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Bacterial adaptation during chronic infection
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Abstract

Background: Bacteria employ a variety of adaptation strategies during the course of chronic infections.
Understanding bacterial adaptation can facilitate the identification of novel drug targets for better treatment of
infectious diseases. Transcriptome profiling is a comprehensive and high-throughput approach for characterization
of bacterial clinical isolates from infections. However, exploitation of the complex, noisy and high-dimensional
transcriptomic dataset is difficult and often hindered by low statistical power.

Results: In this study, we have applied two kinds of unsupervised analysis methods, principle component analysis
(PCA) and independent component analysis (ICA), to extract and characterize the most informative features from
transcriptomic dataset generated from cystic fibrosis (CF) Pseudomonas aeruginosa isolates. ICA was shown to be
able to efficiently extract biological meaningful features from the transcriptomic dataset and improve clustering
patterns of CF isolates. Decomposition of the transcriptomic dataset by ICA also facilitates gene identification and
gene ontology enrichment.

Conclusions: Our results show that P. aeruginosa employs multiple patient-specific adaption strategies during the
early stage infections while certain essential adaptations are evolved in parallel during the chronic infections.

Background
Bacterial infections are one of the major causes of mor-
tality among human and animals in the world [1].
Understanding adaptation of bacterial pathogens to the
dynamic and hostile environment is crucial for improve-
ment of therapies of infectious diseases. Bacteria asso-
ciated with chronic infections in patients suffering from
e.g. AIDS, burn wound sepsis, diabetes and cystic fibro-
sis (CF) are ideal objects for studying bacterial
adaptation.
In airways of CF patients, mucus forms a stationary

and thickened gel adhering to the epithelial lining fluid
of the airway surfaces, which affects the mucociliary
escalator and results in impaired clearance of inhaled
microbes [2]. CF patients suffer from chronic and recur-
rent respiratory tract infections which eventually lead to
lung failure followed by death. Pseudomonas aeruginosa

is one of the major pathogens for CF patients and is the
principal cause of mortality and morbidity in CF
patients [3]. Early P. aeruginosa infection in CF patients
is characterized by a diverse of P. aeruginosa strains
which have similar phenotypes as those of environmen-
tal isolates [4,5]. In contrast, adapted dominant epidemic
strains are often identified from patients chronically
infected with P. aeruginosa from different CF centers
[4,6,7]. Once it gets adapted, P. aeruginosa can persist
for several decades in the respiratory tracts of CF
patients, overcoming host defense mechanisms as well
as intensive antibiotic therapies [8].
As P. aeruginosa has been sequenced, transcriptome

profiling (e.g. microarray analysis and RNA-Seq)
becomes a convenient approach for characterizing biolo-
gical differences among different P. aeruginosa clinical
isolates from CF patients. Transcriptome profiling
enables researchers to measure genome-wide gene
expressions in a high-throughput manner thus can pro-
vide valuable information for P. aeruginosa adaptation
during infections. However, the interpretation of
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transcriptomic data is a great challenge for researchers
due to the complexity and noise. Clinical strains isolated
from different patients have adapted to distinct host
environments since patients vary in their ages, infection
histories and medical treatments (e.g. different kinds of
antibiotics and their dosages). Therefore, researchers
need to reduce dimensionality and extract the underly-
ing features from the multi-variable transcriptomic
dataset.
Principle component analysis (PCA) is a classic projec-

tion method which is widely used to accomplish the
above mentioned tasks [9]. PCA transforms a number of
correlated variables into a smaller number of uncorre-
lated variables called principal components (PC). The
first PC captures as much of the variability in the data
as possible, and each succeeding PCs capture as much
of the remaining variability as possible. However, the
constraint of mutual orthogonality of components
implied in classical PCA methods may not be appropri-
ate for the biological systems. Recently, independent
component analysis (ICA), which decomposes input
data into statistically independent components, was
shown to be able to classify gene expressions into biolo-
gically meaningful groups and relate them to specific
biological processes [10]. ICA has been successfully
applied by different research groups to analyze tran-
scriptomic data from yeast, cancer, Alzheimer samples
and is shown to be more powerful at feature extraction
than PCA and other traditional methods for microarray
data analysis [11-13]. In a study by Zhang et al., ICA
was used to extract specific gene expression patterns of
normal and tumor tissues, which can serve as biomar-
kers for molecular diagnosis of human cancer type [14].
Yet to the best of our knowledge, there have been no
reports of application of ICA to the study of bacterial
transcriptomic data from chronic infections.
In this study, we applied ICA to project the transcrip-

