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Abstract

Background: Mozambique is one of the countries with the highest burden of tuberculosis (TB) in Sub-Saharan Africa,
and information on the predominant genotypes of Mycobacterium tuberculosis circulating in the country are important
to better understand the epidemic. This study determined the predominant strain lineages that cause TB in
Mozambique.

Results: A total of 445 M. tuberculosis isolates from seven different provinces of Mozambique were characterized by
spoligotyping and resulting profiles were compared with the international spoligotyping database SITVIT2.

The four most predominant lineages observed were: the Latin-American Mediterranean (LAM, n = 165 or 37%); the East
African-Indian (EAl, n = 132 or 29.7%); an evolutionary recent but yet ill-defined T clade, (n = 52 or 11.6%); and the
globally-emerging Beijing clone, (n =31 or 7%). A high spoligotype diversity was found for the EAI, LAM and T lineages.

Conclusions: The TB epidemic in Mozambique is caused by a wide diversity of spoligotypes with predominance of

LAM, EAI, T and Beijing lineages.

Background
Tuberculosis (TB) is one of the major health problems in
Mozambique. It is estimated that 27,000 deaths caused by
TB occur each year with an estimated incidence and
prevalence rate of 431 and 504 per 100,000 population,
respectively[1]. Mozambique ranks 19th on the list of 22
TB high-burden countries in the world. A steady increase
in the prevalence rate of Human Immunodeficiency Virus
(HIV)/Acquired Immune Deficiency Syndrome (AIDS)
(up to an estimated 16.2% among the population aged 15
to 49 years in 2004) makes the situation even more pre-
carious. Mozambique, with around 20 million inhabit-
ants, shares geographical borders with six other countries
where TB is also endemic, i.e., South Africa, Swaziland,
Zimbabwe, Zambia, Malawi and Tanzania.

At present Mozambique has 252 district laboratories
performing smear microscopy for TB diagnosis and one
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National Reference Laboratory that performs culture and
drug susceptibility testing of Mycobacterium tuberculosis
complex (MTC) isolates.

Molecular genotyping is an important tool for the
understanding of TB epidemiology. Despite the high TB
burden in the Sub-Saharan Africa region, there is cur-
rently a paucity of information regarding the genetic
diversity of MTC strains in Mozambique and no pub-
lished data is available.

Various methods have been used for phylogenetic and
population genetic studies [2]. Spoligotyping is a Poly-
merase Chain Reaction (PCR)-based genotyping method
that permits the assessment of the MTC genetic biodiver-
sity in a rapid, reliable and cost effective way [3]. On the
basis of the variability of the direct-repeat locus [3], spoli-
gotyping has been used worldwide to type large numbers
of strains in population based studies.

In the present study, we characterized by spoligotyping
445 MTC isolates from a Drug Resistance Surveillance
study performed in Mozambique over a 1-year period
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(2007-2008), in order to identify the predominant spolig-
otypes responsible for the prevalence of TB in Mozam-
bique.

Results

Patients

The study included a total of 445 M. tuberculosis strains
isolated from patients in Mozambique recruited during a
resistance surveillance study over a 1-year period (2007-
2008). The preliminary results of the Drug Resistance
Surveillance study provided by the National Tuberculosis
Control Program indicate that 7.8% of all new cases anal-
ysed in their sample presented any resistance and 3.5%
were multi-drug resistant [4]. Of the isolates included in
the present study, 282 were from the South region of the
country and 163 were from the North (Fig 1).

The demographic information of the patients showed
that 278 (62.5%) were male while 167 (37.5%) were
female. The patients' median age was 32 years (SD 13.3)
with a range of 15-82 years. Stratification according to
age showed that 244 (54.8) of the patients were aged 15-
34, 144 (32.4%) were 35-54 years while 44 (9.9%) were
55+. In 13 (2.9%) cases, information about age was not
available.

Of all the patients, 98 (22%) were HIV positive, 122
(27.4%) HIV negative and 225 (50.6%) were not tested for
HIV. The majority of the HIV positive patients were from
the South 89/195 (45.6%), while 9/25 (36.0%) were from
the North. The age distribution among patients that were
tested for HIV and the ones that were not tested were
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similar, patient's median age were 32 (SD 13.9) and 31.5
years (SD 12.7) respectively.

