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Abstract
Background: Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant 
strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust 
mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative 
quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its 
closely related parental strain.

Results: A highly fitted master equation was established and applied for quantitative gene expression analyses using 
pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of 
mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under 
the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes 
belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid 
metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental 
strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a 
viable culture and fermentation. The distinct expression dynamics between the two strains and their close association 
with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-
response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for 
ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by 
the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of 
transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p.

Conclusion: Enriched background of transcription abundance and enhanced expressions of ethanol-tolerance genes 
associated with heat shock proteins, trehalose-glycolysis-pentose phosphate pathways and PDR gene family are 
accountable for the tolerant yeast to withstand the ethanol stress, maintain active metabolisms, and complete ethanol 
fermentation under the ethanol stress. Transcription factor Msn4p appeared to be a key regulator of gene interactions 
for ethanol-tolerance in the tolerant yeast Y-50316.

Background
Cellulosic ethanol production from renewable biomass
including lignocellulosic materials and agricultural resi-
dues is a promising alternative to fossil oil as transporta-
tion energy [1-6]. Increased ethanol titer or
concentration of microbial fermentation has been consid-
ered as a strategy to reduce energy cost in downstream

distillation and waste treatment [7]. Saccharomyces cere-
visiae is a traditional ethanol producer, yet it is sensitive
to high concentrations of ethanol. Ethanol diffuses freely
across biological membranes in yeast cells allowing
equalization of ethanol concentrations between intracel-
lular and extracellular pools. As a result, the increased
ethanol concentration in a medium inhibits cell growth,
damages cell viability, and reduces ethanol yield [8-10].
Using ethanol tolerant strains for high ethanol yield fer-
mentation is desirable for cost-efficient ethanol produc-
tion. However, mechanisms of ethanol tolerance are not

* Correspondence: zlewis.liu@ars.usda.gov
1 Bioenergy Research, National Center for Agricultural Utilization Research 
USDA-ARS, Peoria, IL USA
Full list of author information is available at the end of the article
© 2010 Ma and Liu; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20537179


Ma and Liu BMC Microbiology 2010, 10:169
http://www.biomedcentral.com/1471-2180/10/169

Page 2 of 20
well known and ethanol-tolerant yeast is not readily avail-
able.

More than 400 genes have been identified involving
ethanol tolerance by high throughput assays [11-21].
Most genes are related to heat shock protein genes
[11,21-23], trehalose biosynthesis and amino acid path-
ways [13,17,24,25], fatty acid and ergosterol [15,26-30].
While a significant amount of gene expression data was
obtained over the past decade, a lack of solid character-
ization of expression dynamics exists. For example, stud-
ies using snapshot methods were common and often
lower concentrations of ethanol were applied at late
stages of cell growth (Table 1). When a serial of samples
were taken over time, there is usually no additional etha-
nol challenge applied. As a result, it is very difficult to
avoid biased assessment for the complex interactions of
ethanol tolerance in yeast.

Yeast tolerance to ethanol is complex involving multiple
genes and multiple quantitative trait loci [31]. Develop-
ment of ethanol-tolerant strains has been hindered by
using conventional genetic engineering methods. On the
other hand, yeast is adaptable to stress conditions under
directed evolutionary engineering [2,32-34]. Adaptation
and evolutionary engineering have been successfully
applied in obtaining ethanol tolerant strains at varied lev-
els [26,27,35,36]. Previously, we developed tolerant etha-

nologenic yeast S. cerevisiae NRRL Y-50049 that is able to
withstand and in situ detoxify numerous fermentation
inhibitors that are derived from lignocellulose-to-ethanol
conversion such as furfural and 5-hydroxymethylfurfural
(HMF) [33,37,38]. Building upon the inhibitor-tolerant
yeast, we recently developed ethanol-tolerant yeast
NRRL Y-50316 using an adaptation evolutionary engi-
neering method under laboratory settings.

The qRT-PCR is an accurate assay platform and consid-
ered as an assay of choice for quantitative gene expression
analysis. It is commonly used to confirm high throughput
expression data obtained by microarray which has higher
levels of variations from multiple sources. For absolute
quantitative gene expression analysis, due to the neces-
sary wells required for the construction of standard
curves, very limited number of wells are available for tar-
get gene assays [37,39]. Recently, a significant advance
has been made to safeguard data accuracy and reproduc-
ibility with two new components, a robust mRNA serving
as PCR cycle threshold reference and a master equation
of standard curves [37,40,41]. These developments allow
unification of expression data from different experimen-
tal conditions for comparative analyses. This method and
other similar approaches have been rigorously examined
with demonstrated advantages of reliability and repro-
ducibility over housekeeping genes [37,40-45].

Table 1: Recent studies on gene expression response and genes related to ethanol tolerance for Saccharomyces cerevisiae

Method Strain Growth condition Cell growth stage Ethanol challenge 
concentration (%, v/v)

Sampling time-
points

Reference

qRT-PCR 
Array

NRRL Y-50316 YM, 30°C OD600 = 0.15 8 0, 1, 6, 24, 48 h This work

NRRL Y-50049

Microarray S288c YPD, 28°C OD660 = 0.8 7 0, 0.5 h [11]

Microarray PMY 1.1 YNB, 30°C OD620 = 1.0 5 0, 1, 3 h [12]

FY834

Microarray S288c IFO2347 YPD, 30°C OD660 = 1.0 5 0, 0.25, 0.5, 1, 2, 3 [13]

Microarray FY834 A1 YPD, 30°C Initial 10 log phase [15]

Microarray Vin13 Grape juice, 30°C None 0 Varied ethanol 
concentrations

[16]

K7

K11

Microarray K701 SR4-3 YPAD, 20°C None 0 log phase [17]

Microarray EC1118 Synthetic must, 24°C None 0 Fermentation 
stages1 to 6

[18]

K-9

Microarray X2180-1A YPD, 30°C None 0 log phase [19]

SAGE EC1118 Synthetic must, 28°C None 0 0, 20, 48, 96 h [20]

Microarray Kyokai no. 701 Sake mash, 15°C None 0 2, 3, 4, 5, 6, 8, 11, 14, 
17 day

[21]
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In the present study, we compared cell growth, cell via-
bility, ethanol production and gene expression under the
ethanol stress between two very closely related strains,
the lignocellulosic inhibitor-tolerant Y-50049 and its eth-
anol-tolerant derivative Y-50316 retaining the inhibitor-
tolerance characteristics. Using the recently developed
pathway-based qRT-PCR array assays, we investigated
transcription dynamics of over 170 selected genes based
on previous reports and our preliminary screening in
response to ethanol challenge using a time-course study.
The objective of this study was to identify candidate and
key genes responsible for ethanol tolerance to support
complete ethanol fermentation. Our results uncovered
previously unreported genes accountable for ethanol tol-
erance and identified legitimate candidate genes of etha-
nol tolerance based on the ethanol-tolerant Y-50316.
Results of this study will aid dissection of ethanol toler-
ance mechanisms in yeast and metabolic engineering
efforts for more tolerant strain development.

Results
Tolerance and viability
On a solid medium of 2% glucose containing 8% ethanol,
ethanol-tolerant strain Y-50316 showed cell growth from
reduced cell concentrations at 10- to 100-fold dilutions
(Figure 1A). In contrast, cells of Y-50049 failed to grow at
any reduced cell concentration levels. Strain Y-50316, an
ethanol-tolerant derivative from its parental Y-50049,
maintained the inhibitor-tolerance and able to in situ
detoxify furfural and HMF derived from pretreatment of
lignocellulosic biomass. On a medium of 2% glucose con-
taining furfural and HMF at 10 mM each, both strains

showed similar growth patterns against the inhibitors at
all cell dilution levels from 10- to 1000-fold (Figure 1B).
On a liquid YM of 2% glucose containing furfural and
HMF, both strains showed similar growth pattern and
reached stationary phase in 30 h (data not shown)

On a liquid YM of 10% glucose containing 8% ethanol,
the ethanol-tolerant Y-50316 displayed a nearly normal
growth and reached stationary phase 24 h after incuba-
tion (Figure 2A). For its parental strain Y-50049, cell mass
was low and cell growth appeared ceased after 24 h.
When cell viability was tested using solid YM of 2% glu-
cose inoculated with the cell cultures at different time
point, the parental strain Y-50049 showed a very poor
growth response at 24 h and no viable cell growth was
observed at any later time points (Figure 2B). On the
other hand, the ethanol-tolerant strain Y-50316 displayed
a normal growth for samples taken at 24 h till 96 h after
the ethanol challenge. Reduced cell growth and cell lyses
were observed for samples taken at 120 to 168 h after eth-
anol challenge when the fermentation was completed for
several days.

