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Abstract 

Background While particular strains within the Bacillus species, such as Bacillus subtilis, have been commercially 
utilised as probiotics, it is critical to implement screening assays and evaluate the safety to identify potential Bacillus 
probiotic strains before clinical trials. This is because some Bacillus species, including B. cereus and B. anthracis, can 
produce toxins that are harmful to humans.

Results In this study, we implemented a funnel-shaped approach to isolate and evaluate prospective probiotics 
from homogenised food waste – sesame oil meal (SOM). Of nine isolated strains with antipathogenic properties, B. 
subtilis SOM8 displayed the most promising activities against five listed human enteropathogens and was selected 
for further comprehensive assessment. B. subtilis SOM8 exhibited good tolerance when exposed to adverse stressors 
including acidity, bile salts, simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and heat treatment. Addition-
ally, B. subtilis SOM8 possesses host-associated benefits such as antioxidant and bile salt hydrolase (BSH) activity. 
Furthermore, B. subtilis SOM8 contains only haemolysin toxin genes but has been proved to display partial haemolysis 
in the test and low cytotoxicity in Caco-2 cell models for in vitro evaluation. Moreover, B. subtilis SOM8 intrinsically 
resists only streptomycin and lacks plasmids or other mobile genetic elements. Bioinformatic analyses also predicted 
B. subtilis SOM8 encodes various bioactives compound like fengycin and lichendicin that could enable further bio-
medical applications.

Conclusions Our comprehensive evaluation revealed the substantial potential of B. subtilis SOM8 as a probiotic 
for targeting human enteropathogens, attributable to its exceptional performance across selection assays. Fur-
thermore, our safety assessment, encompassing both phenotypic and genotypic analyses, showed B. subtilis SOM8 
has a favourable preclinical safety profile, without significant threats to human health. Collectively, these find-
ings highlight the promising prospects of B. subtilis SOM8 as a potent probiotic candidate for additional clinical 
development.
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Background
Probiotics are defined, by the Food and Agriculture 
Organization (FAO) of the United Nations and the World 
Health Organization (WHO), as viable microorganisms 
that exhibit a health-promoting effect on the host when 
ingested in sufficient quantities [1]. Because of their 
health promoting properties, probiotics have recently 
attracted significant attention not only among scientists, 
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but also with the general public market including probi-
otic food and beverages, dietary supplements and ani-
mal feed, which estimates project a Compound Annual 
Growth Rate (CAGR) of 14% from 2023 to 2030 [2]. For 
a long period, lactic acid bacteria (LAB) such as Lacto-
bacillus, Lactococcus, Streptococcus and Bifidobacterium 
have been considered to be safe for use [3–5]. Despite the 
widespread use of various functional LAB in probiotic 
fermented foods on a global scale, there remains a strong 
demand within the biofunctional product market for the 
implementation and expansion of available probiotic 
products. Therefore, much research effort has focused 
on the identification and selection of novel strains pos-
sessing diverse and distinct functional properties [6]. In 
fact, novel microbial groups, such as yeast, other strains 
of LAB and Bacillus [7], continue to be discovered by sci-
entists annually [8, 9].

Bacillus strains have garnered historical validation for 
their utility in large-scale enzyme production. They have 
also been employed as probiotics for human consump-
tion and as direct-fed microbial supplements to enhance 
animal health over a long period. Their suitability as pro-
biotics stems from their inherent capacity for endospore 
formation. This characteristic enables them to endure 
the harsh conditions of low pH and bile salt exposure 
within the gastrointestinal tracts (GIT) of both humans 
and monogastric animals [10, 11]. Some strains of Bacil-
lus, e.g., B. coagulans, B. clausii and B. subtilis, have been 
widely utilised as probiotics in the food and pharmaceu-
tical industry due to this endospore forming property 
and safe profile [12–14]. B. subtilis, in particular, pos-
sesses a well-documented history of safe consumption 
on a global scale. Noteworthy examples include its role 
in the production of traditional fermented foods such as 
natto in Japan, kimchi in Korea, and Thua nao in Thai-
land [15–17]. However, certain Bacillus species, includ-
ing B. anthracis and B. cereus etc., are known to produce 
enterotoxins, raising concerns about their safety [18]. In 
addition, specific B. subtilis strains, for example, B. sub-
tilis G7 strain obtained from a deep-sea hydrothermal 
vent exhibits lethality towards vertebrate creatures when 

deliberately introduced into animals [19]. Therefore, 
assessing the safety of strains from Bacillus are necessary 
from both phenotypic and genotypic aspects.

Typically, probiotics were discovered and isolated from 
humans or dairy products such as kefir [20], cheese [21], 
and fruits [22] as they are perceived as a reliable reser-
voir of microorganisms, and are considered to be safe 
and suitable for product development. However, alterna-
tive sources such as grains and waste [23] are now being 
utilised for isolating novel microbe strains. Homogenised 
food waste, including okara [24], spent coffee grounds 
[25], spent barley grains [26], and oil pressed cakes [27], 
offers promising sources for the isolation of specific 
microbes. These substrates are characterized by their 
consistent and valuable nutritional profiles, which are 
conducive to the growth of various microorganisms. Fur-
thermore, the conventional disposal of such food waste 
in landfills gives rise to significant environmental con-
cerns. The isolation of potential probiotics from these 
food waste materials can facilitate their reuse in the val-
orisation of food waste for various potential applications 
in food [28], animal feed [29], as nutraceuticals [30], and 
biomedical purposes [31].

Material and methods
Materials
The sesame oil meal (SOM) used in this study was 
sourced from oil processing residues that were gener-
ously provided by the Oh Chin Hing sesame oil factory 
in Singapore. In various assays, we utilised Lactobacil-
lus plantarum WT (Wild type strain) and Lactobacillus 
rhamnosus GG (LGG) as positive probiotic controls. The 
specific human enteropathogens employed in this inves-
tigation are detailed in Table  1. All enteric pathogens 
and human intestinal Caco-2 cell lines (HTB-37™) were 
purchased from the American Type Culture Collection 
(ATCC, Manassas, VA, United States) except Staphylo-
coccus aureus, which was supplied by our colleagues at 
the Singapore Centre for Environmental Life Sciences 
Engineering (SCELSE).

Table 1 Human enteropathogens used in this study

Species Strain Media Aerobic/Anaerobic Temperature 
( ◦C)

Staphylococcus aureus USA300 TSB OX (Aerobic) 37

Escherichia coli O157:H7 ATCC43888 TSB OX 37

Bacillus cereus ATCC 11778 NB OX 30

Vibrio parahaemolyticus ATCC 17802 NB with 3% w/v NaCl OX 37

Salmonella enterica subsp. Enterica ATCC-BAA-190 NB OX 37
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De Man, Rogosa, and Sharpe (MRS), Tryptic Soy (TS), 
Nutrient broth (NB), and Rogosa media were employed 
for the isolation of strains from SOM. The acquisition of 
these media was facilitated through Thermo Fisher Sci-
entific (Waltham. MA, United States). Cycloheximide at a 
concentration of 150 mg/L was added into MRS, NB, TS, 
and Rogosa media to inhibit yeast growth. The antibiotics 
were subjected to filtration and subsequently introduced 
into the respective autoclaved media. Bacto agar was 
obtained from BD (Franklin Lakes, NJ, United States). 
In addition, 2,2-diphenyl-1-picrylhydrazyl (DPPH), Dul-
becco’s Modified Eagle Medium (DMEM), fetal bovine 
serum (FBS), and trypsin-ethylenediaminetetraacetic 
acid (EDTA) were purchased from Thermo Fisher Sci-
entific (Waltham. MA, United States). The Q5 High 
Fidelity PCR kit was sourced from New England Biolabs 
(Ipswich, MA, United States), while the CytoTox 96R 
non-radioactive cytotoxicity kit was obtained from Pro-
mega (Madison, WI, United States). The DNeasy Ultra-
clean Microbial Kit was acquired from QIAgen (Hidden, 
Germany). All other chemicals used in this study were 
purchased from Sigma Aldrich (St. Louis, MO, United 
States). Furthermore, all media except Rogosa, chemi-
cal solutions, and apparatus were subject to sterilization 
through autoclaving at 121  °C for 15  min prior to their 
utilization.

