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Coxiella burnetii Nine Mile II proteins modulate
gene expression of monocytic host cells during
infection
Saugata Mahapatra1, Patricia Ayoubi2, Edward I Shaw1*

Abstract

Background: Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in
humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the
biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest
that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms
manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically
induced by C. burnetii proteins during infection.

Results: We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein
synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and
uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM) to 10 μg/ml in
one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human
OneArray™ slides. A total of 784 (mock treated) and 901 (CAM treated) THP-1 genes were up or down regulated
≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary
data sets (using >0 fold), eliminated the common gene expression changes. A stringent comparison (≥2 fold)
between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis.
Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle
trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions
modulated by C. burnetii protein synthesis.

Conclusions: Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific
host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the pathogen
whether or not it is actively synthesizing proteins. These findings indicate that C. burnetii modulates the host cell
gene expression to avoid the immune response, preserve the host cell from death, and direct the development
and maintenance of a replicative PV by controlling vesicle formation and trafficking within the host cell during
infection.

Background
Coxiella burnetii is a Gram-negative, pleomorphic, intra-
cellular bacterial pathogen with a worldwide distribution
[1,2]. Virulent strains cause human Q-fever, which is
usually marked by an acute self-limiting flu-like illness.
Persistent infections usually progress into chronic dis-
ease [1,3,4]. Human infection occurs via inhalation of

aerosols contaminated with C. burnetii. The small cell
variant (SCV) form of the bacterium, which are metabo-
lically inactive and environmentally stable, are believed
to be responsible for most environmentally acquired
infections. SCVs passively ingested by mononuclear pha-
gocytes are trafficked along the endocytic pathway and
associate with a variety of endocytic and autophagic
markers before ultimately residing within a parasito-
phorous vacoule (PV) with characteristics of a secondary
lysosome [1-3]. Here, they undergo a replicative lag
phase of 1-2 days while differentiating into the
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metabolically active large cell variants (LCVs). Although
they are not environmentally stable, LCVs are infectious
in laboratory settings and pose a risk of causing disease.
After differentiation, LCVs then undergo exponential
replication for ~4 days (log phase) before beginning an
asynchronous conversion back to SCVs at ~6 days post
infection (PI) [5,6]. LCV replication is accompanied by a
remarkable expansion of the PV, which eventually occu-
pies the majority of the host cell [2,7].
Intracellular bacterial pathogens are known to operate

by targeting and subverting vital intracellular pathways
of the host [8,9]. Bacterial proteins are a key factor in
this subversion of host cell molecular mechanisms
[2,9-11]. Biogenesis and maintenance of the PV, interac-
tion with the autophagic pathway, and inhibition of host
cell apoptosis are all dependent on C. burnetii protein
synthesis [2,7,12-14]. After ingestion by a host cell, C.
burnetii PV maturation experiences a delay when com-
pared to vacuoles carrying latex beads or dead C. burne-
tii [7,15]. This delay in phagolysosomal maturation
requires ongoing bacterial protein synthesis [7]. C. bur-
netii protein synthesis is also required for the fusogeni-
city of C. burnetii containing vacuoles, PV fusion with
host vesicles, and in the maintenance of a spacious PV
(SPV) during logarithmic bacterial growth [7,15]. Transi-
ent interruption of bacterial protein synthesis results in
cessation of SPV-specific vesicle trafficking and SPV col-
lapse [7,15]. The C. burnetii PV is thought to interact
with the autophagic pathway as a means to provide
metabolites to the bacterium. This interaction is also a
pathogen driven activity [16]. Additionally, an examina-
tion of the PV has revealed increased amounts of cho-
lesterol in the membranes [12]. Interestingly, C. burnetii
infected cells have been observed to dramatically
increase cholesterol production. During log growth, the
PV expands and is accompanied by increased transcrip-
tion of host genes involved in both cholesterol uptake
(e.g. LDL receptor) and biosynthesis (e.g. lanosterol
synthase) [2,12].
Recently, the function of the host cell apoptotic path-

way has been shown to be altered during C. burnetii
infection. C. burnetii was shown to actively inhibit apop-
tosis in macrophages exposed to inducers of both the
extrinsic and intrinsic apoptotic pathways in a bacterial
protein synthesis dependant manner [14]. This antiapop-
totic activity causes a marked reduction in activated cas-
pase-3, caspase-9, and poly-ADP (ribose) polymerase
(PARP) processing. Other data indicate that C. burnetii
mediates the synthesis of host anti-apoptotic proteins
A1/Bfl-1 and c-IAP2, which might directly or indirectly
prevent release of cytochrome C from mitochondria,
interfering with the intrinsic cell death pathway during
infection [17]. Moreover, activation of the pro-survival
host kinases Akt and Erk1/2 by C. burnetii was shown

to protect infected host cells from apoptosis [18].
Despite the information on processes that appear to be
affected by C. burnetii proteins, little is known about
the host molecular mechanisms being targeted through-
out the course of infection.
A common theme among bacterial pathogens, includ-

ing C. burnetii, is the ability to secrete effector proteins
into the host cell as part of their pathogenic strategy
[9,10]. The possession of a type IV secretion system
(T4SS) by C. burnetii suggests that effector proteins
might be delivered to the host cell via this machinery
[2,10,19,20]. As the genetic manipulation of C. burnetii
is in its infancy, indirect approaches such as bioinfor-
matic screens have been useful in predicting putative
T4SS substrates. Recent data indicate that C. burnetii
encodes multiple proteins with eukaryotic-like domains,
including ankyrin repeat binding domains (Anks), tetra-
tricopeptide repeats (TPRs), coiled-coil domains (CCDs),
leucine-rich repeats (LRRs), GTPase domains, ubiquiti-
nation-related motifs, and multiple kinases and phos-
phatases [2,21,22]. Studies have shown that a number of
the C. burnetii encoded Ank proteins are secreted into
the host cell cytoplasm through the Legionella pneumo-
phila T4SS [11,19,22]. Three of these proteins associate
with the PV membrane, microtubules, and mitochon-
dria, respectively, when expressed ectopically within
eukaryotic cells [19].
These observations suggest that C. burnetii proteins

directly interact and exploit mammalian intracellular
pathways leading to the establishment and prolongation
of the replicative niche. Here, we use the avirulent C.
burnetii Nine Mile phase II (NMII) strain and the tran-
sient inhibition of bacterial protein synthesis as a means
to elucidate host molecular mechanisms that are being
actively targeted by C. burnetii during infection. While
the C. burnetii NMII strain does not cause Q fever, it is
a recognized model for the analysis of molecular host
cell-pathogen interactions. Recent studies clearly
demonstrate that the virulent Nine Mile phase I (NMI)
and avirulent NMII strains grow at similar rates and are
trafficked to similar intracellular vacuoles during infec-
tion of cultured monocytic cells (THP-1) as well as pri-
mary monocytes/macrophages [23,24], making NMII an
excellent model for molecular studies of this unusual
pathogen. In the current study, we have analyzed C.
burnetii NMII protein induced gene expression changes
in infected THP-1 cells. Using microarray technology
we have examined the global transcriptional response of
THP-1 cells during C. burnetii infection by transiently
inhibiting (bacteriostatically) bacterial protein synthesis
during the logarithmic phase of infection and comparing
this to normal (mock treated) infections ran in parallel.
Using stringent comparative microarray data analyses,
we have discovered 36 previously unidentified host
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genes whose expression is significantly changed by C.
burnetii proteins. Gene ontology analysis on these data
was performed to define the host cell processes being
targeted by this bacterium during infection.