Glucose consumption and ethanol production
With the addition of ethanol at 8% (v/v) 6 h after inocula-
tion, yeast growth of the two strains showed a similar OD
reading briefly followed by an obvious separation after 18
h between the ethanol-tolerant strain Y-50316 and its
parental strain Y-50049. Strain Y-50316 exhibited a con-
tinued growth through a log phase in 48 h to reach an

Figure 1 Cell growth response to ethanol and inhibitors. Compar-
ison of cell growth and colony appearance for ethanol-tolerant and in-
hibitor-tolerant mutant Saccharomyces cerevisiae NRRL Y-50316 and its 
parental inhibitor-tolerant strain NRRL Y-50049 on YM plate of 2% glu-
cose containing 8% (v/v) ethanol (A) or amended with inhibitors of 
furfural and 5-hydroxymethylfurfural each at 10 mM (B). The cultures 
initially applied were estimated with viable cell account of approxi-
mately 1.0 × 107 per ml as measured by colony forming units. A serial 
of 10-fold culture dilutions in water were spotted onto a medium plate 
containing ethanol or inhibitors and cell growth examined 7 days after 
incubation at 30°C.
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Figure 2 Cell viability and growth under the ethanol stress. Cell vi-
ability of ethanol- and inhibitor-tolerant mutant Saccharomyces cerevi-
siae NRRL Y-50316 (d) and its parental inhibitor-tolerant strain NRRL Y-
50049 (s) in response to 8% (v/v) ethanol challenge as measured by 
OD600 on a liquid YM of 2% glucose (A) and culture appearance of cell 
growth on a solid YM of 2% glucose (B). The time point at the addition 
of ethanol to the medium was designated as 0 h. Cell growth on YM 
plate was evaluated 7 days after incubation at 30°C.
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OD600 reading of 1.3 when the ethanol concentration was
75.1 g/L (9.5%, v/v) (Figure 3A and 3B). On the other
hand, Y-50049 ceased growth since 18 h and apparently
went into cell lysis stages and never recovered. Conse-
quently, no glucose consumption and ethanol conversion
were observed for Y-50049 under the ethanol challenge
(Figure 3B). In contrast, the ethanol-tolerant strain Y-
50316 displayed an accelerated glucose consumption and
ethanol conversion after 24 h (Figure 3B). At 120 h, glu-
cose was almost exhausted and the total ethanol concen-
tration reached 96 g/L. Production of glycerol and acetic
acid under the conditions of this study was insignificant
(data not shown).

Master equation for qRT-PCR Assays
Using CAB as a sole reference to set a manual threshold
at 26 Ct for data acquisition (see methods) [40], raw data

were normalized and analyzed for the entire PCR reac-
tions applied in 80 individual 96-well plate runs. As antic-
ipated, extremely high levels of consistent performance
was obtained for the universal control genes as a calibra-
tion standard (Table 2). A standard curve was con-
structed for all individual plate reactions applying the
universal control genes MSG, CAB, RBS1, and ACTB
(Additional File 1). A highly fitted master equation was
established (Figure 4) using the pooled data for all refer-
ence control reactions as follows:

where X represents mRNA (log pg) and Y equals qRT-
PCR cycle number (Ct) estimated for all reactions per-
formed on an ABI 7500 real time PCR System. Average
PCR amplification efficiency for the entire reaction set
was 95% (data not shown) as measured by the slope of the
standard curves [40,46].

Enriched background of gene transcription abundance
For ethanol-tolerant strain Y-50316, initial mRNA abun-
dance of many genes showed significant difference with-
out ethanol challenges compared with its parental strain
Y-50049 under the same growth conditions. At the desig-
nated 0 h, a time point the culture was incubated for 6 h
before the ethanol addition, at least 35 genes were found
having higher gene transcription abundance for the etha-
nol-tolerant yeast than its parental strain (Figure 5 and
Table 3). In this group, 26 were first identified as ethanol
tolerance related genes as follows: ELO1, GUP2, HSP31,
PGM1, PFK1, PDA1, LPD1, IRC15, ADH2, ADH3, ADH7,
ZWF1, SOL3, GND1, PRS1, PDR1, PDR5, PDR12, YOR1,
SNQ2, ICT1, DDI1, TPO1, GRE2, YDR248C, and
YMR102C (Table 3). Since the higher levels of transcripts
were acquired through the tolerant adaptation proce-
dures, these genes are considered as ethanol-tolerance
related. They belong to groups of heat shock proteins,
glycolysis, pentose phosphate pathway, fatty acid metabo-
lism and the PDR gene family. The increased abundance
for many genes was significantly higher in Y-50316 as
compared with its parental strain Y-50049, especially for
those in PDR gene family such as PDR5, YOR1, SNQ2,
and GRE2.

Transcription dynamics of heat shock protein genes
All 14 examined heat shock protein genes demonstrated
normal or enhanced expressions at the earlier stage, such
as at 1 or 6 h after ethanol challenge for both strains (Fig-
ure 5 and 6). However, most heat shock protein genes in
Y-50049 were repressed at 24 and 48 h and only three
genes, HSP26, HSP30 and HSP31, remained induced for
the parental strain Y-50049. But the expression abun-

Y 25 941 3 4593X R 99992= − =( ). . .0 (1)

Figure 3 Fermentation profiles under the ethanol stress. Compar-
ison of cell growth and ethanol conversion of Saccharomyces cerevisiae 
NRRL Y-50316 and NRRL Y-50049 over time in response to 8% (v/v) eth-
anol challenge on YM medium with 10% glucose. (A) Cell growth as 
measured by OD600 for Y 50316 (●) and Y-50049 ( ). (B) Mean values 
of glucose consumption (?) and ethanol concentration ( ) for Y-50316 
versus glucose (Њ) and ethanol (Δ) for Y-50049.
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dance of these genes was significantly less than that of the
ethanol-tolerant strain Y-50316 (Table 3). Y-50316, on the
other hand, had 10 genes, HSP12, HSP26, HSP30, HSP31,
HSP32, HSP42, HSP78, HSP82, HSP104, and HSP150
showing significantly induced expressions from 24 to 48
h. Among these, HSP26 displayed the highest expression
levels at all time points. Except for HSP40 and HSP90, all
other heat shock protein genes of Y-50316 had distinct
increased expression dynamics over time compared with
its parental strain Y-50049 (Additional File 2). For exam-
ple, HSP31 and HSP82 in Y-50316 were highly expressed
at each time point. These heat shock proteins were found
to be involved in cellular structure-function relationships
at multiple locations including nucleus, mitochondrion,
cytoplasm, cytoskeleton, membrane, and cell wall (Addi-
tional File 3).

Adaptive expressions of trehalose and glucose metabolism 
genes
Although the initial transcription abundance was low, all
examined trehalose and glycogen metabolism genes
responded positively to the ethanol challenge over time.
Transcription levels of the 11 trehalose metabolism genes
in Y-50316 were consistently enhanced from 1 to 48 h,
especially for NTH1, NTH2, ATH1, TSL1, TPS1, GPH1,
and GSY2 (Figure 5, Table 3 and Additional File 2). GPH1,
a gene involved in glycogen catabolism had almost 20-
fold increased transcription abundance, the highest level
in this group at 24 h for the tolerant Y-50316. Its expres-
sion levels were significantly greater at every time point
compared with those of the parental strain (Table 3).
GSY2 encoding for UDP-glucose-starch glucosyltrans-
ferase, another highly induced expressed gene in Y-50316,
was identified as a new candidate gene for ethanol toler-
ance. For the parental strain Y-50049, most genes in this
group had similar induced response at 1 and 6 h after the
ethanol challenge. However, except for GPH1, all other 10
genes were reversed as repressed after 6 h.