tomic data of 26 CF P. aeruginosa isolates into indepen-
dent components. P. aeruginosa genes are
unsupervisedly clustered into non-mutually exclusive
groups. Each retrieved independent component is con-
sidered as a putative adaptation process, which is
revealed by the functional annotations of genes that give
heavy loadings to the component.

Results
The P. aeruginosa microarray dataset is mainly gener-
ated from two studies (Figure 1). In the first study, P.
aeruginosa strains were collected from a group of
patients since 1973 (Figure 1A) [8]. Those isolates repre-
sent different P. aeruginosa clonal lineages adapted from
early stage infection to chronic stage infection. In the
second study, P. aeruginosa strains were collected from
a group of CF children since 2006, except the B38-2NM

is an isogenic non-mucoid strain of the mucoid B38-2M
isolate generated in vitro by allelic replacement of its
mucA allele (Figure 1B) [5]. Those isolates represent dif-
ferent P. aeruginosa clonal linages adapted in early stage
infection at nowadays. As a control, a well studied wild-
type P. aeruginosa laboratory strain PAO1 was included
in the dataset. The microarray dataset was prepared as
matrix X which contains n (26) samples and m (5900)
columns. We modeled the whole gene expression in a
cell as a mixture of independent biological process by
using FastICA method [15]. The P. aeruginosa microar-
ray data matrix X was decomposed by FastICA into
latent variable matrix A (26 × 26) and gene signature
matrix S (26 × 5900).

ICA improved clustering patterns of P. aeruginosa
microarray data
Unsupervised hierarchical clustering was applied to the
original normalized data, the outputs of ICA (latent
variables) and the outputs of PCA (principle compo-
nents), respectively. For the original data, the P. aerugi-
nosa isolates were grouped into three distinct groups: an
early stage infection group, a late stage infection group
and a mucoid strain group (Figure 2). The early stage
infection isolates were grouped together with the PAO1
strain, which indicates that they have not gained exten-
sive adaptations. However, the clustering did not fully
discriminate the early stage isolates (CF114-1973,
CF105-1973 and CF43-1073, strain names marked in
red color) of Yang’s study [8] from the early stage iso-
lates (B12-0, B12-4, B12-7, B38-1, B38-2NM, B6-0 and
B6-4, strain names marked in green color) from Rau’s
study [5]. In contrast, the clustering dendrogram from
ICA outputs showed better separation of the early stage
isolates from the two different studies (Figure 3A). The
CF114-1973 was clustered together with the CF105-

Figure 1 Isolate sampling points and patient life span. P.
aeruginosa isolates were collected from eleven different CF patients
during a 35-y time period. Bacterial isolates are represented by the
different symbols and patient life span is represented gray bars. This
figure is adapted from Yang et al., 2011 [8].
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1973 and CF43-1973 from the ICA outputs (Figure 3A).
This indicates that these two groups of early stage iso-
lates have distinct physiology. Clustering dendrogram
from PCA outputs (Figure 3B) generated the same pat-
tern as the one generated from the original data (Figure
2). These results showed that ICA is better than PCA in
filtering noisy and extracting important features from
microarray data.