Methods
C. burnetii and cell culture growth and infection
C. burnetii Nine Mile phase II was grown in Vero cells
(CCL-81; ATCC, Manassas, VA) and purified as pre-
viously described [20]. Non-adherent THP-1 human
monocytic leukemia cells (TIB-202; ATCC) were propa-
gated in RPMI 1640 medium (Gibco, Carlsbad, CA) sup-
plemented with 1 mM sodium pyruvate, and 10% fetal
bovine serum (FBS) at 37°C in 5% CO2. THP-1 cells
between passages 6-10 were used in all experiments
[14]. Briefly, purified C. burnetii NMII SCVs at a gen-
ome equivalent MOI of 15 were used to establish a syn-
chronous infection. To ensure close host cell-bacteria
contact, C. burnetii SCVs diluted in RPMI 1640 contain-
ing 10% FBS were incubated in 25 cm2 tissue culture
flasks (Becton Dickinson, Franklin Lakes, NJ) with 5 ×
106 THP-1 cells in a total volume of 2.5 ml. Incubations
were performed at 37°C in an atmosphere of 5% CO2

for 4 hours. Cells were pelleted by centrifugation at 600
g for 5 minutes, washed with fresh media and pelleted
again. Cell pellets were then re-suspended in 5 ml of
fresh media (final concentration = 106 cells/ml) and
transferred to new 25 cm2 tissue culture flasks (this
represents T = 0). Cells were pelleted again at 48 hours
post infection (hpi) and re-suspended in fresh media
with or without the bacterial protein synthesis inhibitor
chloramphenicol (CAM, a final concentration of 10 μg/
ml), as needed. Cells were then incubated for an addi-
tional 24 hours for either total RNA harvest or micro-
scopy analysis (see Figure 1). Infected and uninfected
cells were handled identically and a total of three experi-
ments (N = 3) were carried out for microarray analysis.

Comparative microarray design and analysis
In order to perform the microarray hybridizations, two
parallel infection and treatment protocols were
employed. A schematic of the comparative microarray
experimental design highlighting the separate treatment
conditions is shown in Figure 1. Using this experimental
design, a comparison was made between the THP-1
transcriptional responses of (i) uninfected versus C. bur-
netii NMII infected and (ii) uninfected versus C. burne-
tii NMII infected THP-1 cells transiently treated with
bacteriostatic levels (10 μg/ml) of CAM. Briefly, infec-
tions were initiated and cultured in parallel with unin-
fected cells. At 48 hpi media containing CAM (10 μg/
ml) was added to one set of cells (uninfected and
infected THP-1 cells) and culturing was continued. The
other set of cells were mock treated with normal media.

Total RNA was isolated at 72 hpi from all conditions.
Microarrays were performed for both conditions and
the results were compared to define the host genes
modulated by de novo synthesized C. burnetii NMII pro-
teins. The 48-72 hpi time frame was used because (i) C.
burnetii would be in logarithmic growth [6] and, (ii)
previous studies have shown observable changes in PV
size within C. burnetii infected Vero cells when treated
overnight with 10 μg/ml of CAM at 48 hpi [7].

RNA extraction, microarray hybridization and data
analysis
Following the infection and treatment protocols (Figure 1),
total RNA was isolated using Tri-Reagent (Ambion,
Austin, TX) according to the manufacturer’s recommen-
dations. All RNA samples were DNase treated using RQ1
DNase (Promega, Madison, WI) and confirmed DNA free
by PCR. RNA integrity was assessed by electropherogram
using a 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, California). Total RNA (500 ng) from each sample
was then amplified using an Epicentre® Biotechnologies
(Madison, WI) TargetAmp™ 1-Round AminoallylaRNA
Amplification Kit, yielding approximately 6-10 μg of ami-
noallyl-aRNA (AA-aRNA). Alexa Fluor® 555-GREEN (Invi-
trogen, Carslbad, CA) was used to label the uninfected
AA-aRNA, while Alexa Fluor® 647-RED (Invitrogen) was
used to label the AA-aRNA from the C. burnetii infected
cells. Labeled AA-aRNA (2 μg) with a dye incorporation
efficiency range of 18-34 picomol/microgram, were mixed
pair-wise and hybridized overnight to Human OneArray™
microarrays (Phalanx Biotech Group, Palo Alto, CA).
Human OneArrays contain 32,050 oligonucleotides; 30968
human genome probes and 1082 experimental control
probes formed as 60-mer sense-strand DNA elements.
Arrays were hybridized, washed, and dried rapidly accord-
ing to the manufacturer’s instructions. Six hybridizations
for each condition set (CAM and mock treated) were
performed with three biological and two technical repli-
cates. Signal intensity of the hybridized arrays were mea-
sured by ScanArray Express (PerkinElmer, Boston, MA,
USA) and the images were processed using GenePix Pro
version 4.0 (Axon, Union City, CA, USA). The processed
GenePix Pro 4.0 output was further analyzed using Loess-
Global intensity dependent normalization through the
GenePix Auto Processor (http://darwin.biochem.okstate.
edu/gpap3/) as previously described [25-27]. Normalized
ratio values for each data point were averaged across the
three biological replicates and two technical replicates.
Significant expression differences were defined as a
P-value < 0.05 and displayed as a fold change of ≥2 fold
[28,29]. The microarray data were deposited at the NCBI
Gene Expression Omnibus (GEO) under the platform
accession number GPL6254 and the series number
GSE23665. The biological function of the identified genes
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was determined bioinformatically by the Database for
Annotation, Visualization, and Integrated Discovery
(DAVID) v6.7 (http://david.abcc.ncifcrf.gov/) [30] as well
as by Ingenuity pathway analysis (Ingenuity® Systems,
http://www.ingenuity.com). This software identifies cano-
nical pathways within gene sets using significant associa-
tions (P < 0.05) calculated by Fisher’s exact test and also
by a ratio of the number of molecules from the experi-
mental data set that maps to the pathway, divided by the
total number of molecules that exists in that canonical
pathway.

Immunofluorescence microscopy
Non-adherent THP-1 cells (CAM and mock treated)
were analyzed by indirect immunofluorescent antibody
(IFA) microscopy. Briefly, 1 × 105 cells were cytocentri-
fuged onto poly-L-lysine coated slides for 2 minutes at
1000 rpm using a Shandon Cytospin® 4 Cytocentrifuge
(Thermo Scientific) [31]. The cytospun THP-1 cells
were air dried and immediately fixed using ice cold acet-
one for 30 seconds. The fixed preparations were then
washed with PBS and stained with a rabbit antibody
against whole killed C. burnetii NMII (primary antibody)
followed by a goat anti-rabbit IgG Alexa Fluor-488
(Molecular Probes, Eugene, OR) secondary antibody.
Host and bacterial DNA were also stained using
4’,6-diamidino-2-phenylindole (DAPI). Microscopy was
conducted using a Nikon Eclipse TE 2000-S microscope

with a Nikon DS FI1 camera and NIS-ELEMENTS F
3.00 software. IMAGEJ version 1.42n (Wayne Rasband,
NIH) was also used for image processing [20].

RT-qPCR analysis
RT-qPCR was performed using gene-specific primers
(shown in Additional file 1-Table S1.I), and the SYBR
Green Master Mix Kit (Applied Biosystems) on an Eppen-
dorf Mastercycler® ep realplex (Eppendorf, Hamberg, Ger-
many) following the manufacturer’s recommendations.
Briefly, first strand cDNA was synthesized using random
hexamers, 1 μg of total RNA, and the SuperScript III First-
Strand Synthesis System for RT-PCR (Invitrogen) as sug-
gested by the manufacturer. Oligonucleotide primers were
designed using Primer3Plus [32,33]. The primer efficiency
of each primer set was determined to be within the effi-
ciency window for the 2-ΔΔCT relative fold calculation
method [34]. The human b-actin gene was used as the
reference gene. Paired T-Test was performed to identify
statistical differences between any two conditions. Differ-
ences were considered significant at a P < 0.05.

