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Abstract 

Background Accurate identification of bacterial communities is crucial for research applications, diagnostics, 
and clinical interventions. Although 16S ribosomal RNA (rRNA) gene sequencing is a widely employed technique 
for bacterial taxonomic classification, it often results in misclassified or unclassified bacterial taxa. This study sought 
to refine the full-length 16S rRNA gene sequencing protocol using the MinION sequencer, focusing on the V1–V9 
regions. Our methodological enquiry examined several factors, including the number of PCR amplification cycles, 
choice of primers and Taq polymerase, and specific sequence databases and workflows employed. We used a micro-
bial standard comprising eight bacterial strains (five gram-positive and three gram-negative) in known proportions 
as a validation control.

Results Based on the MinION protocol, we employed the microbial standard as the DNA template for the 16S rRNA 
gene amplicon sequencing procedure. Our analysis showed that an elevated number of PCR amplification cycles 
introduced PCR bias, and the selection of Taq polymerase and primer sets significantly affected the subsequent 
analysis. Bacterial identification at genus level demonstrated Pearson correlation coefficients ranging from 0.73 to 0.79 
when assessed using BugSeq, Kraken-Silva and EPI2ME-16S workflows. Notably, the EPI2ME-16S workflow exhibited 
the highest Pearson correlation with the microbial standard, minimised misclassification, and increased alignment 
accuracy. At the species taxonomic level, the BugSeq workflow was superior, with a Pearson correlation coefficient 
of 0.92.

Conclusions These findings emphasise the importance of careful selection of PCR settings and a well-structured ana-
lytical framework for 16S rRNA full-length gene sequencing. The results showed a robust correlation between the pre-
dicted and observed bacterial abundances at both the genus and species taxonomic levels, making these findings 
applicable across diverse research contexts and with clinical utility for reliable pathogen identification.
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Background
Microbiome analysis serves as a cornerstone in decipher-
ing the complexities of ecological systems and human 
biological functions, encompassing a range of microor-
ganisms, such as bacteria, viruses, archaea, and fungi. 
The application of phenotypic and genotypic techniques 
plays a complementary role in understanding bacterial 
communities. For instance, microscopic examination 
of bacteria reveals their morphology, size, and spatial 
arrangement, whereas Gram staining aids in the differen-
tiation of bacterial cells into two classifications based on 
their cell wall properties, thereby facilitating the identifi-
cation of specific bacterial species. Although phenotypic 
data provide valuable information, molecular techniques, 
such as genotypic analyses, are increasingly being utilised 
to complement and enhance bacterial characterisation, 
offering a more comprehensive understanding of micro-
bial communities. Since the 1980s, evidence has shown 
that non-culturable bacteria often outnumber culturable 
bacteria, prompting a shift towards DNA sequencing 
methodologies over traditional culturing approaches for 
studying microbial communities [1]. Advances in next-
generation sequencing (NGS) platforms have had a trans-
formative impact on microbiological analyses [2].

In clinical research, DNA sequencing is increasingly 
replacing traditional culture-dependent methods, par-
ticularly for identifying uncultured bacteria and novel 
pathogens [3]. This technique offers critical insights 
into potential correlations between microbiota altera-
tions and various diseases, owing to its ability to reflect 
the true microbiota composition with high fidelity [4]. 
Recent studies have linked altered microbiota to various 
diseases, such as allergies [5] or obesity [6], and neuro-
degenerative disorders, such as Parkinson’s [7] and Alz-
heimer’s disease [8]. Moreover, microbiome sequencing 
is a valuable tool for epidemiological and environmental 
monitoring. With the rise of globalisation and mounting 
concerns over emerging diseases, the importance of iden-
tifying and tracking the spread of pathogens, as well as 
monitoring changes in microbial ecosystems over time, 
can be achieved by DNA sequencing [9]. Furthermore, 
microbiome sequencing can provide valuable insights 
into the potential effects of environmental factors on 
the microbiome, helping to inform policies and promote 
interventions to protect human health [10] and the envi-
ronment [11].