Methods
Isolation of Microbes from SOM
Firstly, the SOM was subjected to aerobic incubation at 
37  °C for two days to facilitate a starving approach for 
the cultivation of microorganisms originally presented 
in the SOM that can utilise SOM well. Subsequently, the 
cultured SOM was subjected to a series dilution pro-
cess using 1 × Phosphate-buffered saline (PBS) solution, 
wherein 1  mL of the microbe culture was mixed with 
9 mL of the PBS solution. Following this, 100 mL of the 
microbial solution at different concentrations was spread 
onto different selective agar plates and incubated at 37 °C 
aerobically for 24  h. MRS and Rogosa media were spe-
cifically employed for the isolation of Lactic acid bacteria 
(LAB), as the majority of known or commercially avail-
able probiotic strains belong to this group. NB and TS 
media were employed as general broths.

After 24 h of incubation, individual colony of different 
microbes was selected based on their characteristics such 
as form (circular, filamentous, etc.), elevation (raised, 
flat, etc.), margin (filiform, lobate, etc.), surface (smooth, 
rough, etc.), opacity (transparent, opaque, etc.), and 
pigmentation (white, purple, etc.) [32]. A single colony 
of each microbe was then be inoculated into the corre-
sponding broth, followed by another day of incubation at 
37  °C aerobically. Subsequently, the incubated microbial 

cultures were streaked onto agar plates once again for 
purification. Finally, the single colony of each microbe 
was inoculated and preserved in a -80 °C freezer for fur-
ther study. The stock solution was prepared by combin-
ing 900 mL of the microbial culture with 300 mL of a 60% 
(v/v) glycerol solution, resulting in a total glycerol con-
centration of 15% (v/v).

Identification of Isolated Species by 16S rRNA
The 16S rRNA was sequenced to determine the species 
identity of SOM derived microbial strains. Genomic 
DNA was isolated from respective microbial culture 
using DNeasy Ultraclean Microbial Kit in accordance 
with the manufacturer’s instructions. The Q5 High Fidel-
ity PCR kit was used with universal primers 27F and 
1492R to amplify 16S rRNA for bacteria. The PCR reac-
tion mix consisted of 10 µL 5X Q5 reaction buffer, 1 µL 
10  mM dNTPs, 2.5 µL 10  mM forward primer, 2.5 µL 
10  mM reverse primer, 0.5 µL Q5 High Fidelity DNA 
polymerase, 5 µL DNA template, and 28.5 µL nuclease-
free water, total 50 µL. PCR amplification was carried out 
with the following parameters: 98 °C for 3 min, 30 cycles 
(98  °C for 10 s, 55  °C for 15 s, 72  °C for 90 s), 72  °C for 
2 min, and holding at 4 °C. PCR products were checked 
by gel electrophoresis using the Gel Doc system (Bio-Rad 
Laboratories, Hercules, CA, United States). PCR prod-
ucts at the predicted size were sent to an external vendor 
(1st base, Singapore) for sequencing. Obtained nucleo-
tide sequences were analysed using the ApE plasmid 
editor software [33], and species assignment of SOM iso-
lates was done using the National Centre for Biotechnol-
ogy Information (NCBI) BLAST platform, based on the 
BLAST result which yielded the highest total score.

Agar well diffusion assay to assess antipathogenic activity
The experimental procedure followed the protocol pro-
posed by Tan et al. with modifications [34]. Five human 
enteropathogens listed in Table  1 were inoculated into 
respective broth to grow for 24  h. Then pathogen cul-
tures were appropriately diluted to an initial OD600 
of 0.1 in their respective media. Subsequently, 100 µL 
of the diluted pathogen cultures were spread onto agar. 
To create wells, 6  mm-diameter cavities were carefully 
made and these wells were subsequently filled with 50 
µL of microbial cultures containing isolated microbes 
from SOM. Following the preparation of the plates, they 
were incubated under growth conditions specific to the 
pathogens for 24 h. Finally, the plates were examined for 
the presence of inhibition zones surrounding individ-
ual wells. These inhibition zones were characterized by 
clear areas devoid of visible pathogen growth. Inhibition 
zones measuring greater than 4 mm, ranging between 2 
and 4 mm, and less than 2 mm were classified as strong 
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(+ + +), intermediate (+ +), and weak inhibition ( +), 
respectively [34].

Whole genome sequencing for genotypic characterization
The selected potential probiotics B. subtilis SOM8 (after 
phenotype screening and 16S rRNA) underwent fur-
ther genotypic characterization through WGS. Genomic 
DNA was extracted from these isolates using the DNeasy 
Ultraclean Microbial Kit following the manufacturer’s 
instructions. Prior to sequencing, the quality and con-
centration of the extracted DNA were assessed through 
gel electrophoresis and a Qubit 2.0 Fluorometer, respec-
tively. Then the DNA samples were sent to an external 
vendor (Azenta Life Sciences, Singapore). The quality of 
raw reads was verified using FastQC [35] and the qual-
ity of the assembled contigs was assessed using the DDBJ 
Fast Annotation and Submission Tool (DFAST). 

The assembled contigs of the chosen B. subti-
lis SOM8 strain with most promising antipathogenic 
activities were submitted to GenBank under the Bio-
Project ID PRJNA1009692, with accession number 
JAVICJ000000000. Functional gene annotation of the 
assembled contigs was performed using the NCBI 
prokaryotic genome annotation pipeline. Second metab-
olites, bacteriocins, virulence factors, and antimicrobial 
resistance (AMR) genes were identified using the ant-
iSMASH [36], BAGEL4 [37], Virulence factors Database 
(VFDB) [38] and Comprehensive Antibiotic Resistance 
Database (CARD) [39] respectively. Plasmids and Mobile 
Genetic Elements (MGEs) were identified using Plasmid-
Finder 2.1 [40] and MobileElementFinder [41].

Taxonomic analysis was conducted using the Type 
Strain Genome Server (TYGS) [42]. Specifically, the 
genomes of isolates were compared against all type strain 
genomes present in the TYGS database to identify closely 
related type strains. These strains were then compared 
pairwise to determine their intergenomic distances, 
which were subsequently used to construct a balanced 
minimum evolution tree with branch support through 
FASTME 2.1.6.1 [43].