Results
SPV morphology within CAM treated C. burnetii infected
THP-1 cells
As the transient inhibition of C. burnetii protein synth-
esis within infected THP-1 cells using CAM is pivotal to
testing our hypothesis, we sought to confirm that

Figure 1 Diagram of the experimental design for comparative C. burnetii infected host-cell microarrays. The rows of the top panel are
untreated and rows of the bottom panel are treated with CAM (10 μg/ml) at 48 h hpi. Total RNA harvests are performed at 72 hpi for
subsequent microarray analysis.
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morphological changes occur to the PV of infected
THP-1 cells after transient CAM treatment in a manner
consistent with that observed in other cell types [35].
Using phase contrast and IFA microscopy analysis, we
assessed the effect of bacteriostatic levels of CAM (10
μg/ml) on infected THP-1 cells during the log growth
phase of the C. burnetii infectious cycle in order to
coincide with subsequent microarray analysis. Robust
infections (≥90% infected cells) were produced using C.
burnetii NMII at a genome equivalent MOI of 15. Infec-
tions were either mock or CAM treated at 48 hours
post infection (hpi), and then compared at 72 hpi.
Figure 2 shows both phase contrast (Figure 2 top panel)
and IFA microscopy (Figure 2, middle and bottom
panels) images representative of the C. burnetii NMII
infection of THP-1 cells at 72 hpi. Multiple, large SPVs
can be seen in the mock treated THP-1 infections, while
smaller, dense PVs are observed in the CAM treated

infections. These results are in agreement with pub-
lished findings where transient CAM treatment resulted
in PV collapse in C. burnetii infected Vero cells [7]. Fig-
ure 2C-H shows a set of similarly treated infections
visualized by IFA microscopy. C. burnetii are visualized
in green (Figure 2, C and 2F) and cell nuclei are stained
in blue (Figure 2, D and 2G) and the images merged
(Figure 2, E and 2H). Comparing the mock and CAM
treated images (Figure 2, C and 2F), a noticeable
decrease in vacuole size and fluorescent intensity is
observed, indicating the collapse of the SPVs within the
CAM treated cells when compared to the large, SPVs
observed within the mock treated cells. Comparisons
of DNA samples harvested at 48 hpi (prior to CAM
treatment) and 72 hpi (after 24 h CAM treatment)
using qPCR determined that these samples had
similar C. burnetii genome equivalents, indicating
that the 10 μg/ml CAM concentration was acting

Figure 2 Phase contrast and fluorescent microscopy of C. burnetii infected THP-1 cells. All images are of C. burnetii infected THP-1 cells
72 hpi. Top Panel, Phase contrast microscopy. A, a mock treated infection. B, infection treated with 10 μg/ml CAM for the final 24 h. Arrows
indicate PVs. Middle Panel, IFA microscopy images of a mock treated infection. C, Alexa-488 staining of C. burnetii. D, DAPI staining. E, merge of
C and D. Bottom Panel, IFA microscopy images of an infection treated with 10 μg/ml CAM for the final 24 h. F, Alexa-488 staining of C. burnetii.
G, DAPI staining. H, merge of F and G. 400× magnification was used for all images.
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bacteriostatically (data not shown). In addition, removal
of CAM from infected cells after the 24 h transient
treatment resulted in the re-establishment of large, SPVs
within 48 h as observed by phase contrast microscopy
(data not shown). Together, these data indicate that 10
μg/ml of CAM is able to transiently arrest C. burnetii
protein synthesis in the THP-1 cell infection model.

Gene expression in mock and CAM treated infected vs.
uninfected THP-1 cells
As outlined in Figure 1, two whole genome RNA micro-
array analyses were performed resulting in the generation
of two separate global gene expression profiles. A total of
784 THP-1 genes (Additional file 1- Table S1.A) were
up- or down-regulated ≥2 fold in mock treated infected
vs. uninfected cells while a total of 901 THP-1 Additional
file 1 - Table S1.C) were up- or down-regulated ≥2 fold
in CAM treated infected vs. uninfected cells. To identify
the host cell functions affected by C. burnetii infection
and proteins, these gene sets were annotated using
DAVID. A modified Fisher Exact P-Value test was used
to measure gene-enrichment in annotation terms. The
top biological function assignments for the mapped
genes (P < 0.05) expressed as the percentage of the 784
and 901 significant genes identified in the mock and
CAM treated microarrays, respectively, are shown in
Additional file 2- Figure S1. This figure aids in defining
the prominent cell functions affected by C. burnetii infec-
tion and proteins. Identified as affected cell functions
under both conditions are immune response, cell migra-
tion, regulation of programmed cell death, intracellular
signaling cascades, regulation of cell proliferation, and
cytoskeletal organization. Notable differences were
observed in the percentage of genes involved with each
of these functions under the mock treated and CAM
treated conditions, indicating a role for C. burnetii pro-
teins in changing gene expression in these pathways.
Other important host cell functions influenced under the
mock treated condition are protein phosphorylation, lipid
storage, gas homeostasis, cell-cell signaling, and cellular
ion homeostasis. While major cellular functions seen
affected only in CAM treated infected THP-1 cells are
cell cycle processes, cell activation, response to DNA
damage, lipid (sterol and cholesterol) transport, positive
regulation of cytokine biosynthetic processes, and regula-
tion of nitric oxide biosynthetic processes. Additional file
1- Tables S1.E and S1.F list the host genes associated
with each of these functions. Out of the 784 host genes
identified in the mock treated data set, 62 genes were not
assigned function by DAVID’s biological annotation cov-
erage. In the CAM treated infected vs. uninfected data
set, 102 out of the 901 host cell genes remained
unassigned.

To further define the prominent host cell pathways
affected by C. burnetii infection and proteins, an Ingenu-
ity pathway analysis (IPA) was performed on the 784 and
901 significant genes identified in the mock and CAM
treated microarrays, respectively. IPA identifies the top
canonical pathways represented in a group of genes.
Additional file 1-Tables S1.G and S1.H list the top cano-
nical pathways associated with the mRNA profiles of the
mock treated and CAM treated infected vs. uninfected
THP-1 cells, respectively. From the mock treated micro-
array set, 17 biological functions were influenced by
infection while 28 functions were significantly affected by
CAM treatment of infections (Additional file 1 Tables S1.
E and S1.F). Many of the biological functions identified
are the result of the molecular pathways identified by
IPA, with several innate immune response and stress
pathways implicated when C. burnetii protein synthesis is
arrested, again indicating a role for C. burnetii proteins
in managing the host cell response to infection.

Comparative analysis between mRNA profiles of untreated
and CAM treated uninfected/infected THP-1 cells
In order to identify the host cell genes differentially
expressed (≥2 fold) in response to de novo C. burnetii
protein synthesis, we compared the two separate mRNA
expression profiles. Microarray analysis of mock treated
(-CAM), uninfected vs. infected THP-1 cells using a
broad cut-off of >0 fold revealed a gene summary list of
2557 genes (P < 0.05) (Additional file 1- Table S1.B).
Within this data set are the 784 genes which changed
≥2 fold (S1.A), and was considered a significant change.
Using a >0 fold cut-off for the CAM treated (+CAM)
uninfected vs. infected THP-1 cells, a gene summary list
of 2584 genes were identified (Additional file 1 - Table
S1.D). The subset of 901 genes that changed signifi-
cantly (≥2 fold, S1.B) was within this large gene sum-
mary list. Figure 3 depicts a comparison of these two
sets of microarray data using Venn diagrams. To elimi-
nate the insignificantly (<2 fold) expressed genes, (i) the
subset of significant THP-1-CAM genes (784) was
cross-matched to the THP-1+CAM whole gene sum-
mary list (>0 fold) of 2584 genes and, (ii) the subset of
significant THP-1+CAM genes (901) was cross-matched
to the THP-1-CAM whole gene summary list (>0 fold)
of 2557 genes. This cross comparison identified 28
genes in the THP-1-CAM subset and 35 genes in the
THP-1+CAM subset that were significantly changed (≥2
fold) between the two microarray conditions. The over-
lapping genes from these two data sets were pooled
(27 genes) and uniquely expressed genes in the -CAM
(1 gene) and +CAM (8 genes) were identified. Compar-
ing the results from these two gene subsets provided us
with a list of 36 candidate host cell genes whose
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expression was ≥2 fold different between the mock trea-
ted (-CAM) and CAM treated (+CAM) arrays, indicat-
ing genes whose expression is modulated by de novo
synthesized C. burnetii proteins.

Host cell biological functions associated with THP-1
mRNAs modulated by de novo C. burnetii protein
synthesis
To determine the host cell biological pathways being
affected by C. burnetii protein synthesis, IPA was used.