A prevalent technique for bacterial classification 
in microbiome sequencing is amplicon sequencing 
of the 16S ribosomal RNA (rRNA) gene. This gene 
encompasses nine variable regions (V1–V9) inter-
spersed with conserved sequences, and serves as a 
reliable marker for taxonomic identification [12]. Tra-
ditional sequencing methods often generate short-read 

sequences that inadequately cover the full-length 16S 
rRNA gene, which is approximately 1,500 base pairs 
(bp) long [13]. Consequently, these methods limit 
targeted genomic regions, thereby affecting the pre-
cision of taxonomic classification. For instance, previ-
ous studies have indicated that while the V4-V6 region 
is more representative of the full-length 16S rRNA 
gene, the V2 and V8 regions are less reliable [14]. As a 
result, variable regions are likely to underestimate the 
true species richness of microbiome samples. Oxford 
Nanopore Technologies (ONT) MinION sequencer 
offers the advantage of longer read lengths (up to 2 
Mbp), enabling comprehensive analysis of the full-
length 16S rRNA gene [15]. Pacific Biosciences, com-
monly referred to as PacBio, has also demonstrated 
the capability to sequence long read-length DNA, with 
an average of over 12 kb. However, acquisition of a 
PacBio sequencer requires substantial capital invest-
ment, which restricts the availability of these technolo-
gies to individual laboratories. In contrast, the MinION 
sequencer is a compact benchtop device that can be 
directly connected to a laptop and necessitates a rela-
tively modest upfront financial commitment compared 
to PacBio instruments.

The fundamental concept of ONT is based on the tran-
sit of single-stranded DNA molecules through nanopores 
on a synthetic membrane. As DNA moves through the 
nanopores, it results in variations in the electrical cur-
rent across the membrane. These changes correspond 
to a specific nucleotide base, and the raw electrical sig-
nals are converted to digital data, generating a sequence 
of signals that accurately represents the DNA sequence 
[16]. Although MinION sequencing is capable of analys-
ing longer reads and examining the entire 16S rRNA gene 
[17], along with faster processing and examination of the 
results [18], it also presents challenges, such as lower 
data yield and increased misclassification rates [19]. 
Every aspect of the DNA library preparation, from sam-
ple collection and storage to DNA isolation, can influ-
ence analytical outcomes [20, 21]. Similarly, the choice of 
bioinformatics pipelines and analysis software has been 
shown to impact the outcomes. The sequencing proce-
dure is complex, and interpreting the results that reflect 
the true composition of the microbiota can be a lengthy 
process.

This study aimed to evaluate the efficacy and reli-
ability of MinION nanopore sequencing for bacterial 
taxonomic classification, specifically focusing on the 
full-length 16S rRNA gene. Our objectives included opti-
misation of 16S rRNA gene sequencing protocols and 
comparison of bioinformatics workflows and databases 
for effective bacterial characterisation. We also assessed 
various methodological factors, such as PCR annealing 
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temperature, primer sequence selection, Taq polymerase 
PCR cycle numbers, reference databases, and workflows, 
to optimise the DNA sequencing results (Fig. 1).

Methods
DNA amplification and 16S rRNA sequencing
For bacterial samples, we used the ZymoBIOMICS™ 
Microbial Community Standard, comprising an in  vitro 
mixture of microbial cells containing eight bacterial 
strains in an already purified bacterial genomic DNA 
form (Zymo, D6300). The Microbial Community Stand-
ard comprised DNA prepared from the following bacte-
rial strains in fixed proportions: Pseudomonas aeruginosa 
(4%; NRRL Acc. No. = B-3509), Escherichia coli (10%; 
NRRL Acc. No. = B-1109), Salmonella enterica (10%; 
NRRL Acc. No. = B-4212), Lactobacillus fermentum (18%; 
NRRL Acc. No. = B-1840), Enterococcus faecalis (10%; 
NRRL Acc. No. = B-537), Staphylococcus aureus (16%; 
NRRL Acc. No. = B-41012), Listeria monocytogenes (14%; 
NRRL Acc. No. = B-33116), and Bacillus subtilis (17%; 
NRRL Acc. No. = B-354). DNA samples were analysed by 
NGS of 16S ribosomal RNA (rRNA) and barcoded using 

an adapted protocol by ONT (Protocol PCR barcoding 
amplicons, SQK-LSK109). Amplicon libraries were gen-
erated targeting the hypervariable regions 1–9 (V1–V9) 
of the 16S rDNA (~ 1,500 bp DNA fragments).

