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Abstract
Background: Streptolysin S (SLS), the oxygen-stable hemolysin of Streptococcus pyogenes, has
recently been shown to be encoded by the sagA/pel gene. Mutants lacking expression of this gene
were less virulent in a dermonecrotic mouse infection model. Inactivation of the sagA/pel gene
affect the expression of a variety of virulence factors in addition to the hemolysin. Insertion of a
Tn917 transposon into the promoter region of the sagA/pel gene of S. pyogenes isolate CS101
eliminated expression of SLS, as well as decreased expression of the streptococcal pyrogenic
exotoxin B, streptokinase and M protein.

Results: In this study a mouse skin air sac model was utilized to analyze the effect of biological
pressures on expression of SLS and other sagA/pel regulated gene products. The insertion delayed
the lethal effect of S. pyogenes in a mouse skin infection model. Despite this, bacteria could be
cultured from the kidneys 72 hours post infection. These kidney-recovered isolates were β-
hemolytic despite the transposon being present in its original location and had equivalent virulence
to the wild type isolate when re-injected into naive mice. Northern blot analysis of the kidney-
recovered isolates confirmed that transcription of sagA/pel was restored; however the expression
of all sagA/pel regulated genes was not restored to wild type levels.

Conclusions: These results show that biological pressure present in the mouse can select for
variants with altered expression of key virulence factor genes in S. pyogenes.

Background
Streptococcus pyogenes causes a variety of diseases in

man ranging from mild suppurative throat and skin in-

fections like pharyngitis and erysipelas to severe invasive

conditions such as necrotizing fasciitis and streptococcal

toxic shock syndrome [1]. One of the most widely recog-

nized putative streptococcal virulence factors is the oxy-

gen-stable hemolysin, streptolysin S (SLS). Despite the

ease of measuring SLS activity the precise molecular na-

ture of the toxin is not known. This is due, in part, to the

assembly requirement of a carrier molecule, e.g. double

stranded RNA, and a peptide to form the functional

hemolysin [2]. Recent genetic and immunochemical

studies have clearly identified the sagA/pel gene as being

responsible for the key peptide component of SLS [3–6].

The precise biological role of SLS in streptococcal infec-

tions remains controversial [7]. The original analysis of
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the sagA gene demonstrated that inactivation of the gene

encoding the polypeptide component of SLS rendered

the organism less virulent in a dermonecrotic mouse

model [3]. In a related series of studies, Li et al also iso-
lated a mutant that not only lacked SLS activity but also

affected other phenotypes [4]. The additional pheno-

types included surface M and M-related protein as well

as the secreted cysteine protease, streptococcal pyrogen-

ic exotoxin B, SpeB [4]. The disrupted gene was termed

pel (pleotrophic effect locus). In isolate CS101 the pel

gene acted as a transcriptional regulator [4] while in an

M6 isolate it displayed effects on secretion and mem-

brane anchoring [8]. The transposon inserted in the pel

gene mapped to the promoter region of the previously

identified sagA gene (SLS-associated gene A). Since the

same gene is disrupted in all of the studies we will use the

designation sagA/pel throughout to define this regulato-

ry region that also is directly related to the β-hemolytic

phenotype.

In this study we have further characterized the sagA/pel

mutant of isolate CS101 and report that it is less virulent

than the wild type organism. The loss of virulence asso-

ciated with the sagA/pel mutant can be reversed by in-

jection of this mutant into the skin of mice and

recovering a β-hemolytic positive variant from the kid-

ney 72 hours later. This kidney-recovered variant re-

stored SLS activity, and M and M-related protein

expression but not SpeB or streptokinase (SK) secretion.
This change in phenotype was achieved despite the con-

tinued presence of the Tn917 transposon in the promoter

region of the sagA/pel gene.