Analysis of the subset of thirty-six differentially expressed
host genes modulated by C. burnetii protein(s) were clas-
sified according to the biological function they are asso-
ciated with, the protein’s cellular location, and its
molecular function (Table 1). A majority of the proteins
in this data set are predicted to reside in the cytoplasm
(14 proteins) and cell nucleus (9 proteins). Six proteins
are predicted to function in the extracellular space while
four proteins are thought to be located on the plasma
membrane. Other than cellular location, the host genes

Figure 3 Venn diagram of differentially expressed THP-1 genes. A venn diagram visualization showing 784 and 901 differentially expressed
host genes in C. burnetii infected THP-1 cells under mock (- CAM) and CAM treated (+ CAM) conditions respectively, as determined by oligonucleotide
microarray analysis. Comparisons between differentially expressed genes of -CAM with the gene summary list of + CAM (>0 fold Δ = 2584 genes) and
differentially expressed genes of + CAM with the gene summary list of -CAM (>0 fold Δ = 2557 genes) are also shown. The intersections (areas of
overlap) indicate genes regulated in common under both conditions. Twenty-eight of the differentially expressed genes in - CAM and thirty-five of the
differentially expressed genes in + CAM are modulated by C. burnetii protein synthesis (>2 fold difference). Of these, twenty-seven are common
between the two conditions, while eight and one genes are uniquely expressed in +CAM and -CAM conditions, respectively.
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were also categorized on the basis of the expressed pro-
tein’s function - i.e. enzyme, cytokine, transporter, tran-
scriptional regulator, or other. For the thirty-six gene
subset, Table 1 also lists the fold change found within the
separate mock treated and CAM treated microarrays,
respectively, as well as the fold difference between the
arrays. C. burnetii infected host cells had lower RNA
levels of twenty-two host genes relative to cells contain-
ing C. burnetii transiently inhibited with CAM. RNA
levels of fourteen genes in this data set are found to be
higher due to C. burnetii infection when compared to the

CAM treated condition. Bioinformatic analysis con-
ducted to determine possible biological functions of
these C. burnetii modulated host genes indicates that
immune response and cellular movement, cellular signal-
ing, cellular proliferation, cell death, lipid metabolism,
molecular transport, as well as vesicle trafficking, and
cytoskeletal organization are affected by C. burnetii pro-
tein synthesis (Table 1). These data indicate that the
expression of vital genes involved in cellular movement -
IL8, CCL2, CXCL1, SPP1 (cytokines) are suppressed via
C. burnetii’s protein synthesis in mock treated conditions

Table 1 Differentially expressed host genes modulated by C. burnetii protein synthesis

Cellular Function Gene Symbol Cellular location Predicted Function(s) -CAM1 +CAM2 FD3

CTSB Cytoplasm peptidase 3.102 6.565 ↑3.463

Apoptosis CTSL1 Cytoplasm peptidase 3.173 6.914 ↑3.741

BCL3 Nucleus transcription regulator 3.103 5.673 ↑2.57

C11ORF82 Cytoplasm other -1.849 -4.912 ↓3.062

Cell proliferation SOX11 Nucleus transcription regulator 3.127 -2.915 ↓6.042

HELLS Nucleus enzyme -1.551 -4.653 ↓3.101

PGR Nucleus ligand-depend. nuclear recept. -1.539 -6.853 ↓5.313

ITK Cytoplasm kinase 2.752 -2.46 ↓5.212

Cell signaling DUSP9 Nucleus phosphatase -2.04 -4.388 ↓2.348

SKP2 Nucleus other 1.581 -2.627 ↓4.208

MTSS1 Cytoplasm other 4.389 6.986 ↑2.597

Cytoskeleton ANLN Cytoplasm other -1.943 -4.679 ↓2.735

SMTN Extracell. space other -3.319 4.006 ↑7.325

PLEKHO1 Plasma memb. other 2.162 5.396 ↑3.234

SPP1 Extracell. space cytokine 3.351 6.733 ↑3.382

Immune response CCL2 Extracell. space cytokine 5.053 7.451 ↑2.398

CXCL1 Extracell. space cytokine 5.221 7.275 ↑2.054

IL8 Extracell. space cytokine 7.839 9.985 ↑2.146

FABP4 Cytoplasm transporter 2.351 4.506 ↑2.155

Lipid metabolism APOE Extracell. space transporter 2.591 4.958 ↑2.367

PLIN2 Plasma memb. other 3.725 5.772 ↑2.047

RAB20 Cytoplasm enzyme 2.489 4.925 ↑2.436

FAM177B Unknown other 5.064 7.125 ↑2.061

SELM Cytoplasm other -2.23 2.531 ↑4.761

PSMA8 Cytoplasm peptidase -2.494 3.212 ↑5.706

MSC Cytoplasm transcription regulator 3.17 5.49 ↑2.32

MRPL44 Cytoplasm enzyme 2.775 -1.356 ↓4.131

Miscelleaneous CHMP5 Cytoplasm other 1.525 -2.189 ↓3.714

RORA Nucleus ligand-depend. nuclear recept. -6.756 7.147 ↑13.903

ZFP36L1 Nucleus transcription regulator 3.815 6.842 ↑3.027

ZNF573 Nucleus other 1.412 -3.322 ↓4.734

SLC22A6 Plasma memb. transporter 2.097 -2.146 ↓4.243

CDH2 Plasma memb. other -1.626 -3.634 ↓2.007

KIAA1279 Unknown enzyme 7.811 12.888 ↑5.077

SPATA6 Unknown other -2.473 19.906 ↑22.379

PSD4 Unknown other 2.197 -2.149 ↓4.346
1Fold change of expressed THP-1 genes in response to C. burnetii infection under mock treated condition.
2Fold change of expressed THP-1 genes in response to C. burnetii infection under CAM treated condition.
3Fold change difference increase (↑) or decrease (↓) between 1 and 2.
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when compared to CAM treated conditions. These secre-
tory molecules (IL8, CCL2, CXCL1, SPP1) regulate the
infiltration and trafficking of immune cells. Table 1
shows other crucial host genes specifically suppressed by
C. burnetii protein synthesis in THP-1 infection such as
BCL3, CTSB and CTSL1 (apoptosis), MTSS1, SMTN and
PLEKHO1 (cytoskeleton organization), APOE, PLIN2
and FABP4 (lipid metabolism), and RAB20, SOD2,
PSMA8, MSC, ZFP36L1, and RORA (Miscellaneous).
The prominent genes found to be up-regulated (induced)
due to C. burnetii’s protein synthesis are ITK, DUSP9 &
SKP2 (intracellular signaling), SOX11, HELLS & PGR
(cell growth and proliferation) SLC22A6, CDH2, PSD4,
ZNF573, CHMP5 & MRPL44 (Miscellaneous) and
ANLN (cytoskeleton organization).

RT-q PCR analysis of THP-1 gene expression in response
to mock and CAM treated C. burnetii infection
RT-qPCR was used to validate the expression trends of
selected genes identified by microarray analysis. Using
the same total RNA samples utilized for the microarray
hybridizations, six host genes were selected (IL8, CCL2,
ZFP36L1, APOE, RND3, and POU4F2) and analyzed by
RT-qPCR using the constitutively expressed b-actin gene
as a comparative control. In each case, the RT-qPCR data
matched the trends from the microarray analysis with
respect to whether expression was increased, decreased,
or unchanged. Figure 4 shows the fold expression differ-
ences of IL8, CCL2, ZFP36L1, APOE, RND3, and
POU4F2 identified by microarray in mock and CAM
treated experimental conditions (Figure 4A) and the sub-
sequent RT-qPCR analysis (Figure 4B). IL8, CCL2,
APOE, and ZFP36L1 represent genes that are increased
in mock treated C. burnetii infected THP-1 cells but
increase further when C. burnetii’s protein synthesis is
transiently inhibited using bacteriostatic levels of CAM.
The POU4F2 gene expression is decreased similarly
under both conditions and represents a THP-1 gene
modulated by C. burnetii infection whether or not active
protein synthesis is occurring. RND3 expression
increases similarly in C. burnetii infected THP-1 cells
regardless of ongoing bacterial protein synthesis. These
results confirm that genes with significant mRNA expres-
sion changes by oligonucleotide microarrays analysis are
differentially expressed when measured by RT-qPCR.