Spoligotyping
Spoligotyping produced a total of 147 different patterns
for the 445 strains studied. Forty-nine patterns corre-
sponded to orphan strains that were unique among more
than 73,000 strains recorded in the SITVIT2 database
(Additional file 1), as opposed to 98 patterns from 396
patients that corresponded to shared-types (SITs), i.e. an
identical pattern shared by two or more patients world-
wide (within this study, or matching another strain in the
SITVIT2 database), as shown in Additional file 2. The
genotypic clade designations, the percentage distribution
of all SITs observed in this study; for each of the SIT
shown, their binary/octal description, the number of total
strains and percentage in the present study as compared
to the same in the SITVIT2 database are summarized in
Additional file 2. Phylogenetic lineage description for
each SIT was also provided. For the 98 SITs recorded a
total of 79 SITs (containing 368 isolates) matched a pre-
existing SIT in the SITVIT2 database, whereas 19 SITs
(containing 28 isolates) were newly-created either within
the present study or after a match with an orphan in the
database. Irrespective of the database comparison, 50
patterns corresponded to clusters in the present study
(Additional file 2); 50 clusters containing 348 isolates (2 -
32 isolates per cluster), amounting to an overall clustering
rate of 78.2% (348/445).

When the spoligotyping results and clade definitions
were linked to the distribution of clinical isolates within
Principal Genetic Group (PGG) 1 versus PGG2/3 (char-

Tanzania NORTH REGION SOUTH REGION
Lineage - Niassa - Maputo Gaza Inhambane Total
province

LAM 27 42 13 28 22 17 16 165
i EAI 25 24 4 23 25 1 20 132
T 7 3 4 10 19 3 6 52

Beijing 3 1 0 14 7 5 1 31

H 1 2 0 4 3 2 2 14

X 0 0 0 4 4 4 1 13

CAS 1 2 1 2 3 2 0 11

— ) . s 0 0 0 2 2 3 1 8

MANU 0 0 0 0 1 0 2 3

South Africa Mixed Beijing and Euro-American 0 0 0 0 1 0 1 2
- Unknown 1 1 1 5 5 0 1 14
N : Total 65 75 2 92 ) 47 51 445

AN

South Africa

Figure 1 Geographical distribution of M. tuberculosis predominant spoligotype lineages in 7 provinces of Mozambique. The map describes
the geographical distribution of predominant spoligotype lineages in Maputo city, Maputo province, Gaza, Inhambane, Nampula, Cabo Delgado and
Niassa. The number of isolates per lineage in each province is depicted. Lineages: Latin American Mediterranean (LAM); East African Indian (EAI); T
lineage; Beijing; Haarlem (H) strains; X clade; Central Asian strains (CAS); S lineage, and the "Manu" lineage.
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acterized by the lack of spacers 33-36), it was evident that
185 or 41.6% of the isolates belonged to PGG1 (ancient
lineages) as compared to 260 or 58.4% to the PGG2/3
(modern lineages) (Fig 2).

If one takes the sample of clinical isolates with newly
created SITs in the database and orphans as an indication
of newly documented diversity of tubercle bacilli, a total
of 39/185 or 21.1% PGGI strains were newly documented
as opposed to 38/260 or 14.6% PGG2/3 strains.

As illustrated in Fig 2, the 4 most predominant lineages
comprised both PGG1 and PGG2/3 lineages: Latin-
American Mediterranean (LAM), n = 165 or 37.1% (PGG
2/3); ancestral East African-Indian (EAI), n = 132 or
29.7% (PGG1); an evolutionary recent but yet ill-defined
T clade, n = 52 or 11.7% (PGG 2/3); and the globally-
emerging Beijing clone, n = 31 or 7% (PGG1). The rest of
the lineages were in the following order: Haarlem (H), n =
14 or 3.1% (PGG2/3); X clade, n = 13 or 2.9% (PGG2/3);
Central Asian (CAS), n = 11 or 2.5% (PGG1). Moreover,
we found 5 isolates with Manu patterns (2 isolates with
Manul pattern and 3 isolates with Manu2 pattern) or
1.1% (PGGL1), that were further investigated for Region of
Difference (RD) 105 polymorphism.