Results
Selection of sagA/pel variants by biological pressures in the 
mouse
The sagA/pel mutant of isolate CS101 fails to express β-
hemolysin, SpeB, SK or surface M and M-related pro-

teins [4]. Based on prior studies from our laboratory

[9,10], we predicted that this isolate would be avirulent

in the mouse skin air sac model. To test this possibility,

two groups of six mice were injected with 2 × 109 cfu of
either wild type or an isogenic sagA/pel mutant isolate

and the mice observed over a 72 hour period. Surprising-

ly, at the conclusion of this study there was no statistical-

ly significant difference (p > 0.05) between the mice

injected with the wild type isolate and the sagA/pel mu-

tant (data not shown).

This result was reminiscent of an earlier study conducted

by our laboratory using the mga mutant of isolate 64/14

[9]. In this case, although the mga mutant failed to ex-

press M or M-related proteins, however, it was capable of

causing a lethal infection [9]. Detailed analysis of this
system indicated that the mouse was capable of selecting

an M protein over-expressing variant despite the pres-

ence of the mga mutation in an identical location [9].

To determine if selection for a phenotypic variant was
also occurring with the sagA/pel mutant, mice were in-

jected in a skin air sac and recovered at varying times

post infection from either the spleen, liver or kidney.

Mice were euthanized at 4, 8, 12, 24, 48 and 72 hours

post infection with 109 cfu. Since the study was designed

to select for revertants or phenotypic variants, studies of

the wild type isolate were not included. At each time

point, three mice were euthanized and spleen, kidney

and liver tissue samples were obtained. The samples

were homogenized in sterile PBS and aliquots plated on

blood agar plates containing erythromycin. The results

of these studies are presented in Table 1.

At four hours, only one of the three mice showed a signif-

icant bacteremia in any sample tested. In the other two

mice, three of four sites were sterile. Within eight hours

only one mouse showed > 10 cfu in any sample and the

organisms were confined to the spleen. At 24 hours a low

level of bacteria were noted in the spleen samples and by

48 hours all mice were sterile at all sites tested. Surpris-

ingly, at 72 hours bacteria could be recovered from the

spleen, kidney and liver of three of four mice. It was of in-

terest that the majority of recovered isolates at 72 hours

post-infection were β-hemolytic (data not shown).

Table 1: Recovered Bacteria (CFU) from Mice infected in the skin 
with CS101 sagA/pel::Tn917*

Time (h) Mouse Spleen Kidney Liver

1 0 0 0
4 2 200 140 124

3 0 0 0
1 0 0 0

8 2 361 2 5
3 0 3 0
1 0 0 0

12 2 90 7 3
3 0 0 0
1 15 0 1

24 2 59 0 0
3 0 0 0
1 0 0 0

48 2 0 0 0
3 0 0 0
1 0 0 0

72 2 136 15 0
3 115 2 12
4 >> 72 76

*The recovered isolates were erythromycin resistant ">>" = too 
numerous to count
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All of these isolates were erythromycin-resistant indicat-

ing that the Tn917 transposon was still present in these

variants. No mice died prior to 72 hours in this experi-

ment. The β-hemolytic positive phenotype of these re-

covered variants was stable for over ten passages on

blood agar plates or in broth (data not shown).

Analysis of the chromosomal DNA of the sagA/pel mutant 
and kidney-recovered variants
To determine whether the β-hemolytic positive sagA/pel

variants recovered from the kidney of an infected mouse

maintained the Tn917 transposon in the original loca-

tion, we performed XL-PCR and Southern blot analysis

as well as sequencing the region near the Tn917 insertion

using chromosomal DNA from the parental sagA/pel
strain and the kidney-recovered isolates as templates.

The XL-PCR profile of the parental sagA/pel mutant and

the β-hemolytic kidney-recovered variants was identical

(Fig. 1A). In addition, there was no difference in the DNA

sequence around the transposon-sagA/pel junction be-

tween the original sagA/pel mutant and the kidney-re-

covered variant (Fig. 1B & 1C). Southern blotting

confirmed that the location and size of the Tn917 inser-

tion was unaltered in the kidney-recovered variant com-

pared to the parental strain and that only a single Tn917

transposon was present (data not shown). Thus the res-

toration of β-hemolysis cannot be due to loss, rearrange-

ment or duplication of the Tn917.