Discussion
Bacterial effector proteins are crucial to the survival and
growth of intracellular pathogens within the eukaryotic
cellular environment. These interactions may be at a myr-
iad of pathways or at points within a single pathway.
Moreover, the growth of C. burnetii within the lumen of
the PV would require the mediation of interactions with
the host cell using effector proteins, which are predicted

to be delivered by the pathogen’s type IV secretion system
[10,11,19]. The goal of this study was to identify host
genes that are specifically manipulated by C. burnetii pro-
teins. Our hypothesis was that the expression of host cell
genes will be changed by infection with C. burnetii NMII
and that the expression of a subset of these genes will be
directly affected by ongoing bacterial protein synthesis.
Identification of such genes will aid in the understanding
of host molecular mechanisms being targeted by C. burne-
tii during growth. In order to identify the host genes regu-
lated by C. burnetii proteins, we compared CAM and
mock treated mRNA profiles of THP-1 cells following a
72 h infection with C. burnetii. Microarray data analysis
shows that the majority of host genes were up- or down
regulated similarly in both the mock and CAM treated
array sets, suggesting that most THP-1 genes were not dif-
ferentially modulated at the RNA level by active C. burne-
tii protein synthesis. We had predicted that the majority
of expression changes in the host cell would be in
response to the physical presence of bacteria within the
cell. Using stringent analysis conditions, the transcriptional
response data comparisons identified thirty-six differen-
tially expressed genes, which were uniquely modulated by
C. burnetii proteins. The targeting of these host genes by
the pathogen indicates they may fall within pathways that
C. burnetii needs to modulate for its own survival.
During infection C. burnetii replicates intracellularly,

which aids in avoidance of the host immune response.
Immune clearance of bacteria is largely dependent on cel-
lular sensors called pattern recognition receptors (PRR)
found on phagocytes [36]. Activated macrophages then
eliminate bacteria through extrinsic or intrinsic apoptosis
and/or inducing pro-inflammatory cytokines [36]. Bacteria
employ indirect mechanisms to regulate cytokine produc-
tion by interfering with the NFkappaB signaling pathway,
which is a potent transcriptional activator of cytokines
[37]. Interestingly, of the thirty-six host genes that met our
criteria (Table 1) for C. burnetii protein driven expression
changes, four are cytokines (IL8, CCL2, CXCL1 and
SPP1). These secretory molecules are noted for chemo-
attraction of phagocytic and lymphocytic cells [38-40]. C.
burnetii protein(s) appear to reduce the RNA levels of
each of these four genes in infected THP-1 cells relative to
those found in infected cells transiently inhibited with
CAM. The ability of C. burnetii to avoid or suppress host
cytokine signaling, even transiently, may well represent an
essential part of its ability to survive and cause disease by
preventing communication between innate and adaptive
immune cells.
Although the control and clearance of C. burnetii

infection is T-cell dependent, specific data on T-cell
activation signals are lacking [4]. One study indicated
that an in vitro stimulation of peripheral blood mono-
nuclear cells (PBMC) by virulent and avirulent
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C. burnetii strains cause the production of RANTES and
CCL2 [41]. Using a 36 h model of C. burnetii infection,
a DNA microarray study reported an increase in host
cell expression of certain chemokines (RANTES,
SCYA3, SCYA4, and IL8). The study also observed no
induction of TNF-a and IL-1b after 36 h of infection,
but the antimicrobial response gene encoding cyto-
chrome b-245 (CYBB) was up-regulated [28]. In the cur-
rent study, IL8 gene expression was also increased due
to C. burnetii infection but expression was further
increased when C. burnetii protein synthesis was inhib-
ited, suggesting that bacterial protein(s) differentially
modulate the expression of IL-8 during infection. In
addition, the IL8 receptor gene (IL8RB) was found to be
down regulated in mock treated, infected THP-1 cells
(see Additional file 1- Table S1.A). This is the first evi-
dence of host cell cytokine production being modulated
by C. burnetii protein during an infection.

In addition to the immune response, C. burnetii has to
overcome another central host defense mechanism, apop-
tosis. The intracellular pathogens C. trachomatis, Myco-
bacterium tuberculosis as well as C. burnetii posses
mechanisms to subvert cell death pathways [13,14,42,43].
C. burnetii has been shown to inhibit host cell apoptosis by
a mechanism that prevents cytochrome C release from the
mitochondria [13]. C. burnetii directs the sustained activa-
tion of host pro-survival kinases Akt and Erk1/2, which are
necessary for anti-apoptotic activity [13,14]. Table 1 shows
that seven of the thirty-six C. burnetii protein modulated
THP-1 genes are associated with apoptosis and cell prolif-
eration within eukaryotic cells. C. burnetii protein(s) sup-
press the expression of three genes (BCL3, CTSB, and
CTSL1), when compared to expression levels present in
CAM treated THP-1 cells, which can have pro-apoptotic
activities. By modulating these host genes during infection
C. burnetii appears to promote its own survival by

Figure 4 RT-qPCR of selected genes confirms microarray expression trends. A, shows the microarray data of the genes used to confirm
microarray expression trends. Fold difference (-CAM) is the fold change of differentially expressed THP-1 genes in response to C. burnetii
infection after mock treatment. Fold difference (+CAM) is the fold change of differentially expressed THP-1 genes in response to C. burnetii
infection after CAM treatment. B, difference in mRNA levels in selected genes relative to b-actin. An equal amount of total RNA from each
sample was analyzed by RT-qPCR. The Y-axis represents fold changes in gene expression while X axis shows the conditions under which gene
expression was observed (mock and CAM treated, and uninfected and C. burnetii infected THP-1 cells). U-CAM, uninfected THP-1 minus CAM. U
+CAM, uninfected THP-1 plus CAM. I-CAM, infected THP-1 minus CAM. I+CAM, infected THP-1 plus CAM. The results represent the mean of three
biological samples and three technical replicates of each sample. Error bars represent the s.e.m.
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ensuring the survival of the host cell. The expression of the
four cell proliferation/survival genes (C11ORF82, PGR,
SOX11 and HELLS) are significantly reduced when C. bur-
netii’s protein synthesis is inhibited during infection of
THP-1 cells (Table 1). The expression of each of these
genes is higher in infected cells than in infected cells where
bacterial protein synthesis is inhibited, again indicating
that C. burnetii protein(s) have an anti-cell death affect.
Interestingly, our microarray analysis also shows a 4-fold
expression decrease of TNFRSF10A (Death receptor 4) in
mock treated infections of THP-1 cells (Additional file 1-
Table S1.A). Normally, TNFRSF10A induces apoptosis by
binding to TNFSF10/TRAIL ligand in cells [44], suggesting
that the expression changes in C. burnetii infected cells
may represent another means of inhibiting host cell death.
Eukaryotic host cell cytoskeleton (actin filaments,

microtubules and intermediate filaments) are a common
target of molecular interactions for intracellular micro-
bial pathogens [9]. Virulent C. burnetii has been shown
to affect F-actin reorganization in THP-1 cells [45,46].
F-actin has also been shown to be associated with PV
formation and homotypic fusion of C. burnetii contain-
ing vacuoles, although PVs are able to acquire lysosomal
markers when F-actin formation is inhibited [47]. Our
analysis indicates that MTSS1, ANLN, SMTN and PLE-
KHO1 are differentially modulated by C. burnetii pro-
tein synthesis (Table 1). Compared to CAM treated
THP-1 infections, the relative expression levels of
MTSS1, SMTN and PLEKHO1 is lower in THP-1 mock
treated infections. The relative expression of ANLN is
higher in mock treated C. burnetii infections than in
CAM treated infections. Interestingly, ANLN interacts
with F-actin and is over expressed in dividing cells [48],
suggesting that C. burnetii infection supports cell
growth and division. The structure and integrity of the
PV as well as host cell vesicles fusogenicity with the PV
is dependent on cytoskeletol structures [47]. Finding
that four out of the thirty-six genes are associated with
the regulation and function of the cells cytoskeleton
supports findings that the cytoskeleton is crucial to C.
burnetii during infection.
Manipulation of cellular lipids is emerging as an