Bacterial DNA was amplified using two sets of 16S 
universal primers: Set#1, forward primer 27F (5’-AGA 
GTT TGA TCC TGG CTC AG-3’) and reverse primer 
1492R (5’-CGG TTA CCT TGT TAC GAC TT-3’) [23]; 
Set#2, forward primer GM3 (5’-AGA GTT TGATC-
MTGGC-3’) and reverse primer GM4 (5’-TAC CTT GTT 
ACG ACTT-3’) [24]. Each primer was tagged to enable 
barcoding using a PCR Barcoding Expansion 1–96 kit 
(ONT, EXP-PBC096). Following analysis of primer sets 
using TestPrime 1.0 (https:// www. arb- silva. de/ search/ 
testp rime/) [25], primer Set#2 produced 19 bp longer 
DNA sequences than Set#1 and allowed for more flexible 
recognition of bacterial DNA in the locus, with 123,073 
matched regions compared to 5,471 matched regions of 
primer set#1 (Sup. Figure 1). The tags used were 5’-TTT 
CTG TTG GTG CTG ATA TTGC-3’ (forward primer) 
and 5’-ACT TGC CTG TCG CTC TAT CTTC-3’ (reverse 
primer). Two Taq polymerases were used: LongAmp® 

Fig. 1 Schematic diagram of the basic principle and process of nanopore sequencing workflow. DNA from a pre-set microbial community is used 
as a template for 16S rRNA gene amplification by polymerase chain reaction (PCR). We analysed the influence of the type of Taq polymerase, 
annealing temperature, type of primers, and number of cycles used during the reactions. Following a standard library preparation process, the 16S 
gene DNA fragment was subjected to sequencing using a nanopore sequencer (MinION), and the results were then screened and processed 
according to the workflows, databases and accuracy settings. (Diagram adapted from [22])

https://www.arb-silva.de/search/testprime/
https://www.arb-silva.de/search/testprime/
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Hot Start Taq DNA Polymerase (LongAmp DNA Poly-
merase, New England Biolabs, M0534) and iQ SYBR® 
Green Supermix (iTaq DNA Polymerase, Bio-Rad, 
1708880), both supplied with a ready-to-use master mix. 
LongAmp is the polymerase recommended by ONT pro-
tocols, while iTaq is specifically selected for its rapid PCR 
amplification rate and ease of use.

For the 16S amplification reactions, we combined 2 µL 
of the primer mix (final concentration of 400 nM), with 
1 ng of mock community DNA and 12.5 µL LongAmp 
or iTaq DNA polymerases for a final volume of 25 µL. 
Specific products were amplified using a thermal cycler 
(T3000 Thermocycle, Biometra), with the following set-
tings: 1 min at 94°C for polymerase activation (1 cycle); 
20 s at 94°C for denaturation, 30 s at 48°C, 50°C or 52°C 
for annealing and 90 s at 65°C for extension (15, 20, 25, 
30 or 35 amplification cycles); and a final step of 3 min 
at 65°C. To assess possible contamination, each PCR 
reaction included a no-template control sample ampli-
fied for 35 cycles (this sample did not amplify any DNA 
fragments, Fig. 2A). Following PCR, the DNA fragments 
were purified by SPRIselect magnetic beads (Beckman 
Coulter, B23317) and after purification, the DNA con-
centration was measured by Qubit dsDNA BR Assay Kit 
using Qubit 4.0 fluorimeter (Thermo Fisher Scientific, 
Q33238).

Barcoding and library preparation
Following 16S amplification, the DNA was barcoded 
using a specific protocol. Briefly, 1 µL of the barcoding 
primer mix, 11.5 µL of 16S amplified DNA (for a total 
amount of 0.5 nM of DNA) and 12.5 µL LongAmp® Hot 
Start Taq DNA Polymerase were mixed in a final volume 
of 25 µL. The PCR reaction was carried out using the 

following settings: 3 min at 94°C for polymerase activa-
tion (1 cycle); 15 s at 94°C for denaturation, 15 s at 62°C 
for annealing and 100 s at 65°C for extension (12 ampli-
fication cycles); and a final step of 3 min at 65°C. Bar-
coded DNA was then purified using SPRIselect magnetic 
beads and measured by Qubit dsDNA BR Assay Kit using 
Qubit.

At this stage, the different barcoded DNA were pooled 
together (final 1 μg of multiple barcoded DNA) and 
processed for end repair and dA-tailing using the NEB-
Next® Companion Module for ONT Ligation Sequencing 
(New England Biolabs, E7180S). After a purification step 
using SPRIselect magnetic beads, Adapter Bead Binding 
buffer was added to the DNA library. After quality con-
trol and priming of the flow cell (Flow Cell Mk I, R9.4, 
FLO-MIN106D), the purified DNA library ( 50 fmol) was 
loaded, and a standard sequencing protocol was initiated 
using the MinION Mk1C device (ONT, MIN-101C).

