_k;multi-&e_k;&b_k;locus&e_k; sequence typing (MLST) and gene content similarity analysis

	link_Fig2
	Mobile genetic elements

	link_Fig3
	Genomic islands

	link_Tab2
	link_Fig4
	Genetic loci in E. faecium TX16 predicted to be involved in biosynthesis of surface polysaccharides

	link_Fig5
	link_Fig6
	Distribution of genes encoding &b_k;MSCRAMM-&e_k;&b_k;like&e_k; proteins, putative virulence genes, antibiotic resistance determinants, and CRISPRs

	link_Tab3
	Metabolic pathway
	Plasmids

	Discussion
	Conclusions
	Methods
	Bacterial strains and DNA sequencing

	link_Fig7
	Genome characterization
	Ortholog, phylogenetic and &b_k;multi-&e_k;&b_k;locus&e_k; sequence typing (MLST) analysis
	Identification of putative &b_k;virulence-&e_k;&b_k;associated&e_k; genes and antibiotic resistance determinants
	Database submission

	Additional files
	show [me]
	Acknowledgments
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54
	link_CR55
	link_CR56
	link_CR57
	link_CR58
	link_CR59
	link_CR60
	link_CR61
	link_CR62
	link_CR63
	link_CR64
	link_CR65
	link_CR66
	link_CR67
	link_CR68
	link_CR69
	link_CR70
	link_CR71
	link_CR72
	link_CR73
	link_CR74
	link_CR75
	link_CR76
	link_CR77
	link_CR78
	link_CR79
	link_CR80
	link_CR81
	link_CR82
	link_CR83
	link_CR84
	link_CR85
	link_CR86
	link_CR87
	link_CR88
	link_CR89
	link_CR90
	link_CR91
	link_CR92
	link_CR93
	link_CR94
	link_CR95
	link_CR96
	link_CR97
	link_CR98
	link_CR99
	link_CR100
	link_CR101
	link_CR102
	link_CR103
	link_CR104
	link_CR105
	link_CR106
	link_CR107
	link_CR108