A high spoligotype diversity was documented for EAI,
LAM and T lineages (Fig 2). Indeed, out of the 12 sublin-
eages reported so far worldwide for the LAM clade [5], a
total of 8 sublineages were present in our 1 year recruit-
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ment. A high diversity was also evidenced for other
PGG1 clades (CAS), as well as PGG2/3 clades (X clade
and H).

Furthermore, no M. africanum or M. bovis were found
in this study.

We also attempted to describe the worldwide distribu-
tion of predominant SITs (and lineages) encountered in
this study. As shown in Table 1, we observed that many of
the predominant SITs in our study belonging both to
ancient PGG1 strains (SIT8/EAI5, SIT48/EAI1-SOM,
SIT129/EAI6-BGD, SIT702/EAl6-BGD1, SIT806/EAIl-
SOM) and evolutionary recent PGG2/3 strains (SIT33/
LAM3, SIT59/LAM11-ZWE, SIT92/X3, SIT811/
LAMI11-ZWE, SIT815/LAM11-ZWE) were more fre-
quently present in Eastern and Southern Africa (mostly
among its immediate neighbours Zimbabwe, Zambia,
South Africa, Malawi, and to a lesser extent to Tanzania,
Namibia, and Somalia). Furthermore, 8 lineages or sub-
lineages in Table 1 were made-up of their prototypes in
the SITVIT2 database; these concerned SIT20 for LAM1,
SIT33 for LAM3, SIT42 for LAMY, SIT48 for EAI1-SOM,
SIT53 for T1, SIT59 for LAM11-ZWE, and SIT92 for X3
sublineages.

Geographical distribution of spoligotypes
M. tuberculosis genotype distribution of the predominant
lineages from the South and North regions of Mozam-
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Figure 2 The principal genetic groups (PGG) in Mozambique. The figure illustrates the 4 most predominant clades in our study comprised both
PGG1 and PGG2/3 lineages: LAM (PGG 2/3); ancestral EAI (PGG1); T clade (PGG 2/3); and the globally-emerging Beijing clone (PGGT).
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Table 1: Description of predominant SITs (representing 8 or more strains) in our study, and their worldwide distribution