ICA identified significant genes for adaptation of P.
aeruginosa to the CF airways
The ICA output matrix A contains the weight with
which the expression levels of the m genes contribute to
the corresponding observed expression profile. Thus,
together with the clustering dendrogram, ICA derived
components can also implicate individual genes that
give the strongest contribution to that component. To
achieve this purpose, we firstly used Hinton diagram to
represent the matrix A derived by FastICA (Figure 4).
As previously reported [13], the values of the last latent
variable are similar across all samples and have no bio-
logical relevance. Thus the last latent variable was
removed from matrix A before the Hinton diagram ana-
lysis. From this figure, we can identify the latent vari-
ables related to adaptation of different P. aeruginosa
isolates (Table 1).
Afterwards the corresponding gene signatures (ICs) of

the identified latent variables could be found through
matrix S. Figure 5 shows the corresponding gene

Figure 2 Hierarchical clustering of the normalized raw data
using Euclidean distances. Red/green blocks represent signal
increase/decrease respectively.

Figure 3 Hierarchical clustering of the ICA and PCA outputs. (A) Hierarchical clustering of the ICA outputs with the last ‘common’
components of matrix A removed. (B) Hierarchical clustering of the principle components, with the number of the principle components k = 26.
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signatures in matrix S (2-th and 4-th rows of S as exam-
ple) for the 2-th and 4-th components in matrix A.
Depending on the loadings of latent variables, the genes
with loading that exceed the chosen threshold (4 or 2)
were selected as the most significant genes contributing
to that component. Some of the highlighted significant
genes identified through the selected latent variables are
shown in Table 1. A full list of identified significant up-
and down-regulated genes corresponding to the selected

latent variables of Table 1 could be found in Additional
file 1, Table S1.
ICA revealed common adaptations shared by a group of

P. aeruginosa CF isolates. IC14 revealed that the early
stage isolates from 1973 had higher expression level of
genes involved in type III secretion and exoenzyme activ-
ities than other isolates (Figure 4 and Additional file 1,
Table S1). More importantly, IC6, IC10 and IC18 revealed
adaptations shared by the late stage isolates. IC6 mainly

Figure 4 Hinton diagram representation of latent variable
matrix A. The size of each square corresponds to the amount anm
of component m in sample n. Red and green represent positive and
negative values, respectively.

Table 1 Latent variables related to specific adaptation

Latent variables Related strains Functions of selected enriched genes by ICA

Up regulated Down regulated

2 B12-4, B12-7 Antibiotic resistance
Iron metabolism

Citronellol/leucine catabolism

-

4 B6-0, B6-4 LPS modification Flagellum biogenesis

16 CF114-1973 Fimbrial biogenesis -

20 CF66-2008 LPS modification -

22 CF173-2002 - -

14 Early stage isolates from 1973 Type III secretion -

6 Late stage isolates Antimicrobial peptide tolerance -

10 Late stage isolates Potassium uptake system Quorum sensing

18 Late stage isolates Alginate biosynthesis Motilities

Figure 5 The selected significant genes for 2-th (A) and 4-th
(B) gene signatures. Genes with loadings exceeding the chosen
percentile lines were considered significant. Positive and negative
loadings correspond to up-and down-regulation of expressions,
respectively.
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identified antimicrobial peptide resistance related arn and
pmr genes (PA3552-PA3559 and PA4773-PA4782) (Figure
4 and Additional file 1, Table S1). IC10 mainly identified
the alginate biosynthesis regulatory algU (PA0762), mucA
(PA0763), mucB (PA0764), mucC (PA0765) and algR
(PA5261) genes; the potassium uptake kdp genes
(PA1632-PA1635) (Figure 4 and Additional file 1, Table
S1) and the quorum sensing genes (PA1430-PA1431) (Fig-
ure 4 and Additional file 1, Table S1). IC18 mainly identi-
fied alginate biosynthesis alg genes (PA3540-PA3551) and
flagellum and type IV pilus biogenesis genes (Figure 4 and
Additional file 1, Table S1).
Besides common adaptations shared by a group of P.