Transcription dynamic response was more complex for
genes involving in glycolysis and pentose phosphate path-
ways. Many genes in this group demonstrated persistent
high abundant expressions from 1 to 48 h after the etha-
nol challenge such as PGM2, HXK1, GLK1, TDH1,
GPM2, IRC15, ALD4, ADH1, ADH2, ADH3, ADH7, SFA1,
SOL4, GND2, NQM1, and YDR248C (Figure 5 and Table
3). Especially for GND2, TDH1 and NQM1, their expres-
sion levels were constantly higher at all time points. The
expression patterns of most genes in this group in Y-
50316 were distinct from that of its parental strain Y-
50049, particularly after 6 h when many genes of the lat-
ter were significantly repressed. In addition to genes with
enriched transcriptional abundance, at least another
seven previously unreported genes in this group were
identified as new candidate genes for ethanol-tolerance
and ethanol production under the stress including ADH7,
SFA1, GND2, NQM1, SOL4, IRC15, and YDR248C (Table
3).

Many important genes in this group displayed a normal
or non induced expressions under the ethanol challenge
for the tolerant Y-50316 such as PGI1, PFK1, FBA1,

Table 2: Robust performance of standard control genes using CAB as sole reference to set a manual threshold at 26 Ct and a master 
equation derived from 80 replicated plate reactions on Applied Biosystems 7500 real time PCR System

Control gene Reference Ct Mean Ct Stdev Estimated mRNA (pg) Input mRNA (pg) Consistency (%)

MSG 29.429 0.077 0.098 0.1 98.1

CAB 26.0 25.965 0.037 0.984 1 98.4

RBS1 22.388 0.019 10.64 10 93.6

ACTB 15.604 0.019 973.25 1000 97.3

Figure 4 Functional performance of universal RNA controls for 
real time qRT-PCR assays. Robust calibration control genes of MSG, 
CAB, RBS1, and ACTB at 0.1, 1, 10, and 1,000 pg over 80 individual 96-
well reaction plates for Saccharomyces cerevisiae NRRL Y-50316 and 
NRRL Y-50049 treated with 8% (v/v) ethanol demonstrated highly fit-
ted linear relationship between the mRNA input (log pg) and PCR cycle 
numbers (Ct) by a master equation for assays on ABI 7500 real time PCR 
System. Standard deviation of the slope and the intercept of the mas-
ter equation based on 80 individual standard curves under varied ex-
perimental conditions was 0.0458 and 0.0966, respectively.
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Figure 5 Gene expression under the ethanol stress. Comparison of mRNA expression of Saccharomyces cerevisiae NRRL Y-50316 and NRRL Y-50049 
by fold changes from 0 h to 48 h after the ethanol challenge treatment. Corresponding genes were categorized by functions involved in fatty acid 
biosynthesis (A), ergosterol metabolism (B), proline metabolism (C), trehalose metabolism (D), tryptophan metabolism (E), glycerol metabolism (F), 
heat shock protein family (G), glycolysis (H), pentose phosphate pathway (I), pleiotropic drug resistance gene family (J) and related transcription factor 
genes (K). Expressions for each gene at each time point were presented in relative fold changes against that of Y-50049 at 0 h. Green indicates en-
hanced expression, red for repressed expression, and yellow for no significant changes. Scales of expressions were indicated by a an integrated color 
bar at the bottom.
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Table 3: Functional categories and comparative expression fold changes of candidate and key genes for ethanol tolerance and ethanol 
fermentation for tolerant Saccharomyces cerevisiae NRRL Y-50316 and its parental strain Y-50049 over time under the ethanol challenge

Gene and
Category

Function 
description

Y-50316 Y-50049 Msn4p/
Msn2p

Yap1p Hsf1p Pdr1p/
Pdr3p

0 h 1 h 6 h 24 h 48 h 0 h 1 h 6 h 24 h 48 h

Heat shock proteins

HSP12 Plasma membrane 
localized heat shock 
protein

0.7 5.2 7.8 6.7 5.6 1.0 4.3 2.1 1.3 1.2 7 0 1 0

HSP26 Small heat shock 
protein with 
chaperone activity

0.9 55.2 30.0 31.7 54.4 1.0 59.5 34.8 17.8 15.3 4 0 7 0

HSP30 Hydrophobic 
plasma membrane 
localized heat shock 
protein

1.0 7.6 3.3 7.1 23.9 1.0 48.8 4.6 3.2 3.0 0 3 0 0

HSP31* Member of the DJ-1/
ThiJ/PfpI 
superfamily, 
chaperone and 
cysteine protease

2.1 3.6 7.9 10.2 9.3 1.0 1.3 5.5 2.1 1.8 1 2 4 0

HSP32 Possible chaperone 
and cysteine 
protease

0.8 1.0 2.4 2.1 2.3 1.0 1.5 2.1 1.4 1.0 4 0 6 0

HSP42 Small heat shock 
protein with 
chaperone activity

0.8 3.8 1.5 1.6 1.6 1.0 6.9 2.8 1.2 0.7 3 0 8 0

HSP78 Heat shock protein 
of ATP-dependent 
proteases, 
mitochondrial

0.6 3.0 2.2 2.8 2.9 1.0 4.3 2.0 0.9 0.3 3 1 8 0

HSP82* Heat shock 
protein,Hsp90 
chaperone required 
for pheromone 
signaling

1.7 7.6 2.6 2.2 2.4 1.0 3.4 3.4 1.3 0.6 2 1 4 0

HSP104 Heat shock protein 0.5 3.7 1.6 1.7 1.9 1.0 8.8 2.6 1.0 0.4 3 1 10 0

HSP150 O-mannosylated 
heat shock protein

1.4 1.0 1.9 1.7 1.7 1.0 1.0 1.0 0.7 0.4 2 1 0 0

Trehalose and glycogen metablism

PGM1* Phosphoglucomuta
se, minor isoform

1.6 0.6 0.6 0.6 0.4 1.0 0.4 0.7 0.3 0.2 3 0 2 0

PGM2 Phosphoglucomuta
se, major isoform

0.4 3.6 2.6 3.8 2.3 1.0 1.4 2.4 0.9 0.5 7 1 0 0

UGP1 UDP-glucose 
pyrophosphorylase

1.1 2.4 1.5 1.9 1.2 1.0 2.6 1.5 0.6 0.3 5 0 2 0

GPH1 Glycogen 
phosphorylase

1.0 5.2 14.3 19.9 17.7 1.0 2.4 6.6 4.5 3.5 3 1 0 0

GSY1 Glycogen synthase 0.6 3.4 2.2 2.0 1.0 1.0 1.6 2.5 1.1 0.5 2 0 0 0

GSY2 UDP-glucose--
starch 
glucosyltransferase

0.6 1.2 3.2 3.2 2.4 1.0 1.4 2.1 1.5 0.6 2 1 4 0

TSL1 alpha-trehalose-
phosphate synthase

0.6 3.2 3.5 3.1 2.3 1.0 1.8 2.3 1.1 0.4 7 0 7 0
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TPS1 alpha-trehalose-
phosphate synthase

0.6 1.5 1.9 1.9 1.1 1.0 1.3 1.7 0.7 0.4 6 2 2 0

TPS3 Regulatory subunit 
of trehalose-6-
phosphate 
synthase/
phosphatase 
complex

0.7 0.7 0.9 1.1 0.9 1.0 0.8 1.2 0.6 0.3 2 0 2 0

ATH1 Acid trehalase, 
vacuolar

1.1 1.6 2.1 2.2 2.0 1.0 1.7 1.2 0.6 0.4 1 1 4 0

NTH1 Neutral trehalase 0.9 1.3 2.3 2.7 2.5 1.0 0.6 2.0 1.2 0.5 3 0 2 0

NTH2 alpha-trehalase 1.0 1.4 2.1 2.8 2.8 1.0 0.9 1.4 0.9 0.5 1 1 2 0

Glycolysis

HXK1 Hexokinase I 0.5 16.8 6.9 13.1 15.8 1.0 14.1 8.1 3.8 2.2 5 0 4 0

GLK1 Glucokinase 0.4 4.0 2.7 2.4 1.8 1.0 2.5 6.3 2.3 0.8 4 0 0 0

PGI1 Glycolytic enzyme 
phosphoglucose 
isomerase

1.4 0.8 0.8 0.8 0.8 1.0 0.8 1.0 0.5 0.3 0 0 2 0

PFK1* Alpha subunit of 
heterooctameric 
phosphofructokinas
e involved in 
glycolysis