SIT (Clade) Number(%) %inthisstudyas Distribution in Regions with 5% of a given Distribution in countries with 5%
in this study compared to SITs * of a given SITs **
SITVIT2
1 (Beijing) 30 (6.74) 0.46 AMER-N 30.72, ASIA-SE 13.92, AFRI-S 11.76, USA 30.65, ZAF 11.77, RUS 8.36, JPN
ASIA-E 11.21, ASIA-N 8.36 8.19,VNM 5.96
8 (EAI5) 12(2.70) 10.26 AFRI-E 26.50, EURO-N 24.79, AMER-N 24.79, USA 24.79, DNK 13.68, MOZ 10.26,
ASIA-W 6.84, AFRI-S 5.13 TZA 9.40, GBR 8.55, ZMB 6.84, SAU
5.13,ZAF 5.13
20 (LAM1) 14 (3.15) 2.02 AMER-S 24.68, AMER-N 24.68, AFRI-S 12.84, USA 22.94, BRA 14.29, NAM 8.95, PRT
EURO-S 11.40, EURO-W 8.23, CARI 6.20, AFRI-E  7.07, VEN 6.06
5.05
33 (LAM3) 8(1.80) 0.83 AFRI-S 32.60, AMER-S 23.33, AMER-N 16.77, ZAF 32.60, USA 16.56, BRA 9.48, ESP
EURO-S 14.37, EURO-W 5.73 9.27, ARG 5.94, PER 5.83
42 (LAM9) 32(7.19) 1.26 AMER-S 30.62, AMER-N 16.71, EURO-S 13.12, USA 15.65, BRA 10.60, COL 8.08, ITA
EURO-W 7.21, AFRI-N 5.20 6.90
48 (EAIT-SOM) 30 (6.74) 7.89 EURO-N 26.32, ASIA-S 21.32, EURO-W 15.00, DNK 15.53,BGD 14.21,NLD 12.37, ZAF
AFRI-E 10.00, AFRI-S 9.47, ASIA-SE 5.00 9.47, MOZ 8.95, IND 6.05, GBR 5.26
53(T1) 9(2.02) 0.19 AMER-N 19.91, AMER-S 14.64, EURO-W 12.97, USA 17.54, ZAF 5.89, ITA 5.19
EURO-S 10.14, ASIA-W 8.79, AFRI-S 6.03
59 (LAM11-ZWE) 13 (2.92) 3.39 AFRI-E 67.89, AFRI-S 19.06 ZMB 27.68, ZWE 20.10, ZAF 19.06, TZA
8.36
73(T2) 8(1.80) 4.15 AMER-N 21.24, EURO-S 19.69, AFRI-S 13.47, USA 18.65,ITA 17.62, ZAF 13.47, MOZ
EURO-W 12.44, AMER-S 10.36, AFRI-E 7.25 5.18
92 (X3) 9(2.02) 2.34 AFRI-S 49.09, AMER-N 24.42, AMER-S 9.61, ZAF 49.09, USA 21.82, BRA 5.71
EURO-N 5.19
129 (EAI6-BGD1) 14 (3.15) 35.90 AFRI-E 58.97, AMER-S 12.82, AMER-N 12.82, MOZ 38.46, USA 12.82, GUF 10.26,
EURO-W 5.13, AFRI-N 5.13 MWI10.26, TUN 5.13
150 (LAM9) 11 (2.47) 12.36 EURO-W 33.71, AMER-S 23.60, EURO-S 17.98, BEL 24.72, MOZ 12.36, PRT 10.11, FXX
AFRI-E 13.48 8.99,BRA 8.99,ITA 6.74, ARG 6.74, VEN
5.62
702 (EAI6-BGD1) 11 (2.47) 34.38 AFRI-E 71.88, AMER-S 15.62, CARI 6.25 MOZ 34.38, MWI 28.12, BRA 12.50,
ZMB 9.38, CUB 6.25
806 (EAIT-SOM) 13(2.92) 26.53 AFRI-S 44.90, AFRI-E 34.69, AMER-N 16.33 ZAF 44,90, MOZ 30.61, USA 16.33
811 (LAM11-ZWE) 14 (3.15) 26.92 AFRI-E 51.92, AFRI-S 38.46, AMER-N 9.62 ZAF 38.46, MOZ 28.85, ZWE 15.38,
USA 9.62
815 (LAM11-ZWE) 9(2.02) 7.83 AFRI-E 73.91, AFRI-S 21.74 ZMB 54.78, ZAF 21.74, ZWE 7.83, MOZ

7.83

* Worldwide distribution is reported for regions with >5% of a given SITs as compared to their total number in the SITVIT2 database. The
definition of macro-geographical regions and sub-regions http://unstats.un.org/unsd/methods/m49/m49regin.htm is according to the United
Nations; Regions: AFRI (Africa), AMER (Americas), ASIA (Asia), EURO (Europe), and OCE (Oceania), subdivided in: E (Eastern), M (Middle), C (Central),
N (Northern), S (Southern), SE (South-Eastern), and W (Western). Furthermore, CARIB (Caribbean) belongs to Americas, while Oceania is
subdivided in 4 sub-regions, AUST (Australasia), MEL (Melanesia), MIC (Micronesia), and POLY (Polynesia). Note that in our classification scheme,
Russia has been attributed a new sub-region by itself (Northern Asia) instead of including it among rest of the Eastern Europe. It reflects its
geographical localization as well as due to the similarity of specific TB genotypes circulating in Russia (a majority of Beijing genotypes) with those
prevalent in Central, Eastern and South-Eastern Asia.
** The 3 letter country codes are according to http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3; countrywide distribution is only shown for SITs
with >5% of a given SITs as compared to their total number in the SITVIT2 database.

bique is illustrated in Fig 1. A comparison of spoligotype
distribution among the two regions indicates that the
LAM, EAl and T lineages were common across the coun-
try, while the Beijing lineage was found to be more com-
mon in the South 27/282 (9.6%) compared to the North
4/163 (2.5%).