important factor in infectious diseases [49,50]. Host cell
cholesterol levels affect the growth of intracellular bac-
terial pathogens such as Salmonellae, Mycobacteriae,
Brucellae, Anaplasma, and Coxiellae [12,50]. Little is
known about cholesterol levels or imbalance in Q-fever
patients, but studies at the cellular level indicate that C.
burnetii infected Vero cells contain 73% more choles-
terol than uninfected cells [12]. Table 1 lists three C.
burnetii protein(s) modulated host genes (APOE, PLIN2,
and FABP4) that are associated with lipid metabolism
and regulation. These genes have lower relative expres-
sion levels in the mock treated THP-1 infections when

compared to the CAM treated THP-1 infections. APOE
is a multifunctional protein primarily involved in choles-
terol homeostasis [51-55]. Endogenously, APOE pro-
motes cholesterol efflux in macrophages to lower
intracellular cholesterol concentrations. Macrophages
deficient in APOE are severely compromised in choles-
terol homeostasis [51-55]. PLIN2 and Fatty acid binding
protein 4 (FABP4) are proteins that associate with lipids
and fatty acids, respectively, and mediate the stabiliza-
tion of lipid droplets and fatty acid transport [56,57]. An
increase in cholesterol regulating proteins would be
expected in response to the profound increases in the
cellular concentration of cholesterol seen during C. bur-
netii infection. This makes the increase in APOE expres-
sion observed upon inhibition of C. burnetii protein
synthesis particularly noteworthy. It seems that modula-
tion of these key lipid homeostasis genes allows C. bur-
netii to not only suppress the loss of host cell
cholesterol but to also direct lipid trafficking.
Bacterial pathogens often subvert host cell signaling

pathways by introducing bacterial effector proteins that
interfere with host cell phophorylation cascades [9].
C. burnetii dependent regulation of host cell signal
transduction pathways are not well understood. Our
data identified active modulation of three host cell signal
transduction genes (ITK, DUSP9 and SKP2) by C. bur-
netii’s protein(s). While ITK and SKP2 play significant
roles in inducing host cell proliferation [58,59], DUSP9
is a mitogen-activated protein kinase phosphatase
(MKP) that negatively regulates MAPK activity in mam-
malian cells, thus preserving the cell from apoptosis
[60]. The expression of these genes are relatively higher
in C. burnetii infected THP-1 cells compared to the
expression levels found in C. burnetii infected THP-1
cells transiently inhibited by CAM. This suggests that
C. burnetii protein synthesis “encourages” cell prolifera-
tion in addition to its anti-apoptotic effects as a means
to preserve the host cell environment.
In addition to the outlined host cell processes, we

identified a variety of genes involved in diverse functions
of a host cell, which were also modulated by C. burnetii
protein synthesis (Table 1). In this miscellaneous cellular
functions category, some genes were expressed at rela-
tively higher levels than what was expressed in CAM
inhibited infected cells and are of particular interest.
The PSD4 gene, which is involved in membrane recy-
cling [61], and CHMP5, which is an essential regulator
of late endosome function. CHMP5 null cells show
enhanced signal transduction, protein accumulation in
enlarged multi vesicular bodies (MVB) and inhibition of
MVB trafficking to lysosomes [62]. In addition, we have
recently found that markers of multi lamellar/multi vesi-
cular bodies associate with membrane structures within
the PV lumen during C. burnetii infection of Vero cells
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(unpublished observations). Given that C. burnetii’s
replication niche possesses markers consistent with
those on late endosomes/lysosomes [2], our finding that
expression of these genes are markedly lower when C.
burnetii protein synthesis is inhibited suggests that they
play a part in development and maintenance of the PV
during infection. This overall manipulation of endocyto-
sis, vesicle trafficking, and late endosome/lysosome
maturation is in agreement with studies which found
that inhibition of C. burnetii protein synthesis at any
point during the life cycle changes these processes
within C. burnetii infected cells [35,63].

Conclusions
Through this study we have discovered thirty-six host
cell genes with significant relative expression changes
after transient inhibition of C. burnetii protein synthesis.
The expression changes of these genes in the mock and
CAM treatment conditions were confirmed using RT-
qPCR analysis. Using bioinformatics, we have also deter-
mined the predominant host cell processes associated
with these genes. Collectively, these data support our
hypothesis that C. burnetii proteins differentially modu-
late host cell genes during infection. Predominant cellu-
lar functions that are modulated by C. burnetii proteins
include (i) innate immune response, (ii) cell death and
proliferation, (iii) vesicle trafficking and development,
(iv) lipid homeostasis, and (v) cytoskeletal function.
These findings indicate that C. burnetii actively modu-
lates the expression of genes that may play a role in the
ability of the pathogen to establish the PV, survive, and
replicate within the intracellular environment.

Additional material

Additional file 1: Tables S1.A-I. Excel file containing Tables S1.A
through S1.I as individual tab-accessible tables within a single file
(Supplemental Table S1.A-I).

Additional file 2: Figure S1. Biological function assignments of
genes differentially expressed in mock and CAM treated THP-1 cells
infected with C. burnetii. Both sets of microarray data (Additional file 1-
Supplemental Tables S1.A and S1.B) containing differentially expressed
genes for mock and CAM treated C. burnetii infections of THP-1 cells
were annotated using DAVID to extract the biological functions of the
listed genes. The X axis shows the percentage of differentially expressed
genes associated with each annotation term while the Y axis shows the
prominent biological functions (annotation terms) obtained through
functional annotation of the differentially expressed genes. P-values for
each annotation term are calculated using modified Fisher’s exact test. A
P-value cut off 0.05 or less has been used to identify biological functions.
Top panel, shows the common host cell functions regulated under both
conditions (mock and CAM treatment). Middle panel shows the major
cellular functions affected only in C. burnetii infected THP-1 cells
undergoing mock treatment. Bottom panel shows the crucial host cell
functions influenced only in C. burnetii infected THP-1 cells undergoing
CAM treatment.

Acknowledgements
We wish to thank Drs. Dan Stein, and Clint Krehbiel, and Mr. Rod Mills for
technical advice and direction in performing microarrays. We would like to
thank Dr. Kent Morgan for technical advice in RT-qPCR analysis. We also
thank Dr. Rolf Prade for the critical reading of this manuscript.
This research was supported by National Institutes of Health grant R15
A1072710 (E.I.S.).

Author details
1Department of Microbiology and Molecular Genetics, Oklahoma State
University, 307 Life Sciences East, Stillwater, OK, 74078, USA. 2Department of
Biochemistry and Molecular Biology, Oklahoma State University, 246C Noble
Research Center, Stillwater, OK, 74078, USA.

Authors’ contributions
SM assisted in experimental design, carried out the experiments, participated
in the microarray data analysis, and drafted the manuscript. PA assisted in
experimental design of microarray assays and microarray data analysis. ES
conceived the study, and participated in its design and coordination, and
helped to draft the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 30 June 2010 Accepted: 20 September 2010
Published: 20 September 2010

References
1. Maurin M, Raoult D: Q Fever. Clin Microbiol Rev 1999, 12:518-553.
2. Voth DE, Heinzen RA: Lounging in a lysosome: the intracellular lifestyle of

Coxiella burnetii. Cellular Microbiology 2007, 9:829-840.
3. Kazar J: Coxiella burnetii Infection. Annals of the New York Academy of

Sciences 2005, 1063:105-114.
4. Shannon J, Heinzen R: Adaptive immunity to the obligate intracellular

pathogen Coxiella burnetii. Immunologic Research 2009, 43:138-148.
5. Heinzen RA, Hackstadt T, Samuel JE: Developmental biology of Coxiella

burnetii. Trends in Microbiology 1999, 7:149-154.
6. Coleman SA, Fischer ER, Howe D, Mead DJ, Heinzen RA: Temporal Analysis

of Coxiella burnetii Morphological Differentiation. J Bacteriol 2004,
186:7344-7352.