Northern blot and primer extension analysis of sagA/pel
The insertion site for the Tn917 transposon is in the pro-
moter region of the sagA/pel gene and no sagA/pel mes-

Figure 1
Comparison of the sagA/pel region in chromosomal DNA from the non-mouse-passaged β-hemolysis negative sagA/pel::Tn917
mutant and the mouse-passaged kidney-recovered (KR) β-hemolysis positive variant. A). XL-PCR. The sagA/pel region from
wild type CS101 (wt), sagA/pel – (pel::Tn917) and sagA/pel ::Tn917 kidney-recovered (KR) was amplified by XL-PCR and sagA/
pel specific primers. The position of wild type and sagA/pel::Tn917 amplification products are indicated to the left of the figure.
Apparent molecular weights are indicated to the right of the figure. The size of the XL-PCR products was consistent with a
Tn917 insertion into the sagA/pel region [4]. B). Schematic of the sagA/pel::Tn917 region from non mouse-passaged
(pel::Tn917) and mouse-passaged kidney-recovered (KR) isolates. The schematic shows that the sagA/pel ORF (shaded box),
sagA/pel upstream region (empty box) and the right end of the Tn917 transposon (hatched box) were identical between the
two strains. C). Chromosomal DNA was isolated from the two strains and directly sequenced as described in Materials and
Methods and the sequences were found to be identical. The bold text is 267 bases of sequence that covers the promoter and
5' end of the sagA/pel gene. This sequence is identical to bases 598525 through 598792 of the annotated S. pyogenes genome
[43] The text in regular type shows 301 bases of sequence from the Tn917 transposon including the right terminal repeat and
the 3' end of the transposase gene.
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sage was detected in the original mutant [4]. RNA was

isolated from the β-hemolytic positive kidney-recovered

variant and the wild type isolate and analyzed for sagA/

pel message by Northern blotting, (Fig. 2). A 500 base

message was detected in both the wild type and kidney-

recovered variants but not in the RNA isolated from the
sagA/pel mutant (Fig. 2). In contrast to previous reports

[3–5] a second smaller transcript was detected in the

wild type strain (Fig. 2, lane 1–2). This transcript was not

seen in the sagA/pel mutant or kidney-recovered vari-

ants grown under these conditions (Fig. 2, lane 3–5).

Primer extension analysis of the wild type and kidney-re-

covered variants demonstrated that the sagA/pel mes-

sage expressed in the kidney-recovered variant had an

identical transcription start site to the 500 base message

present in the wild type strain (Fig. 3). The second tran-

script, present only in the RNA isolated from the wild

type isolate (Fig. 3, lane 1), started 35 bases downstream

of the longer transcript. It is not clear whether this is a

second transcription start site or a processed form of the

larger transcript. It is interesting to note that two 6-base

palindromes are located immediately downstream of the

5'-end of the shorter transcript and a 6-base inverted re-

peat lies just upstream of the 5'-end of the larger tran-

script (Fig. 3 lower panel).

Analysis of other sagA/pel phenotypes
The presence of a sagA/pel transcript is consistent with

the β-hemolytic phenotype of the kidney-recovered vari-

ants. Previous studies have demonstrated that the inacti-
vation of the sagA/pel gene product also effects

expression of other key streptococcal products, including

surface M proteins, streptokinase (SK) and the secreted

cysteine protease, SpeB [4]. Analysis of SpeB, SK and M
and M-related proteins was conducted to determine if

Figure 2
Northern blot analysis of mRNA in CS101 (wt), CS101 sagA/
pel::Tn917 (pel-) and CS101 sagA/pel::Tn917 kidney-recov-
ered (KR). Bacteria were grown overnight at 37°C, 10% CO2
in Todd-Hewitt Yeast extract broth. RNA was extracted and
10 µg or 1 µg of total RNA was loaded on a 1.0% MOPS-for-
maldehyde agarose gel. After blotting the RNA to a charged
nylon filter, sagA/pel RNA was detected using a biotinylated
probe. t1 and t2 represent the two transcripts detected in
the wild type strain. Only t1 was detected in the KR variant.