RD105 analysis of Manu pattern isolates

Since the Manu?2 pattern (all spacers present except spac-
ers 33 and 34) may eventually correspond to a mixed pat-
tern due to concomitant Beijing and Euro-American
lineage strains (the latter comprising H, LAM, X, and T
lineages per spoligotyping defined clades), we further
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investigated the five Manu pattern isolates for the pres-
ence of RD105. In one of the Manu2 pattern samples
(MOZ12007E00540) we observed a 2 banded RD105 pat-
tern, yielding an intact PCR product (characteristic of
non-Beijing strains) as well as a deleted product (charac-
teristic of Beijing strains), indicating a mixed infection.
The second Manu2 pattern sample (MOZ12007E00126)
showed only one band, with the RD 105 deletion, indicat-
ing that the original culture contained a mix of two
strains (Beijing and non-Beijing) which on subculture and
subsequent RD analysis had retained only the Beijing
strain.  The  third Manu2  pattern  sample
(MOZ12007E00153) yielded a one band pattern with an
intact RD105 product. We therefore conclude that two
Manu?2 patterns may be attributed to mixed infections by
Beijing (all spacers absent except sp. 35 to 43), and T1
sublineage strain (characterized by the presence of sp. 1
to 32, and sp. 37 to 43), or due to simultaneous presence
of Beijing and T2, or T2_Uganda sublineages (T2 being
characterized by the presence of sp. 1 to 32, sp. 37 to 39,
and sp. 41 to 43; T2_Uganda being characterized by the
presence of sp. 1 to 32, sp. 37 to 39, and sp. 41 to 42). On
the other hand, the third Manu2 pattern
(MOZ12007E00153) represents a true Manu2 strain.

In the two samples with Manul pattern we did observe
the presence of the genomic region RD105.

Discussion

This study represents the first report on the genetic
diversity of circulating MTC strains in Mozambique. We
found that TB lineages frequently isolated in Mozam-
bique may be nearly equally attributed both to ancestral
and evolutionary modern M. tuberculosis lineages with a
high spoligotype diversity documented for EAI, LAM and
T lineages. The spoligotype diversity within these lin-
eages suggests that they have circulated in Mozambique
for some time. Spoligotype diversity was also evidenced
for other PGGI1 clade (CAS) as well as PGG2/3 clades (X
and H). However, the "T" genotype does not represent a
clade in a strict evolutionary sense since it was defined by
default to include strains that may not be classified in one
of the established genotypic lineages with well-estab-
lished phylogeographical specificity such as the H, LAM,
CAS, and EAI lineages [5].

The wide diversity may be attributed to the extensive
human movement in the country mainly due to Mozam-
bican migration to neighbouring countries and internal
migration to look for better life conditions. The structure
of the TB population is determined by geography,
demography and human migration.

With the exception of ubiquitous spoligotypes (such as
the T clade found throughout the world), the patients in
Mozambique mainly harboured M. tuberculosis spoligo-
types prevailing in Eastern and Southern Africa. Thus, in
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two studies conducted in Tanzania LAM (LAM11-ZWE)
and EAI were found to be abundant, although the CAS
(CAS1-Kili) lineage was predominant [6,7]. In another
study conducted in Zimbabwe, 23 (10.7%) of 214 isolates
were LAM 9 (SIT 42) [8]. In Kenya, on the other hand,
35.6% of 73 isolates were of the CAS lineage, while 11%
were LAM [9].

A study conducted in Zimbabwe, Zambia and South
Africa identified a predominant group of strains (desig-
nated Southern Africa 1) in Zimbabwe and Zambia with
a unique spoligotype signature where spacers 21-24, 27-
30 and 33-36 were deleted [10]. In our study, 44/445
(9.9%) isolates had the mentioned signature (correspond-
ing to LAM11_ZWE), five were orphan and 39 matched a
pre-existing shared type in the SITVIT2 or were newly-
created either within the present study or after a match
with an orphan in the database.