Minimum Inhibitory Concentration (MIC) Evaluation
The MIC protocol strictly followed Clinical and Labo-
ratory Science Institute (CLSI) M07 standard [44] and 
European Food Safety Authority (EFSA) MIC Resist-
ance Threshold for Bacillus strains [45]. In general, eight 
commonly prescribed antibiotics (chloramphenicol, clin-
damycin, erythromycin, gentamicin, kanamycin, strepto-
mycin, oxytetracycline, and vancomycin) were used for 
MIC evaluation of isolated B. subtilis SOM8, as can be 
seen in Supplementary Figure S1.

In general, a 96-well microplate was utilised for the 
experiment. To each well, 100 µL of different kinds of 

drugs were introduced into Well 1, and from Well 2 to 
Well 12, 50 µL of broth without bacteria was dispensed. 
Subsequent to this, a sequential process was followed: 50 
µL of the drug solution from Well 1 was transferred until 
Well 10. At this point, 50 µL of the resultant mixture was 
extracted from Well 10 and discarded, resulting in uni-
form 50 µL solutions across all wells. For all antibiotics 
except streptomycin, the initial concentration added was 
64 µg/mL, resulting in a concentration of 0.125 µg/mL in 
well 10. For streptomycin, the initial concentration was 
set at 1024  µg/mL, leading to a concentration of 2  µg/
mL in the well. Following this, 50 µL of a bacterial culture 
was added, starting from Well 1 up to Well 11, while Well 
12 received 50 µL of broth without bacteria, serving as a 
negative control.

The bacterial culture added to the wells was stand-
ardized to a concentration of  106 colony forming units 
(CFU) CFU/mL, in accordance with CMSI standards, to 
achieve a consistent final concentration of 5 ×  105  CFU/
mL. This precise standardization is crucial because the 
initial bacterial concentration significantly affects MIC 
results. After standardization, the microplate underwent 
an incubation period of 16 to 20 h at 37 °C.

Acid and bile resistance
The experimental procedure for this assay is based on 
the methodology described by Tan et  al. [10] and aims 
to assess the survivability of isolated microbes under 
2  h exposure to acid and bile salts. For this purpose, 
broths were adjusted to pH 2, 3, and 4 and/or supple-
mented with 0.5%, 1.0%, and 1.5% (w/v) ox-bile. The cul-
ture of microbes was prepared by incubating inoculated 
microbes for 24 h. Subsequently, 100 µL of the microbial 
culture was inoculated into 4.9  mL of each respective 
broth medium, followed by incubation at 37  °C for 2  h 
under continuous shaking conditions (200  rpm). Enu-
meration of CFUs was performed through drop plating 
(100 µL solution, spread onto the agar plates, incuba-
tion for 1–2 days) before and after exposure to acid/bile 
treatment.

Simulated Gastric Fluids/Simulated Intestinal Fluids (SGF/
SIF) Resistance
The experimental procedure for this assay is based on the 
methodology described by Tan et al. [34, 46] and aims to 
evaluate the survival of isolated microbes in the human 
GIT environment by subjecting them to SGF and SIF. 
The SGF was prepared as a solution of 0.2 M NaCl, 2000 
units/mL porcine pepsin, with a pH of 2 using HCl. The 
SIF was prepared by combining PBS with a pH of 7.4 and 
0.3% ox-bile salts and 0.1% pancreatin [47]. 100 µL of the 
culture of isolated microbes were inoculated into 4.9 mL 
SGF or SIF, followed by incubation at 37 °C for 2 h under 
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continuous shaking conditions (200  rpm). Enumeration 
of CFUs was performed before and after exposure to SGF 
or SIF.

Heat stability
The experimental protocol for this assay is based on 
the methodology outlined by Feng et  al. [48]. The 
objective of this study is to evaluate the viability of 
isolated microorganisms under conditions of elevated 
temperature, thus providing valuable insights for sub-
sequent industrial processing techniques, including 
spray drying. The microbial culture tubes were sub-
jected to incubation in a water bath at temperatures 
of 40, 60, and 80 °C for 30 min. Enumeration of CFUs 
was conducted before and after exposure to varying 
temperatures.

Antioxidant Activity (DPPH assay)
The experimental procedure follows the DPPH scav-
enging protocol proposed by Luang-In V. and Dee-
seenthum S. [49] with modifications: Microbial 
cultures (0.5 mL) were combined with 0.05 mM DPPH 
in absolute ethanol (3  mL) in duplicate. Controls 
were prepared by mixing broth with absolute ethanol 
(3  mL). Subsequently, the reaction mixture was incu-
bated in darkness at room temperature for 30  min. 
The presence of antioxidant activity was indicated by 
a discernible colour transition from deep violet to light 
yellow. Following incubation, the solution was centri-
fuged at 8000 g× for 10 min to spin down substances. 
Then the absorbance at 517  nm was quantified using 
a spectrophotometer. The antioxidant activity percent-
age (AA%) was determined using the following Eq. 1. 
L. Ascorbic acid was used as positive control, L. plan-
tarum, a common commercial probiotic was used for 
comparison.

Here,  Asample represents the average absorbance at 
517  nm measured for the sample with DPPH added 
(A: 0.5  mL culture + 3  mL DPPH ethanol solution), 
subtracted by the absorbance of broth without DPPH 
added (B: 0.5 mL broth + 3 mL absolute ethanol), while 
 Acontrol denotes the absorbance at 517  nm measured 
for broth with DPPH added (C: 0.5  mL broth + 3  mL 
DPPH ethanol solution), minus the absorbance of 
broth without DPPH added. The Eq. 1 can be simpli-
fied as below.

(1)AA% = [1− (Asample/Acontrol)]

AA% = 1−
A− B

C − B
=

C − A

C − B

BSH (Bile salt hydrolase) Activity Assay
The experimental procedure follows Tan et al. [34] with 
modifications. A volume of 5 µL of the isolated microbial 
culture was dispensed onto two sets of TS agar plates: 
one set containing 0.5% (w/v) taurodeoxycholate hydrate 
(TDC) and the other set without TDC supplementation. 
The plates were then incubated at 37  °C for 24  h. The 
presence of BSH activity was assessed by the appearance 
of a distinctive white precipitate, which corresponds to 
the deconjugated bile acid on the TDC-supplemented 
agar plates after 48 h incubation. L. plantarum WT was 
used as positive control.

Haemolytic activity
Isolated strains were subjected to haemolysis testing on 
Columbia agar supplemented with 5% (v/v) sheep blood. 
This was achieved by streaking bacterial cultures on 
blood agar plates, followed by incubation at 37 °C under 
aerobic conditions for 24–48  h. The haemolytic activity 
of the isolates was determined based on the presence of 
a clear or green halo around the bacterial colonies. Bac-
terial strains exhibiting a clear halo were categorized as 
β-haemolytic (complete lysis of red cells, such as S. aga-
lactiae, S. aureus), while those with a green halo were 
considered α-haemolytic (partial or green haemolysis 
associated with reduction of red cell haemoglobin, such 
as S. pneumonia). Isolates without any halo surrounding 
the colonies were designated as γ-haemolytic (slight or 
nonhaemolytic, such as Enterococcus faecalis) [50] as can 
be seen in Supplementary Figure S2.