Figure 3
Primer extension analysis of sagA/pel from wild type, sagA/pel
mutant and kidney-recovered strains. Bacteria were grown
overnight at 37°C with 10% CO2 in THY broth. RNA was
extracted and sagA/pel was detected using a primer exten-
sion assay and sagA/pel-specific primers. Equal amounts of
RNA were loaded in each lane. Lane 1, RNA isolated from a
wild type CS101 strain. Lane 2, RNA from an isogenic sagA/
pel::Tn917 mutant. Lanes 3 and 4, RNA isolated from 2 dif-
ferent KR variants of the sagA/pel mutant. The larger sagA/pel
transcript is indicated as t1, the smaller as t2. The DNA
sequence in the lower part of the figure is from the region
around the sagA/pel promoter. These represent bases
598514–598593 in the S. pyogenes genome [43]. The bases in
italics are the putative -10 region of the sagA/pel promoter.
The overlined regions are 16, 6 and 6 base inverted repeats.
The bold letters are the 5'-ends of the t1 and t2 transcripts as
determined by primer extension. The position of the Tn917
insertion is indicated by the ^ symbol. Note that the site of
insertion is slightly different from what was previously
reported [4]. The t2 transcript was not detected in the KR
variants even at longer exposures.
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restoration of the expression of the large sagA/pel tran-

script also reverted the other phenotypes associated with

the wild type organism.

Expression of surface fibrinogen-binding M and M-relat-
ed proteins was monitored by the ability of intact bacte-

ria to bind radiolabeled fibrinogen. The kidney-

recovered mutant not only recovered fibrinogen binding

potential, that was lost when the sagA/pel gene was in-

activated, but also the level of fibrinogen-binding ex-

ceeded that of the wild type isolate (Fig. 4A). Analysis of

culture supernatants for the presence of SpeB (Fig. 4B)

or SK (Fig. 4C) indicated that the sagA/pel mutant and

the kidney-recovered variant displayed a similar low lev-

el of expression when compared to the wild type. There

were no significant changes in fibronectin binding

among any of the variants tested (see Table 2). Conse-

quently, restoration of expression of the larger sagA/pel

transcript (Fig. 3) was not sufficient to revert all of the

sagA/pel-associated phenotypes to wild type levels (see

Table 2).

Restoration of virulence in the kidney-recovered pel mu-
tants
Based on the M and M-related protein phenotypic char-

acteristics of the β-hemolytic positive kidney-recovered

variant of the sagA/pel mutant in vitro, we predicted this

variant would be virulent in a mouse skin infection mod-

el. To test this prediction the kidney-recovered variant,

the wild type and the original sagA/pel mutant were test-

ed for virulence using the skin air sac model. The results

Figure 4
Phenotypes of CS101 wt, CS101 sagA/pel::Tn917 and CS101 sagA/pel::Tn917 kidney-recovered (KR) variants. Panel A. Bacterial
binding of 125I labeled fibrinogen CS101 wt (square), CS101 sagA/pel:: Tn917 (circle) and CS101 sagA/pel Tn917 kidney-recov-
ered (triangle). Panel B. Streptococcal pyogenic exotoxin B (SpeB) activity of culture supernatants treated with DTT. CS101 wt
(square), CS101 sagA/pel::Tn917 (circle) and CS101 sagA/pel::Tn917 kidney-recovered (triangle). Panel C. Streptokinase (SK)
activity of culture supernatants grown in the presence of cysteine protease inhibitor E 64 (10 µM) to prevent destruction of SK
by any secreted cysteine protease; CS101 wt (square), CS101 sagA/pel::Tn917 (circle) and CS101 sagA/pel::Tn917 KR (triangle).