DNA sequence analysis
Basecalling was performed with the Guppy agent (version 
6.3.7) integrated into the EPI2ME software (version 5.2.13, 
ONT), and FAST5 files were converted to FASTQ files. 
Barcodes were trimmed, and sequences were filtered to 
include only those with a q-score ≥ 9. The output FASTQ 
files were uploaded to BugSeq, a commercially available 
platform workflow (version 1.1, database version: Ref-
Seq September 2022) [26] for 16S sequence classification 
[27, 28]. The FASTQ files were similarly processed using 
Kraken2 [29] based on the SILVA database [30] as a ref-
erence. Finally, the same files were uploaded to EPI2ME 
using the "16S" workflow (EPI2ME-16S) and the "what’s 
in my pot" (EPI2ME-WIMP) workflow, and the mini-
mal accuracy level was set to 77%. The sequencing data 

Fig. 2 A representative agarose gel (0.8%) showing amplified 16S gene DNA (~ 1,500 bp) after 15-20-25-30-35 PCR cycles. PCR amplification 
was performed using the LongAmp polymerase and primer set#1. (A, DNA concentrations are shown below). In the bar graph, four workflows, 
namely Kraken2-Silva, EPI2ME-16S, EPI2ME-WIMP, and BugSeq, were compared to determine the relative abundance of microbial genera 
in the mock community based on increasing PCR cycles (B). (MC = microbial community, others = misclassified sequences)
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in the EPI2ME workflows are processed by cloud-based 
computational infrastructure, incorporating demultiplex-
ing, quality control, and taxonomic assignment using the 
BLAST algorithm against the Reference Sequence (Ref-
Seq) database [31], which is an open access, annotated, 
and curated collection of publicly available nucleotide 
sequences built by the National Center for Biotechnol-
ogy Information (NCBI). Reads shorter than 1,000 bp and 
longer than 1,850 bp were discarded.

Statistical analysis
The data was analysed using R (version 4.2.2). At the 
genus level, descriptive analyses were performed using 
proportions. The Pearson correlation coefficient (r) was 
used to determine the linear correlation, and to measure 
the strength and direction of the relationship between 
the analyses and the theoretical composition of the bac-
terial community. Accuracy represents the percentage of 
identical matches in an alignment. A heatmap of differen-
tial abundance was created using NG-CHM GUI v.2.20.2 
BUILDER, using Euclidean distance as the distance 
measure and Ward’s method as a linkage rule [32]. At the 
species level, multi-layered pie charts were created using 
Krona [33] on the BugSeq web-based portal.

Results
Impact of PCR cycles, workflows and databases choices 
on bacterial population identification
We investigated the effect of the number of PCR cycles 
on DNA sequencing accuracy by amplifying the V1-V9 
region of the 16S rRNA gene using LongAmp polymerase 
and MinION sequencing. Our findings indicated a cor-
relation between the number of amplification cycles and 
the corresponding increase in DNA yield. Starting from 
undetectable agarose gel electrophoresis amounts after 
15 cycles, the quantity increased to 277 ng/µL after 35 
cycles (Fig. 2A).

After barcoding, sequencing was performed by using 
equal amounts of DNA from each sample. Subsequently, 
the relative abundance of bacteria at the genus level 
was determined using four different workflows, namely 
Kraken2-Silva, EPI2ME-16S, EPI2ME-WIMP, and Bug-
Seq.(Fig. 2B). The increasing number of PCR cycles neg-
atively influenced taxa identification in all workflows, 
increasing the percentage of misclassified reads (either 
unclassified or incorrectly classified). The EPI2ME-
WIMP workflow displayed the highest misclassified pro-
portion, with a constant average of 14% (Table 1).

In contrast, the BugSeq workflow yielded the most accu-
rate results when utilising a range of 15–25 PCR cycles, 
with an average misclassification rate of 1.2%. Consistently, 
Pseudomonas and Lactobacillus were the organisms that 

were least identified among all workflows, while Bacillus 
was over-identified. We do not attribute the disparities in 
identification to the proportion of each bacterial species in 
the mock community, as Bacillus and Lactobacillus have 
similar percentages (17% and 18%, respectively), contrary 
to Pseudomonas (4%). Salmonella is under-represented by 
Kraken2-Silva. The total number of genera identified was 
highest using EPI2ME-WIMP (over 250 genera) and low-
est using BugSeq (8 genera, Table 2).