aeruginosa CF isolates, the ICA also showed that P. aer-
uginosa CF isolates from early infection stage employed
multiple patient-specific strategies of adaptation in the
CF airways. IC2 revealed that the early stage B12-4 and
B12-7 isolates induced the expression of genes related
to MexAB-OprM efflux system, iron uptake as well as
citronellol/leucine catabolism (Figure 4 and Additional
file 1, Table S1). IC4 revealed that the early stage B6-0
and B6-4 isolates up-regulated expression of LPS bio-
synthesis wbp genes (PA3146-PA3159) and down-regu-
lated expression of genes involved in the flagellum
biogenesis (Figure 4 and Additional file 1, Table S1).
IC16 revealed that the early stage CF114-1973 isolate
up-regulated the expression of genes involved in fimbrial
biogenesis while down-regulated expression of the
PA0632-PA0639 genes (Figure 4 and Additional file 1,
Table S1). IC20 revealed that the late stage CF66-2008
isolate up-regulated the expression of the LPS biosynth-
esis wbp genes (PA5448-PA5454) (Figure 4 and Addi-
tional file 1, Table S1).

ICA enhanced identification of co-regulated genes for
adaptation of P. aeruginosa to the CF airways
We further compared the power of ICA and Linear
Models for Microarray Data (LIMMA) [16] to identify
co-changed genes using the kdp genes (PA1632-
PA1635) and arn genes (PA3552-PA3559) as examples
(Figure 6). In ICA analysis, the kdp genes and arn genes
were identified from IC6 and IC10 respectively and they
are ranked at the top of the short gene lists generated
from these ICs (Figure 6). In contrast, when the P. aeru-
ginosa microarray dataset from the early stage isolates
and late stage isolates were grouped and compared
using LIMMA analysis, the kdp genes and arn genes are
not the most significant genes identified (Figure 6), thus
can be easily missed during the analysis. By decompos-
ing and extracting genes from the microarray dataset
simultaneously, ICA is superior to established single-
gene method LIMMA on identifying novel patterns of
co-regulated genes.

Discussion
Understanding the bacterial adaptation is a great chal-
lenge for scientists and medical doctors to battle infec-
tious diseases. Bacterial cells have a high level of
mutation rate and can adapt to the dynamic host envir-
onments by selecting mutants which are more fit to the
condition. Thus, a systematic investigation of the whole
gene expression profiles of clinical isolates would be
needed for modern diagnostic and treatment of infec-
tious diseases. Fortunately, the rapid progress of DNA
sequencing projects has made genome sequences of
most of the pathogenic bacteria available now. And this
has brought DNA microarray technique as a conven-
tional and high-throughput tool for researchers. How-
ever, how to properly and accurately analyze the
microarray data and extract useful information is
another obstacle for using DNA microarray technique.
In the study here, we have analyzed DNA microarray

dataset generated from 26 P. aeruginosa strains. ICA
was shown to be an efficient approach to identify
patient-specific adaptations of P. aeruginosa isolates.
First of all, ICA decomposes and extracts genes from
the microarray dataset simultaneously. Thus, co-regu-
lated genes are more easily identified (Figure 6). Sec-
ondly, unlike conventional clustering approaches which
group genes based on their expression levels, ICA
grouped genes independent of expression levels but in a
more biologically meaningful manner.
ICA shows that P. aeruginosa clinical isolates employ

multiple patient-specific adaption strategies during the
early stage infection. Most of these early stage adaptive
changes are involved in modification of cell surface
molecules and appendages. IC4 reveals that B6-0 and
B6-4 isolates enhanced the expression of B-band lipopo-
lysaccharide (LPS) biosynthesis genes while reduced the
expression of flagellum biogenesis genes. The B-band
LPS is a well known virulence factor which confers P.

Figure 6 Enrichment of co-regulated genes with output from
ICA and LIMMA analysis. The ranks of selected genes are plotted.
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aeruginosa resistance to phagocytosis and serum-
mediated killing [17-20]. Loss of flagellum as well as fla-
gellum-mediated motility is documented to render P.
aeruginosa CF isolates an advantage in the context of
immune evasion [21-23]. IC16 reveals that CF114-1973
isolate enhanced the expression of the cupA fimbrial
gene cluster and the type IV pilus biogenesis cluster.
The gene products of these two clusters are required for
P. aeruginosa adherence and biofilm formation [24-28].
Interestingly, IC16 also reveals the increased expression
of pprB gene in CF114-1973, which was recently
reported as a new regulatory element controlling the
cupE gene expression and transition between planktonic
and community lifestyles in P. aeruginosa [29].
ICA facilitates enrichment of co-regulated genes of P.