1.6 0.9 0.8 0.7 0.5 1.0 0.9 1.3 0.3 0.2 0 0 2 0

FBA1 Fructose 1,6-
bisphosphate 
aldolase

1.2 1.0 0.8 0.9 0.7 1.0 0.9 1.0 0.4 0.3 0 1 1 0

TDH1 Glyceraldehyde-3-
phosphate 
dehydrogenase 1

0.6 25.8 16.4 17.8 20.2 1.0 11.4 17.3 9.8 5.9 2 2 0 0

TDH2 Glyceraldehyde-3-
phosphate 
dehydrogenase 2

1.3 1.3 1.0 0.7 0.5 1.0 1.1 1.1 0.4 0.2 0 0 0 0

TDH3 Glyceraldehyde-3-
phosphate 
dehydrogenase 3

1.1 0.9 0.8 0.7 0.4 1.0 0.8 0.6 0.2 0.2 3 2 1 0

GPM2* Homolog of Gpm1p 
phosphoglycerate 
mutase

1.6 10.4 6.1 10.2 5.6 1.0 34.6 16.9 5.2 1.8 1 3 4 0

ERR1 Enolase related 
protein

0.9 1.1 1.0 0.8 0.9 1.0 1.1 0.6 0.4 0.5 4 0 4 0

PYK2 Pyruvate kinase 0.7 0.9 0.9 0.9 0.5 1.0 0.5 1.1 0.5 0.3 1 1 0 0

IRC15* Putative 
dihydrolipoamide 
dehydrogenases

2.1 1.9 1.6 2.2 1.8 1.0 2.0 1.6 1.2 0.8 2 1 2 0

LPD1* Dihydrolipoamide 
dehydrogenase

1.5 0.7 1.0 1.7 1.3 1.0 0.7 1.2 0.6 0.4 2 3 0 2

PDA1* E1 alpha subunit of 
the pyruvate 
dehydrogenase 
(PDH) complex

1.9 0.8 1.2 1.2 0.9 1.0 0.7 1.7 0.6 0.3 2 1 2 0

Table 3: Functional categories and comparative expression fold changes of candidate and key genes for ethanol tolerance and ethanol 
fermentation for tolerant Saccharomyces cerevisiae NRRL Y-50316 and its parental strain Y-50049 over time under the ethanol challenge 
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ALD4 Mitochondrial 
aldehyde 
dehydrogenase, 
utilizes NADP+ or 
NAD+ equally as 
coenzymes

0.9 5.3 7.8 7.0 6.1 1.0 11.3 5.3 2.8 1.4 3 3 0 0

ALD6* Cytosolic aldehyde 
dehydrogenase

1.9 0.4 0.4 0.2 0.1 1.0 0.3 0.1 0.1 0.1 4 1 0 2

ADH1* Alcohol 
dehydrogenase I

2.9 4.2 4.0 2.9 2.0 1.0 4.3 5.8 2.5 1.8 4 1 2 0

ADH2* Alcohol 
dehydrogenase II

2.9 4.4 4.8 3.9 2.4 1.0 4.8 7.1 3.4 1.9 2 0 2 0

ADH3* Alcohol 
dehydrogenase III

2.0 0.8 2.5 2.6 2.3 1.0 0.6 4.0 1.7 1.0 0 1 0 0

ADH7* NADP(H)-
dependent alcohol 
dehydrogenase

2.9 2.6 2.3 2.4 3.2 1.0 3.9 2.9 1.4 1.1 1 2 2 0

SFA1 Long-chain alcohol 
dehydrogenase

1.2 1.7 2.0 2.4 2.3 1.0 1.9 2.3 1.0 0.6 1 0 2 0

Pentose phosphate pathway

ZWF1* Glucose-6-
phosphate 
dehydrogenase

1.8 1.2 1.5 1.3 0.9 1.0 0.8 1.2 0.7 0.3 5 1 0 0

YDR248C* Sequence similarity 
to bacterial and 
human 
gluconokinase

1.7 0.7 1.5 3.0 2.4 1.0 0.7 1.4 0.7 0.5 3 1 0 0

SOL3* Possible 6-
phosphogluconolac
tonase

1.8 0.3 0.6 1.3 0.4 1.0 0.4 0.9 0.4 0.3 1 3 0 0

SOL4 putative 6-
phosphogluconolac
tonase

0.3 1.8 8.2 9.9 7.5 1.0 6.7 7.0 1.5 1.1 1 0 6 0

GND1* 6-
phosphogluconate 
dehydrogenase

1.8 0.3 0.3 0.9 0.5 1.0 0.3 0.6 0.3 0.1 1 0 0 0

GND2 6-
phosphogluconate 
dehydrogenase

0.9 8.6 23.1 26.2 23.0 1.0 2.1 4.0 1.2 1.0 3 1 7 0

NQM1 Transaldolase of 
unknown function

1.1 0.8 10.2 3.4 6.1 1.0 1.2 1.1 0.6 0.6 3 1 2 0

TKL1* Transketolase 1 1.6 0.2 0.6 1.0 0.6 1.0 0.2 0.8 0.3 0.1 1 1 2 0

TKL2 Transketolase 2 0.9 0.8 1.3 0.7 1.1 1.0 1.0 0.5 0.5 0.5 2 2 1 0

PRS1* 5-phospho-ribosyl-
1(alpha)-
pyrophosphate 
synthetase

2.2 0.3 0.5 1.0 0.9 1.0 0.3 1.1 0.4 0.3 0 2 6 0

PDR family

PDR1* zinc finger 
transcription factor 
for pleiotropic drug 
response

1.7 0.9 1.0 0.9 1.0 1.0 0.7 1.0 0.4 0.3 0 1 0 0

Table 3: Functional categories and comparative expression fold changes of candidate and key genes for ethanol tolerance and ethanol 
fermentation for tolerant Saccharomyces cerevisiae NRRL Y-50316 and its parental strain Y-50049 over time under the ethanol challenge 



Ma and Liu BMC Microbiology 2010, 10:169
http://www.biomedcentral.com/1471-2180/10/169

Page 10 of 20
PDR5* Plasma membrane 
ATP-binding 
cassette (ABC) 
transporter

4.4 0.5 0.4 0.3 0.4 1.0 0.2 0.6 0.3 0.1 1 2 6 8

PDR12* Plasma membrane 
ATP-binding 
cassette (ABC) 
transporter

1.5 1.3 0.7 0.7 0.9 1.0 1.0 0.6 0.3 0.2 0 1 2 0

PDR15 ATP binding 
cassette (ABC) 
transporter of the 
plasma membrane

1.3 1.7 1.5 2.3 1.7 1.0 1.0 0.9 0.4 0.3 5 0 0 3

YOR1* ATP binding 
cassette (ABC) 
transporter of the 
plasma membrane

2.2 0.8 0.8 0.5 0.4 1.0 0.6 0.9 0.1 0.1 2 1 0 2

SNQ2* ATP binding 
cassette (ABC) 
transporter of the 
plasma membrane

2.3 0.6 0.4 0.7 0.5 1.0 0.3 0.5 0.2 0.1 1 2 0 7

ICT1* Lysophosphatidic 
acid acyltransferase

2.0 0.6 0.6 0.4 0.6 1.0 1.0 1.2 0.7 0.4 1 0 2 2

DDI1* DNA damage-
inducible v-SNARE 
binding protein

1.7 1.7 2.0 1.7 2.4 1.0 1.1 2.0 1.0 0.6 1 1 0 0

TPO1* Vacuolar 
polyamine-H+ 
antiporter

1.7 1.0 2.0 3.1 3.5 1.0 1.4 2.6 1.9 1.0 2 3 0 2

GRE2* Methylglyoxal 
reductase (NADPH-
dependent)