Cell Cytotoxicity Using Caco‑2 cells (CCK‑8 Assay)
The cytotoxicity of the isolated microbial culture was 
assessed using Caco-2 cells, employing the CytoTox 
96 non-radioactive cytotoxicity kit: Cell Counting Kit 
– 8 (CCK-8). Caco-2 cells were revived and cultured in 
DMEM supplemented with 10% (v/v) FBS and 1% Non-
Essential Amino Acids (NEAA) and maintained at 37 °C 
in a humidified atmosphere with 5%  CO2 for seven days 
to form a confluent monolayer. For the cytotoxicity assay, 
100 µL of Caco-2 cell suspensions were seeded into each 
well of a 96-well microplate (5000 cells/well). The micro-
plate was then incubated overnight to allow cells to 
adhere to the wells. Subsequently, the medium in each 
well was replaced with 100 µL of different concentrations 
of cell-free filtrate (0.005, 0.05, 0.5, 5, 50, 500 µL cell-free 
filtrate/mL completed DMEM medium, prepared by fil-
tering 24 h fermented bacterial culture using 0.22 μm fil-
ter) and 100 µL of different concentrations of lyophilized 
cell-free filtrate dissolved in DMEM (0.1, 1, 10, 100, 1000, 
10,000  μg/mL completed DMEM medium, prepared by 
filtering 24 h fermented bacterial culture using 0.22 μm 
filter and freeze-dried). After incubation for 24 h, 10 µL 
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of CCK-8 solution was added to each well and incubated 
at 37  °C for an additional 4  h. The background absorb-
ance was determined using 100 µL completed DMEM 
medium and completed DMEM medium with different 
concentrations of (lyophilized) cell-free filtrate without 
Caco-2 cells (Cell-free filtrate itself has colour, which will 
affect the absorbance), while the  ODuntreated group was 
prepared by incubating Caco-2 cells using 100 µL PBS 
solution (Negative control).  ODtreated was determined 
with 100 µL complete DMEM medium with Caco-2 
cells (Positive control) or different filtrate treatment with 
Caco-2 cells. The commercial probiotic strain LGG and 
B. subtilis ATCC 6051 were employed for comparison.

Cytotoxicity effect was measured using a spectropho-
tometer at 450 nm.

Adhesion Capacity Assay Using Caco‑2 Cells
The adhesion capability of microbial cultures to an intes-
tinal surface was evaluated through an in vitro adhesion 
assay employing the human epithelial cell line Caco-2, 
following the methodology outlined by Ayala et al. [51]. 
The assay entails seeding Caco-2 cells at a density of 
2.8 ×  104 cells/cm2 in 12-well tissue culture plates, with 
the culture medium being refreshed daily for 21  days 
to facilitate growth until the late post-confluence stage. 
During the final medium change, DMEM without antibi-
otics is employed.

Subsequently, duplicate confluent monolayers of 
Caco-2 cells were inoculated with 1  mL of the micro-
bial culture, adjusted to a concentration of  108,  107, and 
 106  CFU/mL. Before inoculation, the microbial culture 
underwent washing with PBS solution and was subse-
quently resuspended in DMEM. The inoculated Caco-2 
plates were then incubated for 2 h under controlled con-
ditions of 37 °C and 5%  CO2 to facilitate microbial attach-
ment. After incubation, non-attached or loosely adherent 
microbes were removed by performing three washes of 
the Caco-2 monolayers using sterile PBS.

For the detachment of adherent microbes, 200  mL of 
a trypsin solution with a concentration of 0.25% (w/v) 
and supplemented with 0.53  mM EDTA were added to 
each well, followed by a 10-min incubation at 37 °C and 
5%  CO2. Subsequently, PBS (800  mL) was pipetted into 
each well to dilute the trypsin–EDTA solution, and ten-
fold serial dilutions were prepared. Drop-plating was 
conducted to enumerate the CFU of the attached isolated 
microbes. The percentage of adhesion was calculated by 
dividing the number of attached microbes by the initial 
CFU count of the added microbes.

Cellviability =

ODtreated

ODuntreated
× 100%

Statistical analysis
All data were presented as the mean ± standard deviation 
(SD). Statistical analyses were performed using GraphPad 
Prism 9 software. One-way and/or two-way ANOVA was 
employed for comparisons among various groups, and 
t-test was used to assess differences between two groups. 
Significance levels were denoted as follows: *, p < 0.05; **, 
p < 0.01; ***, p < 0.001; ****, p < 0.0001, indicating statistical 
significance.

Results
Isolated Strains from SOM
A total of 23 distinct strains were isolated from SOM 
based on the isolation process. Among these, nine strains 
demonstrated notable antipathogenic properties, effec-
tively inhibiting the growth of the listed human enter-
opathogens, as shown in Supplementary Figure S3.

Antipathogenic Activities (Agar Well Diffusion Assay)
Out of the 23 strains isolated from SOM, nine isolates 
exhibited notable inhibitory activities against common 
human enteropathogens. The results of the inhibitory 
activities of these nine strains are presented in Table  2. 
The raw data on the diameters of the inhibition zones are 
provided in Supplementary Table S1.

Within this group of nine strains, eight were identified 
via 16S rRNA sequencing as members of the B. subtilis 
species, with the remaining one strain classified as Weis-
sella paramesenteroides. Among these strains, B. subtilis 
SOM8 displayed the most promising inhibitory activities 
against all five selected human enteropathogens. Notably, 
B. subtilis SOM8 exhibited remarkable inhibitory effects 
on the growth of common foodborne pathogens, includ-
ing V. parahaemolyticus and B. cereus, which can cause 
diarrhoeal diseases, as well as the virulent serotype E. 
coli O157:H7, responsible for diarrhoea and associated 
complications. Furthermore, B. subtilis SOM8 exhib-
ited inhibitory effects on not only Gram-positive patho-
gens (S. aureus, and B. cereus) but also Gram-negative 
pathogens (E. coli, S. enterica, and V. parahaemolyticus). 
Consequently, B. subtilis SOM8 was selected for further 
comprehensive phenotypic and genotypic screening.

Taxonomic Information of B. subtilis SOM8
Phylogenetic analysis was employed to discover the rela-
tionship between B. subtilis SOM8 and several closely 
related strains. A phylogenetic tree of B. subtilis SOM8 
was constructed using TYGS, as illustrated in Fig. 1, the 
raw data of TYGS results are shown in Supplementary 
Table S2 and S3. B. subtilis SOM8 was found to share 
close phylogenetic proximity with well-known wild-
type strains, notably B. subtilis NCIB 3610 and B. subti-
lis ATCC 6051. Moreover, in alignment with the BLAST 
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results in prior research, B. subtilis SOM8 also demon-
strated a close taxonomic alignment with B. subtilis 
subsp. subtilis 168, as well as a commercially available 
probiotic strain, B. subtilis MB40 [10]. These findings 
underscore the substantial potential of isolated B. subtilis 
SOM8 for application as a probiotic.