aeruginosa CF isolates. For example, IC6 groups the two
antimicrobial peptide resistance related gene clusters
(arn and pmr) together. IC18 groups alginate biosynth-
esis gene cluster PA3540-PA3551 and flagellum biogen-
esis gene cluster PA1077-PA1086 together. These two
gene clusters are impossible to be grouped together by
other approaches since they are not localized adjacently
in the genome and have different expression levels (one
up-regulated and one down-regulated). And this group-
ing is biologically meaningful since it is well known that
alginate regulator inhibits flagellum synthesis gene
expression [30-32]. Many genes which encode hypothe-
tical proteins are grouped in IC6, IC10 and IC18. It will
be interesting to investigate whether these genes are
functionally related with the annotated genes identified
in the same ICs.
Since ICA can reveal patient-specific adaptations of P.

aeruginsoa isolates, it is possible to design patient-speci-
fic therapies based on these adaptations. For example,
combination of iron chelators and efflux pump inhibi-
tors might be used to inhibit the growth of B12-4 and
B12-7, which have high expression levels of genes
involved in efflux pump and iron uptake systems [33].
Ligands with high affinity to pili can be used to inhibit
adhesion and biofilm formation of the CF114-1973 iso-
late [34].

Conclusions
In conclusion, the ICA is shown to be able to extract
the most essential features from the complex multiple
variant microarray dataset and identify significant genes
contribute to these features. Our results show that P.
aeruginosa employ a diverse set of patient-specific adap-
tion strategies during the early stage infections while
certain essential evolutionary events occurred in parallel
during the chronic infections in CF infections. The ICA
has a great potential in studying large-scale datasets
acquired from omics research from different areas.

Methods
P. aeruginosa clinical isolates
The P. aeruginosa strains were isolated from 6 CF
patients with long-term chronic infection and 3 CF
patients who were intermittently colonized or recently
chronically infected and who were attending the Danish
CF Center, Rigshospitalet, Copenhagen. P. aeruginosa
PAO1 [35] was used as a reference strain.

DNA microarray
Transcriptomic profiles of clinical isolates were obtained
using the Affymetrix P. aeruginosa gene chip (Santa
Clara, CA) [5,8]. Triplicate experiments were performed
for each strain. The microarray raw datasets are accessi-
ble at NCBI’s Gene Expression Omnibus (GEO) with
series accession number GSE31227.

Mathematical model of gene regulation by ICA
The FastICA package (http://research.ics.tkk.fi/ica/fastica/)
was used to analyze the microarray dataset. The microar-
ray gene expression data is considered a linear combina-
tion of some independent components which have specific
biological interpretations [11]. A n × m matrix X is used
to represent the microarray gene expression data with m
gene expressions from n clinical isolates. xij in X is the
expression level of the j-th gene in the i-th isolate. After
data have been preprocessed and normalized, the ICA
model for gene expression data can be expressed as:

⎡
⎢⎣
x1(t)
...

xn(t)

⎤
⎥⎦ =

⎡
⎢⎣
a11 · · · a1m
...

. . .
...

an1 · · · anm

⎤
⎥⎦

⎡
⎢⎣
s1(t)
...

sm(t)

⎤
⎥⎦ (1)

or in matrix notation as:

X = AS (2)

In this ICA model, the columns of A = [a1, a2,..., an]
are the n × n latent vectors of the gene microarray data.
Each column of A is associated with a specific gene
expression mode. S contains the n × m gene signatures
where the rows of S are statistically independent to each
other. The gene profiles in X are considered to be a lin-
ear mixture of statistically independent components S
combined by an unknown mixing matrix A. Once latent
variable matrix A has been obtained, the corresponding
elementary modes can be identified to extract informa-
tion for classification.

Additional material

Additional file 1: Table S1. Selected significant genes identified
through different latent variables.
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