7. Howe D, Melnicáková J, Barák I, Heinzen RA: Maturation of the Coxiella
burnetii parasitophorous vacuole requires bacterial protein synthesis but
not replication. Cellular Microbiology 2003, 5:469-480.

8. Portnoy DA: Manipulation of innate immunity by bacterial pathogens.
Current Opinion in Immunology 2005, 17:25-28.

9. Bhavsar AP, Guttman JA, Finlay BB: Manipulation of host-cell pathways by
bacterial pathogens. Nature 2007, 449:827-834.

10. Voth DE, Heinzen RA: Coxiella type IV secretion and cellular microbiology.
Current Opinion in Microbiology 2009, 12:74-80.

11. Pan X, Luhrmann A, Satoh A, Laskowski-Arce MA, Roy CR: Ankyrin Repeat
Proteins Comprise a Diverse Family of Bacterial Type IV Effectors. Science
2008, 320:1651-1654.

12. Howe D, Heinzen RA: Coxiella burnetii inhabits a cholesterol-rich vacuole
and influences cellular cholesterol metabolism. Cellular Microbiology 2006,
8:496-507.

13. Luhrmann A, Roy CR: Coxiella burnetii Inhibits Activation of Host Cell
Apoptosis through a Mechanism That Involves Preventing Cytochrome c
Release from Mitochondria. Infect Immun 2007, 75:5282-5289.

14. Voth DE, Howe D, Heinzen RA: Coxiella burnetii Inhibits Apoptosis in
Human THP-1 Cells and Monkey Primary Alveolar Macrophages. Infect
Immun 2007, 75:4263-4271.

15. Howe D, Mallavia LP: Coxiella burnetii Exhibits Morphological Change and
Delays Phagolysosomal Fusion after Internalization by J774A.1 Cells.
Infect Immun 2000, 68:3815-3821.

16. Romano PS, Gutierrez MG, Berón W, Rabinovitch M, Colombo MI: The
autophagic pathway is actively modulated by phase II Coxiella burnetii
to efficiently replicate in the host cell. Cellular Microbiology 2007,
9:891-909.

Mahapatra et al. BMC Microbiology 2010, 10:244
http://www.biomedcentral.com/1471-2180/10/244

Page 12 of 14

http://www.biomedcentral.com/content/supplementary/1471-2180-10-244-S1.XLSX
http://www.biomedcentral.com/content/supplementary/1471-2180-10-244-S2.DOC
http://www.ncbi.nlm.nih.gov/pubmed/10515901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17381428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17381428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18813881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18813881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10217829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10217829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15489446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15489446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12814437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12814437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12814437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15653306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17943119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17943119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19144560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18566289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18566289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16469060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16469060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17709406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17709406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17709406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17606599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17606599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10858189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10858189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17087732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17087732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17087732?dopt=Abstract


17. Luhrmann A, Roy CR: Coxiella burnetii inhibits activation of host cell
apoptosis through a mechanism that involves preventing cytochrome c
release from mitochondria. Infect Immun 2007, 75:5282-5289.

18. Voth DE, Heinzen RA: Sustained activation of Akt and Erk1/2 is required
for Coxiella burnetii antiapoptotic activity. Infect Immun 2009, 77:205-213.

19. Voth DE, Howe D, Beare PA, Vogel JP, Unsworth N, Samuel JE, Heinzen RA:
The Coxiella burnetii Ankyrin Repeat Domain-Containing Protein Family
is Heterogeneous with C-terminal Truncations that Influence Dot/Icm-
Mediated Secretion. J Bacteriol 2009, JB.01656-01608.

20. Morgan JK, Luedtke BE, Shaw EI: Polar localization of the Coxiella
burnetii type IVB secretion system. FEMS Microbiology Letters 2010,
305:177-183.

21. Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, Ward NL,
Tettelin H, Davidsen TM, Beanan MJ, et al: Complete genome sequence of
the Q-fever pathogen Coxiella burnetii. Proceedings of the National
Academy of Sciences of the United States of America 2003, 100:5455-5460.

22. Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP,
Sobral BW, Kupko JJ III, Porcella SF, et al: Comparative Genomics Reveal
Extensive Transposon-Mediated Genomic Plasticity and Diversity among
Potential Effector Proteins within the Genus Coxiella. Infect Immun 2009,
77:642-656.

23. Shannon JG, Heinzen RA: Infection of human monocyte-derived
macrophages with Coxiella burnetii. Methods Mol Biol 2008, 431:189-200.

24. Howe D, Shannon JG, Winfree S, Dorward DW, Heinzen RA: Coxiella
burnetii phase I and II variants replicate with similar kinetics in
degradative phagolysosome-like compartments of human macrophages.
Infect Immun 2010, 78:3465-3474.

25. Bernardo A, Bai G, Guo P, Xiao K, Guenzi A, Ayoubi P: Fusarium
graminearum-induced changes in gene expression between Fusarium
head blight-resistant and susceptible wheat cultivars. Functional &
Integrative Genomics 2007, 7:69-77.

26. Galindo RC, Ayoubi P, García-Pérez AL, Naranjo V, Kocan KM, Gortazar C, de
la Fuente J: Differential expression of inflammatory and immune
response genes in sheep infected with Anaplasma phagocytophilum.
Veterinary Immunology and Immunopathology 2008, 126:27-34.

27. Galindo RC, Ayoubi P, Naranjo V, Gortazar C, Kocan KM, de la Fuente J:
Gene expression profiles of European wild boar naturally infected with
Mycobacterium bovis. Veterinary Immunology and Immunopathology 2009,
129:119-125.

28. Ren Q, Robertson SJ, Howe D, Barrows LF, Heinzen RA: Comparative DNA
Microarray Analysis of Host Cell Transcriptional Responses to Infection
by Coxiella burnetii or Chlamydia trachomatis. Annals of the New York
Academy of Sciences 2003, 990:701-713.

29. Butchar JP, Cremer TJ, Clay CD, Gavrilin MA, Wewers MD, Marsh CB,
Schlesinger LS, Tridandapani S: Microarray Analysis of Human Monocytes
Infected with Francisella tularensis Identifies New Targets of Host
Response Subversion. PLoS ONE 2008, 3:e2924.

30. Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis
of large gene lists using DAVID bioinformatics resources. Nat Protocols
2008, 4:44-57.

31. Huang B, Troese MJ, Ye S, Sims JT, Galloway NL, Borjesson DL, Carlyon JA:
Anaplasma phagocytophilum APH_1387 Is Expressed throughout
Bacterial Intracellular Development and Localizes to the Pathogen-
Occupied Vacuolar Membrane. Infect Immun 2010, 78:1864-1873.

32. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D: Monitoring
Bacterial Community of Human Gut Microbiota Reveals an Increase in
Lactobacillus in Obese Patients and Methanogens in Anorexic Patients.
PLoS ONE 2009, 4:e7125.

33. Rozen SSH, (Ed.): Primer3 on the WWW for general users and for
biologist programmers. Bioinformatics Methods and Protocols: Methods in
Molecular Biology Totowa NJ: Humana Press 2000.

34. Livak K, Schmittgen T: Analysis of Relative Gene Expression Data Using
Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001,
25:402-408.

35. Howe D, Melnicakova J, Barak I, Heinzen RA: Maturation of the Coxiella
burnetii parasitophorous vacuole requires bacterial protein synthesis but
not replication. Cell Microbiol 2003, 5:469-480.

36. Roy CR, Mocarski ES: Pathogen subversion of cell-intrinsic innate
immunity. Nat Immunol 2007, 8:1179-1187.

37. Rahman MM, McFadden G: Modulation of Tumor Necrosis Factor by
Microbial Pathogens. PLoS Pathog 2006, 2:e4.

38. Rossi D, Zlotnik A: The Biology of Chemokines and their Receptors.
Annual Review of Immunology 2000, 18:217-242.

39. Eliasson MEA: Antibacterial Chemokines - Actors in Both Innate and
Adaptive Immunity. Contrib Microbiol 2008, 15:101-117.