Acid and bile tolerance
The results depicting survival of B. subtilis SOM8 after 
exposure to acid (pH 2, 3, and 4) and varying con-
centrations of ox-bile salts (0.5%, 1.0%, 1.5% w/v), as 
well as mixed acid and bile salt conditions for 2 h, are 
presented in Figs.  2 and  3. Notably, B. subtilis SOM8 
exhibited susceptibility to low pH conditions (pH 2 
and pH 3), resulting in a reduction of 4 to 5  Log10CFU/
mL. However, under pH 4, the reduction in  Log10CFU/
mL was less than 1, indicating a good survivability to 
acidic environments when the pH exceeded 4. In the 
context of bile salts, B. subtilis SOM8 demonstrated 
 Log10CFU/mL reductions ranging between 2 and 3 
across various concentrations, indicating its great tol-
erance to bile salts. Furthermore, it is noteworthy that 
under both pH 4 and bile salt conditions, the final 
 Log10CFU/mL count for B. subtilis SOM8 remained 
consistently above 6. This observation suggests the 

considerable potential of B. subtilis SOM8 to establish 
a colony within the human GIT, thereby contributing 
to its functional role [52]. In addition, when B. subtilis 
SOM8 was exposed to mixed acid and bile salt condi-
tions, the survival pattern was closely related to that 
observed under solely acidic stress conditions, empha-
sizing the dominant role of acid in affecting the surviv-
ability of B. subtilis SOM8.

SGF/SIF Tolerance
The susceptibility of B. subtilis SOM8 to SGF and SIF was 
assessed to simulate the gastrointestinal conditions, with 
the results presented in Fig. 4. B. subtilis SOM8 demon-
strated robust survival in SIF, maintaining a  Log10CFU/
mL count exceeding 8 after 2  h. Conversely, the strain 
exhibited relative susceptibility to SGF due to its low 
acidic environment (pH 2) and the presence of por-
cine pepsin, resulting in a reduction of  Log10CFU/mL 
between 4 and 5. Nonetheless, the survivability remained 
at approximately 50%, signifying a better tolerance to 
both SGF and SIF than mostly applied commercial probi-
otic strain LGG [53]. Therefore, B. subtilis SOM8 exhibits 
substantial potential for applications as probiotics, with 
the possibility of encapsulation to enhance its survivabil-
ity under human GIT.

Table 2 Isolated strains’ inhibition to human enteropathogens

Each assay was conducted in duplicate, and inhibition zones were categorized as follows: Zones of inhibition exceeding 4 mm were categorized as strong inhibition 
(+ + +), those measuring between 2 and 4 mm were considered intermediate inhibition (+ +), while zones smaller than 2 mm were regarded as weak inhibition ( +), 
with (-) signifying the absence of any discernible zone of inhibition [34]

Species Strain Pathogens

S. aureus E. coli O157:H7 B. cereus S. enterica V. 
parahaemolyticus

B. subtilis 1  + 
-

 +  + 
 +  + 

 + 
 + 

 + 
 + 

 + 
-

2  +  + 
 +  +  + 

 + 
 + 

 +  + 
 +  + 

 + 
-

-
 + 

3  +  +  + 
 +  +  + 

 +  +  + 
 +  + 

 +  +  + 
 +  +  + 

 +  + 
 +  + 

 +  + 
 +  + 

4  +  +  + 
 +  + 

 +  + 
 +  + 

 +  + 
 +  + 

 + 
 + 

 +  + 
 +  + 

5  + 
 + 

 +  + 
 +  + 

 +  + 
 +  + 

 + 
 + 

 +  +  + 
 +  + 

6  +  + 
 +  + 

 +  +  + 
 +  + 

 +  +  + 
 +  +  + 

 +  + 
 +  + 

 +  + 
 +  + 

7  +  +  + 
 +  + 

 +  + 
 +  + 

 +  +  + 
 +  + 

 + 
 + 

 +  +  + 
 +  +  + 

8  +  +  + 
 +  +  + 

 +  +  + 
 +  + 

 +  +  + 
 +  +  + 

 +  + 
 +  + 

 +  +  + 
 +  +  + 

Weissella paramesenteroides 1 -
-

 + 
 + 

 +  +  + 
 +  + 

 + 
 + 

 +  +  + 
 +  +  + 
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Heat stability
The outcomes of this investigation are presented in 
Fig.  5. Evidently, the figure depicts that the amount 
of the bacteria remained constant under 40  °C, with 

 Log10CFU/mL reduction smaller than 0.1. As the 
temperature elevated to 60  °C, a minor decline in the 
 Log10CFU/mL from 8.3 to 7.8 was observed, with 
survivability retained at more than 90%. However, a 

Fig. 1 Phylogenetic tree of B. subtilis SOM8 with similar Bacillus strains using TYGS database

Fig. 2 B. subtilis SOM8 tolerance to acid and bile salt.  Log10CFU/mL of B. subtilis SOM8 was measured before and after exposure to acid or ox-bile 
salts for 2 h, respectively
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substantial decline was observed as the temperature 
reached 80 °C, leading to a reduction in the  Log10CFU/
mL to 4.7. Notably, the exposure of the bacteria to 
100  °C for the same duration resulted in complete cell 
inactivation.

Antioxidant Activity (DPPH Scavenging Assay)
The antioxidant activities of the cell culture, supernatant, 
and PBS-resuspended cells of B. subtilis SOM8 are illus-
trated in Figs. 6 and   7, respectively. In Fig. 6, it reveals 
that B. subtilis SOM8 in TS broth, exhibited a remarkable 

Fig. 3 B. subtilis SOM8 tolerance to mixed acid and bile salts conditions.  Log10CFU/mL of B. subtilis SOM8 was measured before and after exposure 
to acid with ox-bile salts for 2 h, respectively

Fig. 4 B. subtilis SOM8 tolerance to SGF and SIF, respectively

Fig. 5 B. subtilis SOM8 tolerance to elevated temperatures from 40 °C to 100 °C for 30 min
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antioxidant activity, evidenced by an approximate 40% 
DPPH scavenging, similar to that of L. plantarum. 
Contrarily, B. subtilis SOM8 in MRS broth resulted in 
low antioxidant activity, with DPPH scavenging rang-
ing between 10 and 15%. Notably, all PBS-Resuspended 
cells including dissoluble metabolites displayed relatively 
lower antioxidant activity, while the original cell culture 
and the supernatant exhibited comparatively high anti-
oxidant activity. This discrepancy could be attributed to 
the fact that the antioxidant activity primarily originates 
from secondary metabolites present in the supernatant, 
such as the exopolysaccharide (EPS) and organic acids 
produced by the cells. When B. subtilis SOM8 is intro-
duced into MRS, a broth with relatively lower pH that is 
usually used for growing lactic acid bacteria, it appears 
to augment biofilm production [54]. Such a strategy is 
usually employed by microbes to overcome harsh envi-
ronments like low pH, rather than synthesizing second-
ary metabolites for antioxidant activity. In Fig.  7, the 
data illustrates a progressive enhancement in antioxidant 

activity, reflected by the DPPH scavenging increasing 
from 40 to 60%, as supplementary sucrose is incremen-
tally introduced into the TS broth, up to a concentra-
tion of 150 g/L. Therefore, there exists a saturation point, 
beyond which adding more sucrose will have no effect on 
antioxidant activity. The results also proved the dominant 
role of sucrose instead of monosaccharide in producing 
EPS [55].

BSH activity
The BSH activity of isolated B. subtilis strains SOM 1–8 
were shown in Supplementary Figure S4. Evidently, all 
eight strains of isolated B. subtilis exhibited BSH activi-
ties, as signified by the white precipitation surrounding 
the colonies. In contrast to their growth on standard 
TS agar plates devoid of TDC supplementation, the 
morphology is notably distinct. The formation of this 
white precipitate around the colonies underscores the 

Fig. 6 Antioxidant activity of B. subtilis SOM8 in TS, MRS broth, respectively

Fig. 7 Antioxidant activity of B. subtilis SOM8 in TS broth with different concentrations of supplemented sucrose
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enzymatic deconjugation of bile salts to primary bile salts 
by these strains [56].