Figure 5
Virulence of wild type isolate CS101 (square) and the iso-
genic β-hemolysis negative sagA/pel mutant, CS101 sagA/
pel::Tn917 (circle) and a β-hemolytic kidney recovered
CS101 pel::Tn917 KR sagA/pel mutant variant (triangle).
Groups of 10 outbred CD1 mice were injected with 1 × 109

cfu into a skin air sack. Time to death was monitored and sta-
tistical significance was determined by use of Student's t test
(wt vs. sagA/pel::Tn917 p = 0.54; sagA/pel::Tn917 vs. KR p =
0.018).
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present in figure 5 indicate that the kidney-recovered

variant was significantly more virulent than the sagA/

pel mutant from which it was originally selected (p =

0.018) despite not secreting SpeB or SK in culture (see

Table 2).

Discussion
Inactivation of the sagA/pel locus by insertion of a Tn917

transposon into the promoter region leads to decreased

expression of SLS, SpeB, SK as well as M and M-related

proteins [4] and reduced virulence in a mouse model of

infection using Cytodex beads [3]. In this paper we have

shown that this mutation also leads to decreased or de-

layed virulence in a mouse air-sac model of infection. Al-
though virulence of the sagA/pel mutant was decreased

during the initial infection period, viable bacteria could

be isolated from the spleen, kidney or liver 72 hours after

infection in the skin. What was surprising was when cul-

tured on blood agar plates at 37°C these isolates were β-
hemolytic yet remained erythromycin resistant.

In this study we have analyzed a representative β-hemo-

lytic positive kidney-recovered variant. Direct genomic

sequencing of the sagA/pel::Tn917 insertion junction in

these kidney-recovered β-hemolysis positive variants es-

tablished that the transposon was present in the genome

in exactly the same location as the parental β-hemolytic

negative sagA/pel mutant. Northern blot and primer ex-

tension analysis confirmed that the sagA/pel gene was

transcribed in the β-hemolytic kidney-recovered variant,

while sagA/pel message was not seen in the parental β-
hemolysis negative sagA/pel mutant. Since the sagA/pel

promoter was identical in both the parental and kidney-

recovered isolates we conclude that the Tn917 was in-

serted into a positive regulatory site and not into an es-

sential promoter sequence.

In previous studies only a single sagA/pel transcript

were observed [3–5]. However, in this study we have

identified two sagA/pel transcripts present in approxi-

mately equal concentration in the wild type parent (Fig-

ure 2). We do not know if this second shorter transcript

represents a second transcription start site or is a proc-

essed form of the larger transcript. What is intriguing is

that only the larger transcript is present in the β-hemol-

ysis positive kidney-recovered variant. This result would

be consistent with the hypothesis that sagA/pel has two

transcriptional start sites and expression from only one

site is restored after mouse selection. Other S. pyogenes

regulators have been shown to have multiple transcrip-

tion start sites that are differentially regulated. For ex-
ample, Mga, a transcriptional activator of M and M-

related proteins, also has two transcription start sites

that are independently regulated [11] and two distinct

transcription start sites are associated with expression of

the streptokinase gene [12–15].

The strain CS101 sagA/pel::Tn917 has previously been

rendered β-hemolytic negative by a transposon inser-

tion. To recover a β-hemolysis positive variant, from the

mouse kidney, with the transposon in its original posi-

tion was unexpected. This result indicated additional

levels of regulation of the β-hemolysis phenotype could

be selected by biological pressures in the mouse. The se-

lected β hemolysis positive variant was stable and re-

tained this phenotype even after repeated passage on

laboratory media in the absence of any additional selec-

tive biological pressures.

The mouse selection process results not only in the res-

toration of a β-hemolytic positive phenotype, but also re-

stored some, but not all, of the phenotypes known to be

regulated by sagA/pel[4]. For example, fibrinogen-bind-

ing M and M-related protein expression was restored;

Table 2: Phenotypic analysis of wild type Streptococcus pyogenes isolate CS101, an isogenic sagA/pel::Tn 917 mutant and a kidney-recov-
ered variant of the sagA/pel::Tn917 mutant.