4.1 1.4 1.5 1.6 1.8 1.0 1.3 1.5 0.6 0.5 0 1 2 2

YMR102C* Protein of unknown 
function

1.6 1.2 1.1 1.2 1.0 1.0 1.2 0.9 0.7 0.6 1 0 0 3

Fatty acid metabolism

ETR1 Mitochondrial 
respiratory function 
protein

0.9 1.0 1.5 2.1 1.7 1.0 1.6 1.3 0.7 0.5 2 2 2 0

ELO1* Elongase I, Fatty 
acid elongation 
protein

1.6 0.8 1.3 1.8 1.0 1.0 0.5 0.7 0.4 0.3 0 1 2 0

HTD2 Mitochondrial 3-
hydroxyacyl-
thioester 
dehydratase 
involved in fatty 
acid biosynthesis

1.1 0.9 1.1 1.1 1.0 1.0 0.7 1.1 0.5 0.5 0 0 0 0

Egosterol biosynthesis

ERG4* C-24(28) sterol 
reductase

1.5 0.5 0.6 0.5 0.3 1.0 0.7 0.4 0.2 0.2 0 0 2 2

ERG20 Farnesyl-
pyrophosphate 
synthetase

0.9 0.7 0.9 0.9 0.6 1.0 0.6 1.3 0.6 0.4 1 1 0 0

Table 3: Functional categories and comparative expression fold changes of candidate and key genes for ethanol tolerance and ethanol 
fermentation for tolerant Saccharomyces cerevisiae NRRL Y-50316 and its parental strain Y-50049 over time under the ethanol challenge 
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ERG26 C-3 sterol 
dehydrogenase

1.0 0.4 0.9 0.8 0.8 1.0 0.4 0.8 0.5 0.4 0 1 5 0

Proline metabolism

PUT1 Proline oxidase 0.6 0.8 2.7 1.8 4.9 1.0 5.1 3.8 6.0 2.6 0 0 0 0

PRO1* Gamma-glutamyl 
kinase, catalyzes the 
first step in proline 
biosynthesis

1.6 1.0 0.7 0.9 0.7 1.0 0.7 1.0 0.5 0.3 0 0 2 0

Tryptophan biosynthesis

TRP5* Tryptophan 
synthase

1.5 0.5 1.0 1.4 0.7 1.0 0.4 1.3 0.5 0.2 4 2 0 0

Glycerol metabolism

DAK1 Dihydroxyacetone 
kinase

1.2 2.2 2.0 1.9 1.8 1.0 1.6 2.0 0.7 0.3 0 0 0 0

GCY1 Putative NADP(+) 
coupled glycerol 
dehydrogenase

1.1 0.9 4.3 5.4 4.8 1.0 1.1 4.1 2.2 1.7 1 1 2 0

GPD1 NAD-dependent 
glycerol-3-
phosphate 
dehydrogenase

1.3 0.8 1.0 1.1 0.5 1.0 1.4 1.0 0.3 0.2 4 1 0 0

GUP1 Multimembrane-
spanning protein 
essential for proton 
symport of glycerol

1.2 1.0 0.9 1.2 0.8 1.0 0.6 1.0 0.5 0.3 0 0 0 0

GUP2* Putative glycerol 
transporter 
involved in active 
glycerol uptake

1.8 0.8 0.6 1.0 0.6 1.0 0.7 1.0 0.6 0.5 1 0 0 0

Transcription factors

MSN2 Transcriptional 
activator related to 
Msn4p

1.0 0.8 0.7 0.8 0.5 1.0 1.2 0.7 0.4 0.2 1 0 2 0

MSN4 Transcriptional 
activator related to 
Msn2p

1.0 0.8 1.3 2.5 3.2 1.0 1.0 0.7 0.5 0.4 4 0 2 0

YAP1* Transcriptional 
activator involved in 
oxidative stress 
response

1.5 0.9 0.8 1.0 0.7 1.0 1.7 1.0 0.5 0.3 1 2 2 0

HSF1 Heat shock 
transcription factor

1.4 1.3 1.2 1.5 1.3 1.0 1.6 1.1 0.7 0.4 1 3 2 0

* Genes showing significantly enriched transcription abundance in Y-50316 prior to ethanol challenge (p < 0.01).
Genes in bold indicate new reports by this study and the expression fold changes in bold indicate an increase of greater than 1.5-fold (p < 0.01) 
compared with a wild type control.
Numbers of protein binding motifs related to transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p for each gene were marked 
under each transcription factor

Table 3: Functional categories and comparative expression fold changes of candidate and key genes for ethanol tolerance and ethanol 
fermentation for tolerant Saccharomyces cerevisiae NRRL Y-50316 and its parental strain Y-50049 over time under the ethanol challenge 
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TDH2, TDH3, TPI1, PGK1, GPM1, ENO1, EBO2, ERR1,
ERR3, PYK2, CDC19, PDC1, PDC5, ARO10, THI3, ALD2,
ALD3, ADH5, PDA1, PDB1, ACS1, SOL1, SOL2, TKL1,
and TKL2 (Figure 7, Table 3 and Additional File 2). In
contrast, for the parental Y-50049, most of these genes
were repressed at the lower levels especially after 6 h (Fig-
ure 5). The transcript of ZWF1 in Y-50316 was not only
enriched initially, but constantly displayed greater levels
of expression at every time point compared with its
parental Y-50049 (Table 3). Some enhanced genes in the
tolerant Y-50316 are involved in multiple functions of
carbohydrate metabolism and mitochondrion functions
such as HXK1, GLK1, GND2, TDH1, SOL4, GPM2,
ADH1, and ALD4 (Additional File 3).

Enhanced expressions of PDR gene family
Seventeen genes in this group were selected based on our
preliminary tests of yeast stress tolerance. Among which,
13 genes were identified as candidate genes closely
related to ethanol tolerance by enriched background of
transcription abundance, increased, normal or recover-
able expressions under ethanol challenge as demon-
strated by the tolerant Y-50316 (Table 3 and Additional
File 2). PDR15, DDI1, TPO1, and GRE2 maintained
noticeable higher levels of expressions at all time points
in addition to their enriched mRNA abundance at 0 h for
Y-50316. Other genes in this group such as PDR1, PDR16,
YMR102C, PDR3, PDR5, PDR12, PDR16, YOR1, and

SNQ2 for Y-50316 were expressed at normal levels or
recoverable at later stages. On the other hand, these
genes in Y-50049 were repressed.

Comparative expressions of transcription factor genes
In addition to the PDR1 and PDR3 expressions represent-
ing Pdr1p and Pdr3p described above, four other genes
encoding transcription factors Msn4p, Msn2p, Yap1p and
Hsf1p showed distinct expression patterns over time
between the two strains. Expression levels of these four
genes in Y-50049 were constantly reduced with the time
exposed to ethanol (Figure 8). For the tolerant Y-50316,
MSN2, YAP1 and HSF1 represented a similar type of
expressions that was moderately repressed at 1 and 6 h
after exposure to ethanol (Figure 8). At 24 h, their expres-
sion levels were remarkably increased and significantly
greater in Y-50316 than those in Y-50049. At 48, although
significantly higher than the parental strain, transcription
levels of these three genes in Y-50316 decreased. MSN4,
on the other hand, displayed a unique type of continued
increase of up-regulated expressions from 1 to 48 h. At
the critical time point of 6 h, unlike the other three
repressed genes, MSN4 expression in Y-50316 was con-
sistently increased from the previous time point, signifi-
cantly higher than the parental control (Figure 8 and
Table 3). This consistent increase of transcription abun-
dance was distinct and observed at 48 h again for MSN4
in Y-50316.