The Kraken2-Silva, EPI2ME-16S, and BugSeq 
workflows had comparable Pearson correlation val-
ues (Table  3). Kraken2-Silva (mean r = 0.73) and 
EPI2ME-16S (mean r = 0.77) consistently maintained 
a stable correlation as PCR cycles increased, while the 
BugSeq correlation decreased at 35 PCR cycles (r = 0.58). 
EPI2ME-WIMP workflow consistently exhibited the 
weakest correlation across all PCR cycles (mean r = 0.46).

The EPI2ME-16S workflow can be further improved 
by increasing the alignment accuracy (Sup. Figure  2). 

Table 1 Percentage of misclassified reads per workflow and 
the number of PCR cycles. Misclassified reads included all false 
positives, unclassified reads, and those classified higher than the 
genus classification

The Epi2me and 16S workflow had a minimum identification accuracy of 80%. 
PCR was conducted using an annealing temperature of 48°C, primer set#1, and 
LongAmp Taq polymerase

16S Databases Silva RefSeq

Workflows Kraken2 EPI2ME BugSeq

16S WIMP

PCR cycles 15 2.6% 2.3% 14.3% 0.8%

20 2.7% 2.2% 14.6% 1.3%

25 2.8% 2.4% 14.7% 1.5%

30 3.4% 2.7% 14.4% 3.5%

35 4.4% 3.5% 14.3% 10.8%

Table 2 Number of genera identified per workflow and number 
of PCR cycles. No minimal thresholds were set

The Epi2me and 16S workflow had a minimum identification accuracy of 80%. 
PCR was conducted using an annealing temperature of 48°C, primer set#1, and 
LongAmp Taq polymerase

16S Databases Silva RefSeq

Workflows Kraken2 EPI2ME BugSeq

16S WIMP

PCR cycles 15 71 197 252 8

20 74 206 265 8

25 89 211 291 8

30 76 214 286 8

35 84 209 261 9
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The highest correlation, with minimal misclassification, 
was achieved by including only sequences with an accu-
racy greater than 95% (0.1% misclassified or unclassified, 
and Pearson correlation r = 0.82); however, this setting 
accounted for only ~ 25% of all reads that aligned to the 
reference database.

Effect of primer pair set and Taq Polymerase on 16S gene 
DNA amplification
We compared two sets of primers, Set#1 and Set#2, for 
amplification of the 16S rRNA gene, along with two Taq 
polymerases. Primer Set#1 produced equally longer DNA 
sequences than Set#2, however the type of Taq poly-
merases used influenced the length, 1,457 bp with Lon-
gAmp and 1,449 bp with iTaq (Table  4). Compared to 
iTaq polymerase (2.2 ×  104 DNA sequences), LongAmp 
was producing the larger number of sequences with both 
primer sets, Set#1 (2.5 ×  104 DNA sequences) and Set#2 
(3.4 ×  104 DNA sequences).

Comparison of different PCR annealing temperatures 
and Taq polymerases on sequencing accuracy
We compared the influence of two Taq polymerases, 
LongAmp and iTaq, on sequencing accuracy at vari-
ous PCR annealing temperatures (48°C, 50°C, and 
52°C). The results were analysed using BugSeq, and the 
most accurate results were obtained when the anneal-
ing temperature was set at 48°C (Fig.  3). Increasing 
the PCR annealing temperature reduced the accuracy 
of LongAmp Taq polymerase, while the iTaq results 
remained unaffected. iTaq polymerase effectively 
amplified gram-negative bacteria such as Pseudomonas 
sp., Escherichia sp., and Salmonella sp.; however, it 
showed a greater proportion of unclassified or misclas-
sified bacteria when compared to the results obtained 
using LongAmp Taq polymerase. The highest correla-
tion with the pre-set proportions of the mock commu-
nity was obtained at an annealing temperature of 48°C, 
primer set#1 and LongAmp Taq polymerase (r = 0.92). 