Haemolytic activity
The haemolytic activity of isolated B. subtilis SOM8 and 
wild type strain B. subtilis ATCC 6051 was shown in Sup-
plementary Figure S5. Both isolated B. subtilis SOM8 and 
wild-type B. subtilis ATCC 6051 exhibited α-haemolytic 
activity, characterized by partial or green haemolysis 
linked to the reduction of red cell haemoglobin. This 
phenomenon is attributed to the production of hydrogen 
peroxide by the bacterium such as S. pneumoniae, caus-
ing oxidation of iron in haemoglobin and resulting in the 
formation of the green oxidized derivative, methaemo-
globin [57].

Cell cytotoxicity using Caco‑2 cells (CCK‑8 Assay)
The results depicting cell cytotoxicity resulting from 
exposure to the cell-free filtrate and lyophilized cell-free 
filtrate of B. subtilis SOM8 and B. subtilis ATCC 6051 are 
illustrated in Figs. 8 and  9, respectively.

Notably, both the cell-free filtrate and freeze-dried 
filtrate of B. subtilis SOM8 and B. subtilis ATCC 6051 
exhibited low cytotoxicity. At concentrations of 5 µL/
mL or 10  mg/mL, an observable trend indicated that 
the filtrates demonstrated to inhibit the proliferation 
of Caco-2 cells. This phenomenon might be attributed 
to the presence of bioactive compounds and hydrogen 
peroxide produced by both strains of B. subtilis. Fur-
thermore, the substitution of the fermented solution 
for DMEM was identified as a contributing factor to the 
observed inhibition, as evidenced by a relatively higher 
inhibitory effect for the cell-free filtrate compared to 
the freeze-dried filtrate. In summary, considering the 

Fig. 8 The effects of B. subtilis SOM8 and B. subtilis ATCC 6051 cell-free filtrate on viability of Caco-2 cells

Fig. 9 The effects of B. subtilis SOM8 and B. subtilis ATCC 6051 freeze-dried cell-free filtrate on viability of Caco-2 cells
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low cytotoxicity towards Caco-2 cells, both B. subtilis 
SOM8 and B. subtilis ATCC 6051 are viable candidates 
for probiotic applications, with B. subtilis SOM8 exhib-
iting comparatively better performance.

Adhesion capacity assay using caco‑2 cells
The adhesion capabilities of B. subtilis SOM8, B. sub-
tilis ATCC 6051, and LGG to Caco-2 cells are graphi-
cally represented in Fig. 10. Notably, adhesion capacity 
exhibits no apparent correlation with the initial seed-
ing concentration. Interestingly, all three strains 
demonstrated optimal adhesion at an initial seeding 
concentration of  107  CFU/mL, with B. subtilis SOM8 
owning an approximately 70% adhesion rate, signifi-
cantly higher than both B. subtilis ATCC 6051 of 20% 
and LGG of 8%. This heightened adhesion exhibited 
by B. subtilis SOM8 is possible to be attributable to its 
augmented biofilm-producing and intrinsic adhesion 
properties. Importantly, it is observed that B. subtilis 
SOM8 consistently meets the required criteria for pro-
biotic efficacy, maintaining adhesion values surpassing 

 106  CFU/mL across varying seeding concentrations. 
This adherence threshold, as established guidelines 
[52], indicated B. subtilis SOM8’s fulfilment of the nec-
essary criteria for optimal probiotic functionality under 
diverse seeding conditions.

Fig. 10 Adhesion capacity of B. subtilis SOM8, B. subtilis ATCC 6051 and LGG to Caco-2 cells under different initial seeding concentrations

Table 3 Summary of isolated B. subtilis SOM8 genome for 
virulence factor prediction using VFDB database

Virulence factors Category Related genes

Toxin Haemolysin III hlyIII

Immune evasion Polyglutamic acid capsule capA

capB

capC

capD

Iron acquisition Bacillibactin dhbA

dhbB

dhbC

dhbD

dhbE
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WGS of B. subtilis SOM8 for Genotypic Characterization
Virulence factors identification
The prediction of virulence factors within B. subtilis 
SOM8 was facilitated through the VFDB database. As 
illustrated in Table  3, the genome of B. subtilis SOM8 
revealed a total of 10 matches with VF-associated pro-
tein. B. subtilis SOM8 was observed to lack the B. cereus 
cereulide gene cluster (cesABCHPT) and the enzyme 
genes encoded by pathogenic Bacillus species. The viru-
lence factor of B. subtilis SOM8 involves toxins, immune 
evasion, and iron acquisition. Among the identified 
virulence factors, the iron acquisition, related genes 
dhbABCDE were identified within the genome of B. sub-
tilis SOM8. However, these dhbA-E genes are a com-
mon genetic component in B. subtilis subsp. subtilis 168, 
a strain extensively utilised in industrial applications. 
Notably, B. subtilis SOM8 was also predicted to encode 
for capABCD genes, implicated in polyglutamate synthe-
sis and transport. However, the capE gene, present in B. 
anthracis and B. cereus biovar anthracis, is absent. The 
final identified virulence factor is toxins. The B. subtilis 
SOM8 was predicted to encode a haemolysin, putative 
membrane hydrolase (hlyIII), based on genetic informa-
tion. Notably, comparable haemolytic activity has been 
detected across several Bacillus strains, including those 
utilised as commercial probiotics [58]. Furthermore, the 
likelihood of an orally administered probiotic translocat-
ing through the intestinal barrier into the bloodstream 
remains limited and has been reported only at minimal 
frequencies in hospitalized patients [59].

In the comparative analysis of VFs between isolated 
B. subtilis SOM8 and B. subtilis ATCC 6051 a striking 
similarity in VFs was observed. However, it was found 
that B. subtilis SOM8 lacks the bpsC gene responsible 
for B. cereus EPS production that exists in B. subtilis 
ATCC 6051, a specific immune evasion VF present in B. 
cereus. This absence of the bpsC gene in B. subtilis SOM8 

highlights its enhanced safety profile compared to B. sub-
tilis ATCC 6051.

Antibiotic resistance genes identification
The evaluation of antibiotic resistance genes within B. 
subtilis SOM8 was undertaken utilizing the CARD. Out 
of a total of 274 hits, 10 hits exhibited a minimum iden-
tity of 95% and were subsequently categorized as strict 
matches, as shown in Supplementary Table S4. Notably, 
the remaining hits displaying identity levels below 80% 
were not taken into consideration. For instance, with 
an identity of 98.59% to the aadK gene, the isolated B. 
subtilis SOM8 is predicted to exhibit resistance against 
streptomycin. Additionally, its resistance to macrolides 
spiramycin and telithromycin can be attributed to a 
98.35% identity with the gene mphK, which encodes a 
macrolide phosphotransferase. In summary, B. subtilis 
SOM8 was predicted to harbour 10 antibiotic resist-
ance genes, conferring potential resistance against a 
diverse spectrum of antibiotics. These encompass pep-
tides, fluoroquinolones, aminoglycosides, tetracyclines, 
phenicols, lincosamides, nucleosides, macrolides, 
streptogramins antibiotics as well as disinfecting 
agents and antiseptics. Nevertheless, it is imperative to 
acknowledge that gene prediction does not necessarily 
imply gene expression. To address this critical aspect, 
MIC assessments against a spectrum of medically sig-
nificant antibiotics were conducted.