A remarkable feature was the presence of the ancestral
Manu lineage strains (n = 3 or 0.67%). At the time of this
comparison, the SITVIT2 database contained only 261
Manu lineage isolates representing less than 0.4% clinical
isolates worldwide, out of which only 29 were isolated in
Africa (with the exception of Egypt, where it represented
27% of all isolates [11]), however none was yet reported
from Mozambique. Furthermore, with the exception of 3
Manul lineage strains isolated in Tanzania, all the
remaining M. tuberculosis strains isolated from Africa
belonged to the Manu2 sublineage. Hence our study con-
stitutes the first evidence of the presence of the Manu lin-
eage in Mozambique. With both Beijing and Euro-
American strains (lacking spacers 33-36) circulating in
Mozambique, some of the Manu2 patterns on the other
hand appear to result from mixed infections of Beijing
and Euro-American TB. Such a mixture has been
described in adjacent South Africa [12].

SIT1 corresponding to the Beijing genotype was the
third most frequent single spoligotype in Mozambique.
The Beijing lineage has spread globally during recent
years [13,14], and is seen as an indicator strain for recent
import of M. tuberculosis into a setting. Interestingly,
only one of the 31 Beijing isolates was drug resistant (data
not shown); in spite of the multidrug-resistance linked to
this emerging clone worldwide. A high and increasing
incidence of the Beijing lineage has been described in
neighbouring South Africa. In a study conducted in Cape
Town the proportion of W-Beijing strains in children
increased drastically from 13 to 33% from 2000 to 2003,
showing that this strain has a significant selective advan-
tage to spread within the community [15]. In the same
region, an association between the Beijing lineage and
HIV has recently been reported [16]. Moreover, another
study carried out in Malawi demonstrates an increase
over time of the proportion of TB due to Beijing genotype
strains [17].
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No M. africanum isolates were detected. M. africanum
is highly prevalent in West African countries, with its epi-
centre in Guinea Bissau [18,19] but is rarely seen in East
and Southern Africa [10,20]. The M. tuberculosis geno-
type T2-Uganda (previously designated M. africanum
subtype II) was shown to be mainly responsible for the
TB epidemic in Kampala, Uganda [20], although not so
common in other East African countries as Kenya [9] and
the Mozambican neighbour Tanzania [7]. In our study, no
strains of the M. tuberculosis genotype T2-Uganda [20]
were found.

The total absence of M. bovis in this one year study is
noteworthy. Although bovine TB is an important disease
of cattle and other domestic animals in Mozambique, no
M. bovis, the causative agent of bovine TB, was found.
One reason could be that we have studied only sputum
isolates. M. bovis is thought to spread through unpasteur-
ized milk, and hence would mainly cause abdominal or
disseminated TB.

This study represents a first baseline study of the M.
tuberculosis population structure in Mozambique, a use-
ful guide for future epidemiological studies in the country
and extending the picture of global TB distribution.

Conclusions

This study demonstrated that the TB epidemic in
Mozambique is caused by a wide diversity of spoligotypes
with predominance of four genotype lineages: LAM, EAI,
T and Beijing. The Beijing genotype was the third most
frequent single spoligotype in Mozambique.

Methods

Ethical considerations

Institutional permission to conduct the study was
obtained from the National Bioethics Committee of the
Ministry of Health in Maputo, Mozambique, reference
number 148/CNBS/07. The patients were included in the
resistance survey after understanding the study and hav-
ing signed an informed consent. They were HIV tested
after completely voluntary acceptance.

Patients and specimens

This study included a total of 445 consecutive samples of
M. tuberculosis isolates collected during a 1 year (2007-
2008) Nation Wide Drug Resistance Surveillance study
performed by the National TB Control Program of
Mozambique in 40 random selected districts around the
country according to WHO guide-lines [21],

Clinical specimens were processed at the individual
district laboratories for smear microscopy, and the spu-
tum samples were referred to the National Reference
Laboratory for culture and drug susceptibility testing
(1124 positive cultures were analysed).
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For the present study, 445 consecutive isolates from
new pulmonary TB cases (i.e. patients with pulmonary
TB who had never been treated for TB or had been
treated for less than 30 days) from patients older than =15
years, from seven provinces of Mozambique (Maputo
City, Maputo Province, Gaza, Inhambane, Nampula,
Cabo Delgado and Niassa) were afterwards re-cultured
and inactivated cultures were sent to the Centre of Bio-
technology of Eduardo Mondlane University, in Maputo
City and to the Swedish Institute for Infectious Disease
Control, in Solna, for genotyping.