Figure 6 Quantitative expression of heat shock protein genes. Comparisons of transcription expressions in gene copy numbers (nX107) for heat 
shock protein genes between ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 and its parental strain NRRL Y-50049 under the ethanol 
challenge over time. Mean values are presented with error bars of standard deviations. Values at different time points are presented by a specific col-
ored bar as shown in legends for the tolerant Y-50316 and an immediately adjacent open bar on its right for its parental strain Y-50049 of the same 
time point.
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Figure 7 Glucose metabolic pathway response. Illustrative pathways of ethanol- and inhibitor-tolerant mutant Saccharomyces cerevisiae NRRL Y-
50316 involved in trehalose-glycolysis-pentose phosphate pathway in response to ethanol challenges inferred by dynamic quantitative mRNA expres-
sion analysis and metabolic profiling analysis compared with its parental strain NRRL Y-50049. Dark green arrowed lines and letters indicate high levels 
(5.1-60 fold increase for at least one critical time point) of mRNA expression and enhanced pathways, green for significant levels (1.5-5 fold increase 
for at least one critical time point) of enhanced transcription and pathways; black indicates normal or nearly normal levels of transcription and pathway 
events, red for repressed expression, reactions, or pathways. Bold lines and letters indicate the levels of expression and pathways are statistically sig-
nificant at P < 0.05. Reactions involved in NAD(P)H regeneration steps are circled in blue.
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Transcriptional regulation under ethanol stress
Most members of PDR gene family were found to have
protein binding motifs of transcription factor Pdr1p/
Pdr3p in their promoter regions (Table 3). Significantly
up-regulated PDR15, TPO1, GRE2 and YMR102C had at
least two binding motifs. Several genes in other func-
tional categories also shared the Pdr1p/Pdr3p binding
site. The number of protein binding motifs of transcrip-
tion factors Msn4p/Msn2p, Yap1p and Hsf1p for the eth-
anol tolerance candidate genes was remarkably large.
Among 82 candidate genes of ethanol tolerance identified
in this study, 77 genes were found to have a protein bind-
ing motif of Msn4p/Msn2p, Yap1p or Hsf1p; and 23 genes
shared the common binding sequence for all of the three
transcription factors (Figure 9 and Table 3). The four
newly identified ethanol-tolerant candidate genes HSP31,
HSP32, HSP150 and GND2 by this study were found to
share the same transcription factor Msn4p/Msn2p.
GND2, HSP31 and HSP32 also appeared co-regulated by
Hsf1p, and GND2, HSP31 and HSP150, by Yap1p.

Expression responses of other genes
Expression levels of gene transcripts involved in fatty acid
metabolism were generally low and repressed for both
strains in response to the ethanol challenge except for
ELO1, ETR1, PHS1, TSC13, OAR1, and HTD2 in Y-50316
having induced or recoverable expressions (Figure 5 and
Table 3). Similarly, most genes in ergosterol metabolism
group were repressed but ERG20, ERG24 and ERG26 in
tolerant Y-50316 appeared to have normal or recoverable
transcription expression potential over time (Figure 5 and

Table 3). While all five tryptophan biosynthesis genes in
parental Y-50049 were repressed over time, TRP5 in the
tolerant Y-50316 was able to withhold the ethanol chal-
lenge (Table 3). Other four genes were mostly less
repressed in Y-50316 than in Y-50049 (Additional File 2).
Among five proline biosynthesis genes, PUT1 was
induced for both strains. Expression patterns of most
glycerol metabolism genes under ethanol challenge were
similar for both strains with a few exceptions of Y-50316
genes including DAK1, GCY1, GPD1, GUP2, and GUP1.

Discussion
Applying a newly developed qRT-PCR array assays to
unify gene expression data analysis, we demonstrated
transcription expression dynamics for ethanol-tolerant
mutant Y-50316 in response to ethanol challenge com-
pared with its parental strain Y-50049 of S. cerevisiae. As
opposed to a single "snapshot" observations, we used a
more informative time-course design investigating
selected gene expression response from initial (0 h), early
growth (1 and 6 h), exponential/log phase (24 h), and
entering stationary phase (48 h) relative to the cell growth
stage under the ethanol challenge. The dynamics of gene
expression over time closely correlated with metabolic
profiles and cell growth phenotypes between the two
strains. This allowed identification of at least 82 candi-
date and key genes for ethanol tolerance and subsequent
ethanol fermentation under the ethanol stress. Among
which, 36 genes were the first report by the present study.
Our results also suggest a potential key regulatory role of
Msn4p for ethanol-tolerance among other transcription
factor and regulatory elements.

Figure 8 Expression response of transcription factor genes. Com-
parisons of transcription expressions in gene copy numbers (nX107) for 
transcription factor genes between ethanol-tolerant Saccharomyces 
cerevisiae NRRL Y-50316 and its parental strain NRRL Y-50049 under the 
ethanol challenge over time. Mean values are presented with error 
bars of standard deviations. Values at different time points are present-
ed by a specific colored bar as shown in legends for the tolerant Y-
50316 and an immediately adjacent open bar on its right for the paren-
tal strain Y-50049 at the same time point.

0

5

10

15

20

25

30

35

40

45

MSN2 MSN4 YAP1 HSF1

Tr
an

sc
rip

t c
op

y 
nu

m
be

rs
 (n

x1
0^

7)

0       1 6 24     48 0 1 6     24     48             0       1       6      24     48  0       1       6 24     48

Figure 9 Shared protein binding motifs of candidate genes. A 
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The newly developed data acquisition and analysis
standard for qRT-PCR array assays using the robust
mRNA as the PCR Ct reference provided reliable means
to safeguard data fidelity and allowed unification of gene
expression data for comparable analysis. Housekeeping
genes are commonly used as quality controls for qRT-
PCR but vary under different experimental conditions
[42,47]. Among numerous systems developed [41-45], the
universal RNA controls have been shown another suc-
cessful applications under ethanol stress conditions in
this study. An extended adaptation and applications of
such methods for consistent quantitative gene expression
analyses are expected in the future.

Genes associated with ethanol stress were mostly
reported based on snapshots of gene expression response
in yeast [11-13,15]. In this study, we investigated a time-
course study comparing cell growth, viability, glucose-to-
ethanol conversion, and gene expression dynamics for
two closely related strains. This allowed assessment of
phenotype associations and identification of legitimate
candidate genes for ethanol tolerance. As demonstrated
by this study, the parental strain showed briefly induced
expression of numerous genes before becoming repressed
and unable to establish a viable culture under the ethanol
challenge. Uncovered by the expression dynamics of the
tolerant strain, we are able to distinguish ethanol-toler-
ance candidate genes and tolerance-response from the
transient stress-response in yeast. For example, unlike
many heat shock protein genes in parental strain becom-
ing repressed after 6 h, these genes in the tolerant Y-
50316 showed continued inductions through 48 h. This
indicated that the continued expression of those heat
shock protein genes after 6 h is critical for the ethanol tol-
erance in yeast.

Heat shock proteins, mainly act as chaperones, insuring
properly folding or refolding of nascent or denatured pro-
teins and enzymes to maintain functional conformation
[48-50]. For example, Hsp12p, Hsp26p, Hsp42p, Hsp78p,
and Hsp82p were reported to prevent proteins from
aggregating, and Hsp104p was able to disassemble pro-
tein aggregates that have accumulated in response to
stress [51]. HSP82, a highly up-regulated gene in response
to ethanol for the ethanol tolerant Y-50316 observed in
our study, was reported to activate many key cellular reg-
ulatory and signaling proteins, such as transcription fac-
tors and regulatory kinases [49,50,52,53]. The lack of
continued function of these genes and interactions with
other relevant gene expression in Y-50049 led to no fur-
ther metabolic functions. Recent proteomic studies sug-
gested that mRNA is selectively processed and translated
in stationary phase [16,54]. Our results of enhanced
expressions of most heat shock protein genes at a rela-
tively late stage such as 24 and 48 h, for the tolerant Y-
50316 are supportive to this hypothesis.