Strains

Phenotype Wild Type sagA/
pel::Tn917

Kidney-recovered sagA/pel::Tn917

Beta hemolysis SLS + - +
SK + - -
Cysteine protease, SpeB ++ - -
Fibrinogen binding % + ± ++
Fibronectin binding % + ± +

++ = > 50% more than the wild type + = wild type levels ± = 15 – 30% of the wild type level - = < 10% of the wild type
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however secretion of the cysteine protease, SpeB, or SK

was not. Previous studies from our laboratory have con-

sistently demonstrated loss of the SpeB phenotype in S.

pyogenes isolates injected in a skin air sac and recovered
from the organs of lethally infected mice [10,16]. This se-

lection was not associated with loss of β-hemolysis but

was associated with over-expression of M and M-related

proteins, which in turn are predictive of the invasive po-

tential of the organism in a skin infection model [16].

Based on the phenotypic characteristics of the kidney-re-

covered variant (β-hemolytic positive, M and M-related

protein positive and SpeB negative) we predicted that

this variant would be as virulent or more virulent than

the wild type organism in the mouse skin infection mod-

el. This prediction was tested experimentally and the β-
hemolysis positive sagA/pel variant was found to be as

virulent as the wild type isolate in the skin infection mod-

el (see figure 5).

The genetic event(s) associated with the selection of a

virulent variant of the sagA/pel mutant without chang-

ing the site or orientation of the Tn917 transposon was

reminiscent of earlier studies from our laboratory testing

the virulence of mga mutants of isolate 64/14 [9]. In that

study, injection of an mga mutant, that failed to express

any detectable surface M or M-related protein, lead to se-

lection of mga variants over-expressing M and M-related

proteins that could be recovered from the spleen follow-

ing a lethal skin infection. This reversion of the M and M-
related protein phenotype occurred without any change

in the position or orientation of the spectinomycin-re-

sistance cassette inserted into the mga gene to create the

original mutant [9].

Taken together, these studies suggest a complex network

of positive and negative regulatory pathways controlling

key virulence genes in S. pyogenes that can be activated

or inactivated in response to certain biological pressures

in the infected host. Analysis of the selected phenotypes

recovered following mouse passage cannot be explained

by the activities of any known regulator or combination

of regulators e.g. mga[9,17–24], nra[25], CsrRS/

CovRS[26–29], sagA/pel[4] rofA[30–32], rgg[33–35],

fasX [36] or luxS[37,38].

It is unknown if there is a regulator or a series of regula-

tors that are inactivated or activated after passage

through the mouse; however, it is clear that key virulence

factors are under a more complex pattern of regulation

than previously envisaged. In related studies, the selec-

tion of stable variants of either wild type or mutant S. py-

ogenes isolates was not consistently observed when the

organism was injected i.p. [39]. This may relate to either

the presence of unique host factors at the skin infection
site or to the kinetics of clearance of the organisms. In

studies using a tissue chamber model, Kotb and col-

leagues have noted changes in expression of key viru-

lence factors as a function of time [40]. Thus, it is

possible that the in vivo events leading to selection of
stable S. pyogenes variants may require a dynamic inter-

action with the host and that only under certain experi-

mental conditions will the stable variant population be

recovered.

The unique biological pressures associated with infec-

tion in the skin and persistence in the systemic circula-

tion seems to consistently select stable variants which

over-express key surface M and M-related proteins. Or-

ganisms selected in this model are consistently negative

for SpeB secretion. Selection of SpeB negative variants

have also been noted following sequential human blood

passage of isolates or in a mouse skin infection model

[39,41]. This selective pressure can also be associated

with enhanced capsular expression in SpeB negative var-

iants [42].