Plasmid and MGEs Identification
Drawing from the outcomes obtained through the Plas-
midFinder 2.1 [40] and MobileElementFinder [41], it 
is evident that B. subtilis SOM8 lacks plasmid genes 
and any MGEs. The inference can be drawn that this 
strain may not possess the capability to transfer poten-
tial antibiotic resistance genes to other bacterial enti-
ties. It is necessary to acknowledge, however, that these 

Table 4 MIC results of isolated B. subtilis SOM8 against eight common antibiotics

Antibiotics Function Type MIC ( µ g/mL) EFSA 
Threshold 
( µ g/mL)

Vancomycin Cell wall synthesis Glycopeptide 0.25 4

Gentamicin Protein synthesis (30S) Aminoglycosides 1 4

Kanamycin Protein synthesis (30S) Aminoglycosides 8 8

Streptomycin Protein synthesis (50S) Aminoglycosides 128 8

Erythromycin Protein synthesis (50S) Macrolides 0.25 4

Clindamycin Protein synthesis (50S) Macrolides 2 4

Tetracycline Protein synthesis (30S) Tetracycline 0.25 8

Chloramphenicol Protein synthesis (50S) Phenicol 4 8



Page 14 of 19Zhao et al. BMC Microbiology          (2024) 24:104 

conclusions stem from BLAST-based assessments and 
genetic data. For a more comprehensive understanding, 
the need for in vivo investigations or subsequent clini-
cal trials is still necessary, especially in anticipation of 
the eventual integration of this strain into both indus-
trial and medical applications.

MIC Evaluation of B. subtilis SOM8
The sensitivity of B. subtilis SOM8 to eight medically 
prescribed antibiotics was tested following CMSI and 
EFSA MIC standard, the results were shown in Table 4. 
The investigation revealed that isolated B. subtilis 
SOM8 displayed susceptibility to seven out of eight 
common antibiotics, including one glycopeptide, two 
aminoglycosides, two macrolides, one tetracycline, 
and one phenicol antibiotic, in accordance with EFSA 
standards. The MIC of B. subtilis SOM8 to streptomy-
cin was approximately 128  μg/mL, notably exceeding 
the EFSA threshold. However, it is essential to notify 
that resistance to streptomycin is generally regarded 
as an intrinsic property of Bacillus species that contain 
the putative aadK genes. Moreover, there is no sup-
porting evidence indicating the potential horizontal 
transfer of such genes to other bacterial strains [60].

Secondary Metabolites (antiSMASH, BAGEL4) Prediction
The assessment of secondary metabolites, includ-
ing bacteriocins, synthesized by the isolated B. subti-
lis SOM8 was conducted using the antiSMASH and 
BAGEL4 databases, as detailed in Table  5. B. subtilis 
SOM8 was predicted to yield six distinct secondary 
metabolites, encompassing both Ribosomally Syn-
thesized and Post-Translationally Modified Peptides 
(RiPPs) and Non-Ribosomal Peptide Synthases (NRPS). 
These include fengycin, bacillaene, subtilosin, bacilysin, 
bacillibactin, and lichendicin.

In contrast to primary metabolites, these second-
ary metabolites represent non-essential, small organic 
molecules that can potentially confer evolutionary 

advantages over time, such as enhancing survival in 
competition with other organisms. B. subtilis SOM8 is 
predicted to engage in the synthesis of diverse bioactive 
molecules, notably encompassing various antibiotics 
with considerable potential for applications. These find-
ings underscore the SOM’s capacity to produce an array 
of compounds with potential therapeutic applications.

Comparison with Wild Type Strain B. subtilis ATCC 6051
The growth patterns of B. subtilis SOM8 and the wild-
type strain B. subtilis ATCC 6051 were compared under 
both aerobic and anaerobic conditions, as depicted in 
Supplementary Figure S6. Additionally, their respective 
antipathogenic activities against the specified human 
enteropathogens were tested under both aerobic and 
anaerobic conditions, as presented in Supplementary 
Figure S7. The results underscored B. subtilis SOM8’s 
superior growth performance under both aerobic and 
anaerobic conditions. Notably, the B. subtilis SOM8 
colonies exhibited enhanced dimensions and were sur-
rounded by a more substantial excretion of biofilm, a 
matrix of extracellular substances known to create a 
favourable microenvironment for bacterial proliferation, 
particularly in challenging conditions.

The outcomes from Supplementary Figure S7 empha-
size that both isolated B. subtilis SOM8 and B. subti-
lis ATCC 6051 own a wide spectrum of antipathogenic 
activities against several pathogens. However, it is note-
worthy that B. subtilis SOM8 outperforms B. subtilis 
ATCC 6051 under anaerobic conditions. Specifically, 
when cultivated under anaerobic conditions (represented 
by Number 5 and 6), B. subtilis ATCC 6051 exhibits a 
loss of antipathogenic efficacy against V. parahaemolyti-
cus and S. aureus, whereas B. subtilis SOM8 sustains its 
robust inhibition of pathogen growth, as evidenced by 
the inhibition zones.

Discussion
Over a long period, numerous strains within the Bacil-
laceae family, such as B. subtilis, B. licheniformis, and B. 
coagulans, have found application as probiotics in dietary 
supplements for both human consumption and animal 
feed [61]. Nevertheless, it is vital to ensure safety when 
considering Bacillaceae species as probiotics. This is 
especially so given that certain members, including B. 
anthracis and B. cereus, are pathogenic to both humans 
and animals [62]. Here, we present evidence that sup-
ports the candidacy of isolated B. subtilis SOM8, sourced 
from food processing waste—SOM, as a potential probi-
otic strain. B. subtilis SOM8 has great potential for inhib-
iting human enteropathogens, it is also equipped with 

Table 5 Summary of predicted secondary metabolites produced 
by isolated B. subtilis SOM8

Type Most similar cluster % Similarity

NRPS Fengycin 93

Polyketide + NRPS Bacillaene 100

RiPPs: Thiopeptide Subtilosin A 100

Other Bacilysin 100

NRPS Bacillibactin 100

RiPPs: Lanthipeptide Lichendicin A1 96
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robust stress tolerance, beneficial host-associated attrib-
utes, and an evidently safe preclinical profile.

The observed stress tolerance of B. subtilis SOM8 to 
acidic conditions, bile salts, and its heat stability can 
be ascribed to its inherent capacity for biofilm produc-
tion. The self-produced biofilm serves as a shield, not 
only contributes to its stress tolerance but also imparts 
mucoadhesive properties, thus enhancing its utility in 
biomedical and nutraceutical applications [63]. Moreo-
ver, it is assumed that its performance in tolerating harsh 
conditions is superior to what was observed in this test. 
During the stress tests, certain actions, such as pipet-
ting and vortexing, may have disrupted the original bio-
film structure produced by B. subtilis SOM8, potentially 
reducing its effectiveness in withstanding challenging 
environments. Nonetheless, B. subtilis SOM8 still exhib-
ited commendable performances.