In this study, we found three previously unreported
heat shock protein genes, HSP31, HSP32 and HSP150,
were highly enhanced in the tolerant Y-50316 and identi-
fied as candidate genes for the ethanol tolerance. Hsp31p
and Hsp32p, functioning as a chaperone and cysteine
protease, are involved in protein binding, peptidase and
hydrolase activities. Significantly enhanced gene expres-
sions of HSP31 and HSP32 in Y-50316 observed in this
study suggests the potential involvement of Hsp31p and
Hsp32p as chaperones against ethanol stress. In addition,
HSP31 and HSP32 were found to have functions in cell
component and biological process categories. Hsp150p is
a protein involved in cell wall and structural molecule
activity. Higher levels of transcription and continued
expressions of HSP150 indicated its potential protective
functions compared with its parental strain under the
ethanol challenge. Many heat shock protein genes
induced by ethanol stress are present in cytoplasm as well
as in nucleus and mitochondrion [55]. Because up-regu-
lated heat shock protein genes influence cell functions at
multiple locations, this facilitates the functions of tran-
scription factors in nucleus, improving ATP energy gen-
eration in metabolic processes, maintaining enzyme
functions involving biosynthesis, catabolism, and ethanol
production in cytoplasm.

The induced gene expressions related to trehalose and
glycogen metabolism are expected to facilitate a stable
intracellular environment under ethanol stress condition
for survival and accelerated glucose metabolism. We
found GSY2, a gene involved in glycogen biosynthesis and
degradation was up-regulated over time as a new record.
Since glycogen metabolism is very close to trehalose
pathway, the two pathways likely affect each other. Stor-
age carbohydrates such as trehalose are compatible sol-
utes that can prevent cell dehydration and influx of excess
salts into cells. Trehalose accumulation was observed
under ethanol stress condition to reduce membrane per-
meability and proper folding of proteins [17,24,56]. Our
findings of up-regulated TPS1, TSL1, PGM2, and UGP1
in this group were consistent with previously observed.
Genes involved in trehalose degradation including NTH1,
NTH2, and ATH1 were also induced by ethanol. These
observations also agreed with previously reported
[11,12,17,29]. Enhanced expression of trehalose degrad-
ing genes appeared to be necessary in order to balance
trehalose concentration and energy required for cell func-
tions [11,57].

As demonstrated in this study, rapid cell growth and
highly integrated expression of genes involved in treha-
lose biosynthesis, glycolysis and pentose phosphate path-
way were closely correlated for the ethanol-tolerant strain
Y-50316. Continued enhanced expressions of many genes
associated in these groups apparently contributed active
energy metabolism (Figure 7). In addition, numerous
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genes able to maintain normal expressions in Y-50316
appeared to be important keeping gene interactive net-
works. These genes are necessary for the tolerant yeast to
carry out the active metabolisms and complete the etha-
nol fermentation (Figure 7) while most of these genes
were repressed for the parental strain Y-50049. The etha-
nol-tolerant Y-50316 was co-selected for inhibitor-toler-
ance derived from its parental Y-50049. Under the
ethanol challenge, the ethanol-tolerant Y-50316 displayed
tolerant gene expression dynamics leading to similar
route of pathway activities especially in every cofactor
regeneration step. Cofactor NADPH plays an important
role in biosynthesis of amino acids, lipids, and nucle-
otides [58,59]. Under the ethanol stress condition
described in this study, the glucose metabolic pathways
also appeared having a well-maintained cofactor redox
balance (Figure 7) as exampled for GND2 and ZWF1 in
oxidative phase of pentose phosphate pathway, ALD4 in
acetic acid production, and GCY1 in glycerol metabolism.
Enhanced expression of ZWF1, SOL4, and YDR248C
potentially provide sufficient substrate for a smooth pen-
tose phosphate pathway flow. Therefore, sufficient
NADPH supply likely contributes ethanol tolerance indi-
rectly through efficient biosynthesis of amino acids, lip-
ids, and nucleotides for cell growth and function.
Similarly, TDH1 involved in NADH regeneration step
was highly induced. The enhanced expressions of alcohol
dehydrogenase genes ADH1, ADH2, ADH3, ADH7, and
SFA1, together with other normally expressed genes in
the intermediate steps of glycolysis, are critical to com-
plete the fermentation.

For the above mentioned reasons, we consider trypto-
phan and proline synthesis genes TRP5, PRO1, and PUT1
as ethanol tolerance candidate genes. Our results support
the involvement of these genes in ethanol-tolerance as
suggested by previous studies [13,25,28]. Several genes
involving in fatty acid metabolism were repressed except
for ETR1, ELO1 and HTD2 having induced and normal
expressions for the tolerant Y-50316. Ergosterol is
another major component of cellular membranes that
associated with maintenance of plasma membrane fluid-
ity affecting ethanol tolerance [14,28]. Similarly with pre-
vious reported [11,12], most genes involved in ergosterol
biosynthesis were repressed for both strains in this study.
It is possible that the regulatory functions of the biosyn-
thesis may not be significantly affected at transcriptional
levels under the conditions of this study.

The PDR gene group is a new set of genes examined for
ethanol tolerance in this study. Many PDR genes function
as transporters of ATP-binding cassette proteins and are
encoded for plasma membrane proteins that mediate
membrane translocation of ions and a wide range of sub-
strates. It impacts lipid and cell wall compositions and
major facilitator superfamily proteins for cell detoxifica-

tions [60]. We previously found that PDR genes and regu-
latory elements played significant roles for tolerance and
in situ detoxification of lignocellulose-derived inhibitors
[61]. Since plasma membrane and cell walls are major tar-
gets of ethanol damages, we anticipated the involvement
of these genes for reconditioning and remodeling mem-
brane and cell walls in response to ethanol challenges.
The significantly enriched background of transcriptional
abundance and continuously increased expressions of
several genes in this group for the ethanol tolerant yeast
observed in this study support our hypothesis (Table 3).

The expressions of PDR genes are mainly controlled by
transcription factor Pdr1p and Pdr3p [62]. As demon-
strated in our study, many genes share the common tran-
scription protein binding motif of Pdr1p/Pdr3p.
Expressions of PDR1 in the tolerant Y-50316 was not sig-
nificantly induced but constantly expressed at all time
points compared with the parental strain. It needs to be
pointed out that unless it is repressed, PDR1 does not
have to be greatly induced to allow potential Pdr1p func-
tions as a regulator [32,60]. We consider the ability of its
expression under the stress is a tolerance response and
suggest Pdr1p as a potential regulator involving the etha-
nol tolerance of Y-50316. As discussed above, genes able
to express or recover to express normally under the stress
are important to maintain gene interactions and cell
functions. On the other hand, transcription factor genes
MSN4, MSN2, YAP1 and HSF1 of the tolerant strains
were highly abundance under the ethanol stress. Since
many ethanol tolerance candidate genes sharing protein
binding motifs of Msn4p/Msn2p, Yap1p and Hsf1p, these
transcription factors are likely a core set of regulators for
interactive expressions of ethanol tolerance. An HSF1-
deletion mutant showed repressed expressions for its tar-
get genes usually induced by ethanol [63]. It has been
demonstrated that Msn2p and Msn4p induces gene
expression via a stress response element and triggers
transcriptional response of the downstream genes
[64,65]. Condition-specific roles in gene expression regu-
lation by these transcription factors were also suggested
[66]. Msn2p has been confirmed for its positive regula-
tory function of HSP12 and most heat shock protein
genes for increased ethanol tolerance [67-69]. A double
gene deletion msn2msn4-mutant showed hypersensitivity
to environmental stress including higher ethanol concen-
trations [70]. We demonstrated that the increased expres-
sions patterns of MSN4 overtime were distinct from
other transcription factor genes. Our results suggest a
potential key role of Msn4p in the dynamic response to
the ethanol tolerance. However, limited information is
available for Msn4p and further studies on its regulatory
roles for tolerance are needed.
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Conclusion
The qRT-PCR array assay equipped with the robust
mRNA reference and the master equation is an efficient
means for quantitative gene expression analysis which
unifies a large amount of expression data generated under
different experimental conditions. The comparative char-
acterizations of adaptive transcription dynamics for the
two closely related strains are more informative and pro-
vide insight into dissection of mechanisms of ethanol tol-
erance. Analysis of the expression dynamics and
association of other phenotypes allowed identification of
candidate and key genes for the ethanol-tolerance and
ethanol production under the stress. Enriched back-
ground of mRNA abundance of many genes appeared to
be inheritable for the ethanol-tolerant yeast. Most etha-
nol-tolerance candidate genes were found sharing protein
binding motifs of transcription factors Msn4p/Msn2p,
Yap1p, Hsf1p and Pdr1p. The unique expression pattern
of MSN4 in the ethanol-tolerant Y-50316 suggested a
potential key regulatory role of Msn4p during the adap-
tive expression in yeast. Unlike repressed in the parental
strain, genes able to maintain normal expressions under
the ethanol-stress were necessary for the tolerant Y-
50316 to function. Ethanol-tolerance candidate genes
identified in this study are primarily associated with func-
tional categories of cytoplasm, membrane, cell wall,
response to stress, transportot, protein folding, oxi-
doreductase activity, protein binding and unknowns clas-
sified by gene ontology (GO). However, multiple
functions and functions at multiple loci of many candi-
date genes are common. Ethanol induced genes are
involved in at least 79 GO categories and every gene was
found to have more than one function [55]. It's the time
to revisit the traditional "one gene-one function" concept
when evaluating gene regulatory networks. The compli-
cated gene interactions cannot be overlooked in dissec-
tion of mechanisms of ethanol-tolerance in yeast.