Several bacteriophage and transposons were identified

in the S. pyogenes genome [43] as well as a number of

potential two-component regulatory systems whose pre-

cise function remains to be elucidated. The biological se-

lection of phenotypic revertants of variants of S.

pyogenes from populations with defined mutations in

key regulators or promoter regions of putative virulence

genes is likely to provide key insights into the pathogen-
esis of host-bacterial interactions.

Conclusions
Selection of β hemolysis positive variants from a sagA/

pel mutant of S. pyogenes isolate CS101 were identified.

This change in phenotype occurred despite the presence

of the Tn917 transposon in an identical position in both

the β hemolysis negative mutant and the β hemolysis

positive selected variant. The ability of biological pres-

sures in the mouse to select stable variants of S. pyogenes

expressing different patterns of virulence factors suggest

the existence of more complex regulatory pathway than

is currently envisaged.

Materials and Methods
Chemicals, Bacteria and Media
The bacteria used in this study were the opacity factor

positive M49 Streptococcus pyogenes isolate CS101 and

an isogenic β-hemolytic negative variant generated by

transposon mutagenesis, CS101 sagA/pel::Tn917[4].

Todd-Hewitt broth containing 0.3% yeast extract (THY)

was obtained from DIFCO (Detroit MI). Blood agar

plates were obtained from BBL (Fisher, Chicago, IL).
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Mouse skin air sac procedure
A skin air sac model was used to compare the virulence

of isolate CS101 and paired isogenic mutants [9]. Briefly

an air- and liquid-tight connective tissue pouch was gen-
erated on the back of female, six week old, outbred CD1

mice (Charles River, Portage, MI) by slow dermal injec-

tion of 0.9 mL of air via an 0.4 mm needle on a 1.0 mL

syringe. The syringe containing the air also contained 0.1

mL of an appropriately diluted suspension of S. pyo-

genes. Mice were provided with food and water ad libi-

tum. For selection of bacterial variants, experiments

were continued for 72 hours post-infection. For viru-

lence studies death was used as the endpoint and at 144

hours post-infection the experiments terminated. For

bacteremia studies surviving animals were euthanized at

the times stated. Spleen, kidney and a section of the liver

was removed from the animals. The tissue samples were

homogenized in 1 mL of sterile 10 mM PBS, pH 7.4. An

100 µL aliquot was cultured on blood agar plates to de-
termine if S. pyogenes were present. All animal studies

were conducted in accordance with protocols approved

by the Medical College of Ohio's Institutional Animal

Use and Care Committee.

Southern blot analysis and XL-PCR
Analysis of chromosomal DNA for the presence of Tn917

transposon insertion was carried out as described previ-

ously [4].

XL-PCR was performed using GeneAmp XL PCR kit (PE

Applied Biosystems, Foster City, CA).

DNA Sequencing
Chromosomal DNA was isolated as described previously

[44]. Genomic DNA sequencing was carried out on an

Applied Biosystems 310 Genetic Analyzer (PE/Applied

Biosystems) using a big dye terminator cycle sequencing

ready reaction kit (PE/Applied Biosystems) according to

the manufacturer's specifications. The oligonucleotide

5'-ATAAATGGACCGCATATTGA-3' (corresponding to

the DNA sequence just downstream of the SagA/Pel

open reading frame), and 5'-ATAAATGGACCGCATATT-

GA-3' (corresponding to the region from the right end of

the Tn917 insertion) were used as primers for the se-

quencing reaction. The resulting DNA sequences was

compared using blast 2 for pair wise comparisons.  [ht-

tp://www.ncbi.nlm.nih.gov/blast/Blast.cgi] 

Northern blot analysis
RNA was prepared from wild type CS101 wt, CS101

sagA/pel::Tn917 and CS101 sagA/pel ::Tn917 kidney-re-

covered (KR) variants grown overnight (37°C 10% CO2)

in 40 ml THY media. The bacteria were harvested 8

hours post-exponential phase by centrifugation (5 min,
4000 g, 4°C) and resuspended in 500 µL of cell lysis buff-

er (25% glucose, 10 mM EDTA, 100 mM Tris pH 7.0).