40. Craig-Mylius K, Weber GF, Coburn J, Glickstein L: Borrelia burgdorferi, an
extracellular pathogen, circumvents osteopontin in inducing an
inflammatory cytokine response. J Leukoc Biol 2005, 77:710-718.

41. Soraya Meghari BD, Capo Christian, Georges EGrau, Raoult Didier,
Mege Jean-Louis: Coxiella burnetii stimulates production of RANTES and
MCP-1 by mononuclear cells: modulation by adhesion to endothelial
cells and its implication in Q fever. European Cytokine Network 2006,
17(4):253-259.

42. Gao LY, Abu Kwaik Y: Hijacking of apoptotic pathwaysby bacterial
pathogens. Microbes and Infection 2000, 2:1705-1719.

43. Häcker G, Fischer SF: Bacterial anti-apoptotic activities. FEMS Microbiology
Letters 2002, 211:1-6.

44. Ashkenazi A: Targeting death and decoy receptors of the tumour-
necrosis factor superfamily. Nat Rev Cancer 2002, 2:420-430.

45. Meconi S, Jacomo V, Boquet P, Raoult D, Mege JL, Capo C: Coxiella burnetii
Induces Reorganization of the Actin Cytoskeleton in Human Monocytes.
Infect Immun 1998, 66:5527-5533.

46. Meconi S, Capo C, Remacle-Bonnet M, Pommier G, Raoult D, Mege JL:
Activation of Protein Tyrosine Kinases by Coxiella burnetii: Role in Actin
Cytoskeleton Reorganization and Bacterial Phagocytosis. Infect Immun
2001, 69:2520-2526.

47. Aguilera M, Salinas R, Rosales E, Carminati S, Colombo MI, Beron W: Actin
dynamics and Rho GTPases regulate the size and formation of
parasitophorous vacuoles containing Coxiella burnetii. Infect Immun 2009,
77:4609-4620.

48. Olakowski M, Tyszkiewicz T, Jarza M, Król R, Oczko-Wojciechowska M,
Kowalska M, Kowal M, Gala G, Kajor M, Lange D, et al: NBL1 and anillin
(ANLN) genes over-expression in pancreatic carcinoma. Folia
Histochemica et Cytobiologica 2009, 47:249-255.

49. Ikonen E: Cellular cholesterol trafficking and compartmentalization. Nat
Rev Mol Cell Biol 2008, 9:125-138.

50. Xiong Q, Lin M, Rikihisa Y: Cholesterol-Dependent Anaplasma
phagocytophilum Exploits the Low-Density Lipoprotein Uptake Pathway.
PLoS Pathog 2009, 5:e1000329.

51. Zhang W-Y, Gaynor PM, Kruth HS: Apolipoprotein E Produced by Human
Monocyte-derived Macrophages Mediates Cholesterol Efflux That Occurs
in the Absence of Added Cholesterol Acceptors. Journal of Biological
Chemistry 1996, 271:28641-28646.

52. Laskowitz DT, Lee DM, Schmechel D, Staats HF: Altered immune responses
in apolipoprotein E-deficient mice. J Lipid Res 2000, 41:613-620.

53. Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ,
Tontonoz P: LXRs control lipid-inducible expression of the apolipoprotein
E gene in macrophages and adipocytes. Proceedings of the National
Academy of Sciences of the United States of America 2001, 98:507-512.

54. Van Oosten M, Rensen PCN, Van Amersfoort ES, Van Eck M, Van Dam A-M,
Brevé JJP, Vogel T, Panet A, Van Berkel TJC, Kuiper J: Apolipoprotein E
Protects Against Bacterial Lipopolysaccharide-induced Lethality. Journal
of Biological Chemistry 2001, 276:8820-8824.

55. Yancey PG, Jerome WG, Yu H, Griffin EE, Cox BE, Babaev VR, Fazio S,
Linton MF: Severely altered cholesterol homeostasis in macrophages
lacking apoE and SR-BI. J Lipid Res 2007, 48:1140-1149.

56. Brasaemle DL: Thematic review series: Adipocyte Biology. The perilipin
family of structural lipid droplet proteins: stabilization of lipid droplets
and control of lipolysis. J Lipid Res 2007, 48:2547-2559.

57. Vogel Hertzel A, Bernlohr DA: The Mammalian Fatty Acid-binding Protein
Multigene Family: Molecular and Genetic Insights into Function. Trends
in Endocrinology and Metabolism 2000, 11:175-180.

58. August A: IL-2-inducible T-cell kinase (ITK) finds another (dance)
partnerhellipTFII-I. European Journal of Immunology 2009, 39:2354-2357.

59. Frescas D, Pagano M: Deregulated proteolysis by the F-box proteins SKP2
and b-TrCP: tipping the scales of cancer. Nat Rev Cancer 2008, 8:438-449.

60. Keyse S: Dual-specificity MAP kinase phosphatases (MKPs) and cancer.
Cancer and Metastasis Reviews 2008, 27:253-261.

61. Derrien V, Couillault C, Franco M, Martineau S, Montcourrier P, Houlgatte R,
Chavrier P: A conserved C-terminal domain of EFA6-family ARF6-guanine
nucleotide exchange factors induces lengthening of microvilli-like
membrane protrusions. J Cell Sci 2002, 115:2867-2879.

Mahapatra et al. BMC Microbiology 2010, 10:244
http://www.biomedcentral.com/1471-2180/10/244

Page 13 of 14

http://www.ncbi.nlm.nih.gov/pubmed/17709406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17709406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17709406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18981248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18981248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20199576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20199576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12704232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12704232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19047403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19047403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19047403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18287757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18287757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20515926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20515926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20515926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18640728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18640728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12860710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12860710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12860710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18698339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18698339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18698339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20212090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20212090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20212090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19774074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19774074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19774074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11846609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11846609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11846609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12814437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12814437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12814437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17952043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17952043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16518473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16518473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10837058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18511858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18511858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15695554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15695554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15695554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17353158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17353158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17353158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11137044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11137044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12052542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12189384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12189384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9784567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9784567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11254615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11254615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19635823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19635823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19635823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19995712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19995712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18216769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19283084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19283084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8910497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8910497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8910497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10744782?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10744782?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11149950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11149950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11136731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11136731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17299204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17299204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17878492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17878492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17878492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10856918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10856918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19688746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19688746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18500245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18500245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18330678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12082148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12082148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12082148?dopt=Abstract


62. Shim JH, Xiao C, Hayden MS, Lee KY, Trombetta ES, Pypaert M, Nara A,
Yoshimori T, Wilm B, Erdjument-Bromage H, et al: CHMP5 is essential for
late endosome function and down-regulation of receptor signaling
during mouse embryogenesis. The Journal of Cell Biology 2006,
172:1045-1056.

63. Howe D, Melnicakova J, Barak I, Heinzen RA: Fusogenicity of the Coxiella
burnetii parasitophorous vacuole. Ann N Y Acad Sci 2003, 990:556-562.

doi:10.1186/1471-2180-10-244
Cite this article as: Mahapatra et al.: Coxiella burnetii Nine Mile II
proteins modulate gene expression of monocytic host cells during
infection. BMC Microbiology 2010 10:244.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Mahapatra et al. BMC Microbiology 2010, 10:244
http://www.biomedcentral.com/1471-2180/10/244

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/16567502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16567502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16567502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12860689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12860689?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	C. burnetii and cell culture growth and infection
	Comparative microarray design and analysis
	RNA extraction, microarray hybridization and data analysis
	Immunofluorescence microscopy
	RT-qPCR analysis

	Results
	SPV morphology within CAM treated C. burnetii infected THP-1 cells
	Gene expression in mock and CAM treated infected vs. uninfected THP-1 cells
	Comparative analysis between mRNA profiles of untreated and CAM treated uninfected/infected THP-1 cells
	Host cell biological functions associated with THP-1 mRNAs modulated by de novo C. burnetii protein synthesis
	RT-q PCR analysis of THP-1 gene expression in response to mock and CAM treated C. burnetii infection

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