Methods
Yeast strains, medium, and culture conditions
Ethanol-tolerant yeast S. cerevisiae NRRL Y-50316 and its
inhibitor-tolerant parental strain NRRL Y-50049 (Agri-
cultural Research Service Culture Collection, Peoria, IL,
USA) were used in this study. Cultures were maintained
and grown on a YM medium (3 g yeast extract, 3 g malt
extract, and 5 g peptone, in 1 L distilled water) supple-
mented with 2 or 10% (w/v) glucose. Cultures were incu-
bated on 300 ml medium in a fleaker system with
agitation at 30°C as previously described [33]. A solid YM
plate containing 2% agar was used to examine cell growth
and viability. All experiments were carried out with two
replications.

Yeast adaptation and mutation selection
Adaptation procedures were developed based on proce-
dures by Wei et al. [36] and Dinh et al. [27] with modifica-
tions. Briefly, inhibitor-tolerant strain NRRL Y-50049 was
cultured on a YM with 10% glucose containing ethanol in
designated concentrations. Cultures were treated with a
quick freeze at -80°C at the mid-log phase and thawed at
30°C in a water-bath. The treatment procedures were
repeated. Incubations were continued at 30°C until a sta-
tionary phase was reached. Surviving cultures were
sequentially transferred to fresh medium containing
higher ethanol concentrations. These procedures were
repetitively carried out until a target tolerance level
reached. Tolerant mutants were selected from at least 40
complete cycles using a medium containing no less than
8% ethanol. Culture characteristics were confirmed by
cell morphology, growth rate, metabolic profiling, and
sequence verification of its identity using nuclear large
subunit ribosomal RNA gene [71].

Assays for tolerance and viability
Cells were grown at 30°C and 250 rpm into the late expo-
nential growth phase at OD600 reading of 1.0 when cul-
tures contained approximately 1×107 cells/ml. An assay
using serial dilutions of the culture was applied onto an
YM plate of 2% glucose containing 8% (v/v) ethanol for
ethanol tolerance test using 10-fold serial dilutions of cell
suspension. The culture plates were incubated at 30°C
and examined 4 days after incubation. Tolerance to inhib-
itors furfural and HMF were examined in a similar man-
ner on YM plates of 2% glucose containing 10 mM each
of furfural and HMF 7 days after incubation.

Cell viability was examined for cultures grown under a
challenge with 8% of ethanol over time. The time point
after 6-h pre-culture when ethanol was added into the
culture was designated as 0 h. Samples were taken start-
ing at 24 h after the ethanol challenge until 168 h with a
24-h interval. Cell growth was examined on a solid YM
using an assay similar as described above.

Sample collection and HPLC analysis
Cell growth was monitored by absorbance at OD600 under
ethanol stress. Samples were taken and cells harvested at
0, 1, 6, 24, and 48 h after the 8% ethanol addition for
mRNA expression analysis using procedures as previous
described [41]. Yeast cells were immediately frozen on
dry ice and then stored at -80°C until use. Samples of cul-
ture supernatants were taken periodically from 0 h to 120
h after the ethanol challenge for metabolic profiling anal-
ysis. Glucose consumption, ethanol conversion, acetic
acid, and glycerol production were measured using an
HPLC system composed of a Waters 717 plus autosam-
pler controlled at 10°C, Waters 590 programmable pump,
a Fast Acid column (Bio-Rad Laboratories, Hercules, CA)
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proceeded by a Microguard Cation H guard cartridge, a
Spectra-Physics Spectra 100 variable wavelength UV
detector (215 nm), and a Waters 2414 refractive index
detector. The column was maintained at 65°C, and sam-
ples were eluted with 1.6 mM H2SO4 at 0.6 ml/min. A
standard curve was constructed for each detected chemi-
cal and metabolic conversion product for HPLC assays as
described previously [33,38].

Pathway-based qRT-PCR array assays
Pathway-based qRT-PCR array assays were carried out
using 96-well plates. Based on microarray studies, 175
genes involved in ethanol tolerance and ethanol produc-
tion were selected for quantitative transcription analysis
using qRT-PCR arrays. A recently developed robust data
acquisition reference CAB [40] and mRNA calibration
standard [41] were applied for the qRT-PCR arrays. Prim-
ers of selected genes were designed (Additional File 4)
using Primer 3 [72] with manual editing based on
sequences of the Saccharomyces Genome Database [73].
Gene-specific amplification was verified by PCR and dis-
sociation curve analysis. The length of designed ampli-
cons of most tested genes ranged from 100 to 150 bp with
a few exceptions of shorter amplicons down to 75 bp and
one longer up to 210 bp.

Total RNA was isolated from each of two biological and
two technical replications using procedures as previously
described[41,74]. RNA integrity was verified by gel elec-
trophoresis and NanoDrop Spectrophotometer ND-100
(NanoDrop Technologies, Inc., Wilmington, DE). Reverse
transcription reactions applying the robust mRNA con-
trols were carried out using procedures as previously
described [40]. SYBR Green iTaq PCR master mix (Bio-
Rad Laboratories) was applied for each qRT-PCR reac-
tion. For each reaction, a total of 25 μl was used
consisting of 12.5 μl 2X SYBR Green MasterMix, 0.5 μl
each of forward and reverse primer (10 μM each), 0.25 μl
cDNA template, and 11.25 μl H2O. On each 96-well plate,
reactions of qRT-PCR were carried out with two replica-
tions for each control gene except for the control CAB of
three replications. All reactions of the tested target gene
were run in duplicate. Control gene B2M served as a non
template negative control for each plate. PCR was run on
an ABI 7500 real time PCR system using a defined profile
as previously described [40]. A total of 80 96-well plates
were applied for the qRT-PCR array assays. Transcription
copy number of target genes was estimated using an
equation based on the standard mRNA reference and
master equation [40,75] as follows:

where mRNA is an estimated value in pg using the mas-
ter equation and Amplicon is the amplified bp-length of
an interested target gene.

Data analysis
Mean values of three CAB amplifications on a plate were
designated and used as a constant reference to set up a
manual threshold at 26 Ct (cycle number) for data analy-
sis. This sole reference served as a constant standard for
data acquisition and analysis for each and every qRT-PCR
run. MasterqRT-PCR C++ program http://cs1.brad-
ley.edu/~nri/MasterqRT-PCR/[40] was used to generate
a master equation, evaluate PCR amplification efficiency,
and estimate transcript copy numbers as described previ-
ously [37,40]. Additional statistical analyses were per-
formed using statistical function tools of Microsoft Excel.
Quantitative expression data were correlated to meta-
bolic profiling for ethanol tolerant strain Y-50316 and its
parental strain Y-50049. Standard Gene Ontology (GO)
annotations were carried out using GO Slim Mapper
http://www.yeastgenome.org/cgi-bin/GO/goSlimMap-
per.pl. DNA binding motifs of transcription factors were
annotated for candidate and key genes for ethanol toler-
ance and subsequent ethanol fermentation using YEAST-
RACT [76]. Previous knowledge of KEGG pathway
database http://www.genome.jp/kegg/kegg.html was ref-
erenced for pathway constructions.
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