400 µL of a solution containing 4 mg/mL lysosyme (Sig-

ma, St. Louis, MO.) and mutanolysin (20 µg), was added
and incubated for 20 minutes at 37°C. The bacteria were
sedimented by centrifugation and resuspended in 3 mL

Trizol (Gibco, Rockville, MD). RNA was isolated accord-

ing to the manufacturer's instructions. The RNA concen-

tration was determined spectrophotometrically by

measuring absorbance at 260 nm. RNA was electro-

phoresed in a 1% agarose gel (Molecular Biology Certi-

fied Agarose, Biorad, Hercules, CA) containing 0.66 M

formaldehyde in 1× MOPS (3-(N-morpholino)-pro-

panesulfonic acid) buffer. Following electrophoresis,

RNA was transferred to a nylon membrane (Hybond-N+,

Millipore, Bedford, MA) according to the manufacturer's

instructions, and hybridized with digoxigen-dUTP-la-

beled probe as described previously [4]. The primers

used to generate the probe were: 5'-GGAATTCACCT-

GCTAATTACCTGA-3'and 5'-CGCGGATCCGTTTACA-

CATAGTTATTGATAGAATCT-3'

Primer extension
The 5'-end of the sagA/pel mRNA was determined by the

extension of the 5'-end 32P-labeled oligonucleotides 5'-

ACCTTATTTTAAAAATAAAGTTAA-3' following the

method of Sambrook [45]. Oligonucleotides were labeled

with [γ-32P] ATP (10 mCi/mL in aqueous solution) (Am-

ersham, Arlington Heights, IL) and T4 polynucleotide ki-

nase (Gibco BRL Life Technologies, Rockville, MD).
SequiTherm EXCEL II DNA sequencing kit (Epicentre

Technologies, Madison, WI) was used according to the

manufacturer's instruction for the corresponding se-

quencing reaction using the same primer.

Streptokinase Assay
Streptokinase activity was measured as described previ-

ously [46]. Briefly, aliquots of culture supernatants (100

µL) were mixed with either 1 µg of purified human plas-

minogen or buffer. The synthetic chromogenic substrate,

S2251 (H-D-Val-Leu-Lys-paranitroanilide) obtained

from Kabi Pharmacia (Franklin, OH), was added to a fi-

nal concentration of 400 µM. Plasmin generation was

quantified by measuring product absorbance at 405 nm.

Cysteine endopetidase assay
Cysteine protease activity present in culture superna-

tants was assayed as described [47]. Briefly, 50 µL of cul-
ture supernatant with or without 0.1 µM dithiothreitol,

was added to the wells of a microtiter plate. Following in-

cubation for 30 minutes at 37°C 150 µL of the substrate
buffer solution, Bz-Pro-Phe-Arg-paranitroanilide, (Sig-

ma Chemical) was added to each well. Cleavage of the

substrate was monitored by measuring the A405 over

time. The cysteine protease specific inhibitor, E64 (Sig-
ma), was included in parallel assays at a concentration of
Page 8 of 10
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1 µM to determine if all the enzymatic activity being

measured could be attributed to the presence of a

cysteine protease.

Binding assay for fibrinogen
The ability of bacteria to bind fibrinogen was determined

by their ability to bind the specific radiolabeled ligand.

Human fibrinogen was radiolabeled with 125I (Amer-

sham, Chicago, IL) using Iodobeads (Pierce, Rockford,

IL) as described [48]. Different numbers of bacteria were

incubated with 20,000 cpm of 125I labeled fibrinogen for

60 min at 37°C. The bacteria were pelleted by centrifuga-
tion at 5,000 × g for 20 min and washed twice with 2 ml

of 50 mM veronal buffer pH 7.35, containing 0.15 M

NaCl and 0.1% gelatin. The radioactivity associated with

the bacterial pellet was quantified in a Beckman 5500B

automatic gamma counter (Beckman, Fullerton CA).
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