Basic demographic data was collected for each patient
using a standard questionnaire. Patients were offered
HIV-testing, and for those consenting HIV-testing was
performed.

RD 105 polymorphism

Genomic deletion of region of difference RD105 (deleted
in Beijing lineage) was analysed by PCR using primer sets
as previously described [22] and the PCR products were
analysed by agarose gel electrophoresis.

Spoligotyping

Standard spoligotyping [3] was performed generally as
described by Kamerbeek and colleagues using a commer-
cially available kit (Isogen Life Science B.V., Utrecht, The
Netherlands). Spoligotyping results were analysed with
the BioNumerics Software ver. 5.01 (Applied Maths, Kor-
trijk, Belgium).

Database comparison and geographical distribution of
spoligotypes

Spoligotypes in binary format were entered in the
SITVIT2 database (Pasteur Institute of Guadeloupe),
which is an updated version of the previously released
SpolDB4 database [5]. In this database, SIT (Spoligotype
International Type) designates spoligotyping shared by
two or more patient isolates, as opposed to "orphan"
which designates patterns reported for a single isolate.
Major phylogenetic clades were assigned according to
signatures provided in SpolDB4, which defined 62 genetic
lineages/sub-lineages [5]. These include specific signa-
tures for various MTC members such as M. bovis, M.
caprae, M. microti, M. canettii, M. pinnipedii, and M.
africanum, as well as rules defining major lineages/sub-
lineages for M. tuberculosis sensu stricto; these include
the Beijing clade, the CAS clade and 2 sublineages, the
EAI clade and 9 sublineages, the H clade and 3 sublin-
eages, the LAM clade and 12 sublineages, the ancestral
"Manu" lineage and 3 sublineages, the S clade, the
1S6110-low-banding X clade and 3 sublineages, and an
ill-defined T clade with 5 sublineages (as well as further
well-characterized phylogeographical specificity for 8
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additional spoligotype signatures). At the time of the
present study, SITVIT2 contained more than 3000 SITs
with global genotyping information on about 73,000
MTC clinical isolates from 160 countries of origin.

Worldwide distribution of predominant spoligotypes
found in this study (SITs representing 8 or more strains)
was further investigated using the SITVIT2 database, and
was recorded for regions representing >5% of a given SIT
as compared to their total number in the SITVIT2 data-
base. The various macro-geographical regions and sub-
regions were defined according to the specifications of
the United Nations [23]. More specifically, we also stud-
ied a countrywide distribution, recorded only for coun-
tries with >5% of a given SIT as compared to its total
number in the database (3 letter country codes were
according to [24]).

The overall distribution of strains were compared
according to major M. tuberculosis genotypic families and
further linked to "ancient” and "modern" lineages of
tubercle bacilli as defined by PGG based on KatG463-
gyrA95 polymorphism [25], inferred from the reported
linking of specific spoligotype patterns to PGG1, 2 or 3
[26-28].

HIV testing

HIV testing was performed according to the recommen-
dations by the Ministry of Health, Mozambique at the
Sanitary Unit of enrolment. Two rapid HIV tests were
used sequentially, Unigold Recombinant HIV (Trinity
Biotech, Wicklow, Ireland) and Determine HIV-1/2
(Abbot, Tokyo, Japan). Samples were tested first with
Determine and reported only when negative. Positive
samples were confirmed with Unigold. All tests were per-
formed and interpreted according to the manufacturer's
instructions.

Additional material

Additional file 1 Description of the orphan strains (n = 49) and corre-
sponding spoligotyping defined lineages.

Additional file 2 Description of 98 shared types from Mozambique. A
total of 79 SITs containing 368 isolates matched a preexisting shared type
(SIT) in the SITVIT2 database, whereas 19 SITs (containing 28 Isolates) were
newly-created either within the present study or after a match with an
orphan in the database.
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