BSH activity of B. subtilis SOM8 accounts for its cho-
lesterol lowering potential. BSH enzymes can catalyse 
a reaction involving the cleavage of the peptide linkage 
within bile acids, the resulting unconjugated bile acids 
exhibit decreased solubility and tend to precipitate under 
acidic conditions. As a result, larger quantities of free bile 
acids will be excreted in faeces. Such deconjugation could 
increase the demand for cholesterol as a substrate for the 
de novo synthesis of bile acids, compensating for the loss 
of bile acids excreted in faeces. This elevated demand 
for cholesterol may result in a reduction in circulating 
cholesterol levels. In addition, the deconjugation of bile 
salts may decrease in the solubility of cholesterol, thereby 
impeding its absorption across the intestinal lumen. As a 
consequence, the overall absorption of cholesterol from 
the gut is diminished [56].

Antioxidants have gained significant interest due to 
their numerous benefits, including anti-aging and anti-
inflammatory properties. In the area of food technology, 
antioxidants are incorporated into a wide range of food 
products to enhance their nutritional value. The antioxi-
dant activities of B. subtilis SOM8 makes it promising for 
its use in the prevention and treatment of diseases in the 
area of pharmacology, cosmetics, and medicine area [64].

With regards to the virulence factors associated with 
B. subtilis SOM8, it is notable that the products encoded 
by these genes exhibited the absence of intrinsic toxicity. 
For instance, the catecholate siderophore Bacillibactin, 
a secondary metabolite encoded by the dhb operon, is 
responsible for chelating and facilitating the utilization of 
ferric ions. The iron acquisition potential of Bacillibactin 
has garnered interest in applications beyond pathogen-
esis, including its role in addressing iron accumulation in 
the substantia nigra of the brain, thereby holding prom-
ise for the treatment of conditions such as Parkinson’s 
disease [65]. B. subtilis SOM8 genome also encodes the 

capABCD genes, responsible for polyglutamate synthesis 
and transport. Notably, polyglutamate has been impli-
cated in enhancing the pathogenicity of B. anthracis by 
evading the host’s innate immune response. However, it 
is important to emphasize that polyglutamate produc-
tion is a characteristic shared by numerous commensal 
Bacillus strains, including commercially utilised strains 
such as B. licheniformis and B. subtilis subsp. subtilis 168. 
Furthermore, the presence of polyglutamate is a common 
occurrence in various foods subjected to fermentation 
processes involving Bacillus species [66], indicating its 
intrinsic nature. Furthermore, B. subtilis SOM8 lacks the 
capE gene found in pathogenic species, further substanti-
ating its safer profile.

The cytotoxicity of B. subtilis SOM8 were investigated 
using Caco-2 cells models, the findings revealed that 
both the cell-free filtrate and freeze-dried cell-free filtrate 
exhibited low cytotoxicity towards Caco-2 cells. Nev-
ertheless, upon the increased concentration, an inhibi-
tory trend on cell proliferation emerged, attributed to 
the presence of bacteriocin and other substances, such 
as hydrogen peroxide, exerting cytotoxic effects on the 
cells. It is noteworthy that previous study has also proved 
the cytotoxic impact of commercial LAB, including 
LGG, L. casei M3, and L. plantarum YYC-3, along with 
their metabolite secretions, on colon cancer cells such 
as Caco-2 and HT-29 [67]. This observation suggests an 
inherent anti-cancer potential in a distinct context, high-
lighting the multi-faceted nature of bacterial interactions 
with colon cancer cells.

Isolated B. subtilis SOM8 demonstrated α-haemolytic 
activity, raising potential safety concerns for its applica-
tion in human consumption or animal nutrition. Never-
theless, considering the precedent application of various 
Bacillus strains [68, 69], particularly B. subtilis ATCC 
6051 [70], it is observed that only strains exhibiting 
β-haemolytic activity are discouraged for further applica-
tion. Moreover, even in many Lactobacilli probiotic prod-
ucts, such as kefir isolates [34, 71], the presence of toxin 
protein hlyIII is common and has not been considered 
a significant concern. Additionally, cases of bacteremia 
demonstrating the transmission of the probiotic from the 
product to the blood are infrequent to be identified [59], 
suggesting a low likelihood of an oral probiotic translo-
cating through the intestinal barrier into the bloodstream 
[10]. In addition, we have proved B. subtilis SOM8 low 
cytotoxicity using Caco-2 cell line models.

AMR mechanisms have undergone changes through 
bacterial evolution. Certain mechanisms have primar-
ily emerged to bacteria against natural antimicrobial 
agents, whereas others have evolved for distinct cellular 
functions. These mechanisms are commonly denoted 
as intrinsic mechanisms. It is noteworthy that intrinsic 
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resistance mechanisms usually do not spread horizontally 
among bacteria; instead, they tend to proliferate clon-
ally. Therefore, when a bacterial species exhibits inherent 
resistance to an antimicrobial, denoted as ’intrinsic resist-
ance,’ a characteristic prevalent among all strains of that 
species, is generally not considered as a safety concern. 
In contrast, when a strain of a species typically suscepti-
ble to a specific antimicrobial demonstrates resistance to 
that drug, it is categorized as ’acquired resistance.’ Such 
acquired resistance warrants further in-depth investiga-
tion [45]. The prevalence of streptomycin resistance is a 
phenomenon that spans across a wide spectrum of Bacil-
lus species, and it is highly probable that this resistance 
is an inherent characteristic rather than acquired resist-
ance from mobile genetic elements [10, 15]. As such, the 
observed resistance of B. subtilis SOM8 to streptomycin 
is not considered as a serious safety concern.

Furthermore, B. subtilis SOM8 is predicted to engage 
in the synthesis of diverse bioactive molecules, nota-
bly encompassing various antibiotics with considerable 
potential for applications. These findings underscore its 
capacity to produce an array of promising compounds 
with potential therapeutic applications. For instance, 
Fengycin has exhibited antimicrobial properties in pre-
clinical studies and has been suggested as bioactive in 
clinical observational trials to combat pathogens like S. 
aureus [72]. Bacilysin, a dipeptide antibiotic, has demon-
strated efficacy in inhibiting Gram-negative foodborne 
pathogens [73], while bacillaene, a polyene antibiotic, 
displays broad-spectrum antimicrobial activity against 
pathogens including S. aureus and E.  coli [74]. Moreo-
ver, bacillaene has the additional capacity to promote 
biofilm formation [75]. Subtilosin A, another secondary 
metabolite predicted to be produced by isolated B. sub-
tilis SOM8, is characterized by its remarkable resistance 
to enzymatic proteolysis and its stability under moder-
ate heat and acid conditions. It has demonstrated efficacy 
against various Gram-positive bacteria, including Listeria 
[76, 77]. Lastly, lichendicin, categorized as a lantibiotics, 
showcases antimicrobial activities against a spectrum of 
strains including Listeria monocytogenes, S. aureus, and 
vancomycin-resistant Enterococcus [78].

Conclusion
Given the results of conducted screening assays, includ-
ing both phenotypic and genotypic assessments, the 
isolated B. subtilis SOM8 strain exhibits a safe preclini-
cal profile. These findings support the potential utility of 
B. subtilis SOM8 as a viable candidate for applications 
as probiotics for human consumption, including dietary 
supplements, nutraceuticals, and medical purposes.
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