Table 3 Correlation between the expected and observed proportions of relative abundance at the genus level and the number of 
PCR cycles. Correlations were calculated using the Pearson’s correlation coefficient

The Epi2me and 16S workflow had a minimum identification accuracy of 80%. PCR was conducted using an annealing temperature of 48°C, primer set#1, and 
LongAmp Taq polymerase

16S Databases Silva RefSeq

Workflows Kraken2 EPI2ME BugSeq

16S WIMP

PCR cycles 15 0.73 0.77 0.46 0.79

20 0.74 0.77 0.45 0.78

25 0.74 0.78 0.45 0.79

30 0.74 0.77 0.47 0.75

35 0.73 0.76 0.49 0.58

Table 4 Comparison of different PCR annealing temperatures, primer sets, and Taq polymerases, and their influence on DNA 
amplification

Equal amounts of DNA were sequenced for each sample

Polymerases

LongAmp iTaq

Primer set Annealing 
Temperature
(°C)

Read length
(bp)

Sequence
Number (× 104)

Read length
(bp)

Sequence
Number (× 104)

Set#1 48 1′457 2.35 1′451 2.10

50 1′458 2.99 1′450 2.69

52 1′455 2.20 1′447 2.05

Average ± SD 1′457 ± 1.5 2.51 ± 0.42 1′449 ± 2.1 2.28 ± 0.36
Set#2 48 1′458 2.92 1′451 2.15

50 1′454 3.68 1′448 2.86

52 1′455 3.45 1′448 1.40

Average ± SD 1′456 ± 2.1 3.35 ± 0.39 1′449 ± 1.7 2.14 ± 0.73
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With iTaq polymerase, the correlation coefficient was 
higher when primer set#1 was used (approximately 50% 
more accurate).

Effect of primer pair set and taq polymerase 
on microbiome composition detection at the species level
We compared two sets of primers, Set#1 and Set#2, and 
two Taq polymerases, LongAmp and iTaq, for the ampli-
fication of the 16S rRNA gene for annotation accuracy at 
the species level. The PCR was conducted with an anneal-
ing temperature of 48°C and the analysis with the Bug-
Seq workflow, and it showed that the primer set used had 
no impact when employing the LongAmp polymerase, 
as both primer sets demonstrated a Pearson correlation 
coefficient of r = 0.91 (Fig. 4). However, primer set#2 was 
more accurate than primer set#1 when used with iTaq 
polymerase (r = 0.61 compared to r = 0.47). None of the 
other workflows could be used at the species level owing 
to insufficient accuracy and reliability of the results (data 
not shown).

Discussion
In this study, we introduced a streamlined methodology 
to facilitate the sequencing of bacterial composition in 
complex DNA samples that can be seamlessly integrated 
into existing laboratory workflows and various research 
fields, including clinical settings. The utilisation of ONT 
nanopore sequencing has provided the opportunity to 
conduct real-time sequencing and data analysis at a cost-
effective rate [34] to diagnose bacterial infections [35, 
36]. To effectively implement the MinION sequencer 
as a rapid diagnostic tool, it is crucial that future inves-
tigations adhere to well-established methodologies that 
address a range of possible biases. We noticed that the 
choice of workflow and database for reference had a sub-
stantial influence on the results, as corroborated by the 
existing literature. For example, in the case of 16S rRNA 
gene amplification by PCR, the accuracy of identifying 
bacteria in a community can vary depending on multiple 
factors, such as the Taq polymerase and primers used, 
the number of cycles used during amplification, and the 
workflows and databases used for classifying the DNA 

Fig. 3 The hierarchical clustering heat map shows the relative abundance of each genus in the microbial mock community using primer sets #1 
and #2 at different annealing temperatures (48, 50, and 52°C) and Taq polymerases (LongAmp and iTaq). The results were analysed using BugSeq, 
and the bottom row of the table shows the Pearson correlation coefficient. The results were compared with the expected (theoretical) proportion 
of the mock community. The coloured gradient legend represents a linear scale of relative abundance. (others = misclassified sequences)
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sequences. Bacterial DNA, already purified, was obtained 
from a pre-existing mock community to minimise poten-
tial sources of bias, including variations in sampling and 
storage procedures [37], and differences in DNA extrac-
tion methods [38].

The selection of a workflow, including the methodol-
ogy for classifying the cleaned and filtered sequences and 
the reference database, has a significant impact on the 
outcomes, as evidenced by previous publications [39]. 
In our study, BugSeq, EPI2ME-16S, and Kraken2-Silva 
workflows performed well in classifying the sequences at 
the genus level with an observed error rate and propor-
tion of unclassified reads below 5% and demonstrated a 
comparable Pearson correlation. In particular, the Bug-
Seq workflow employs a stringent identification approach 
to determine bacterial taxa, requiring a minimum of 
200 reads for taxonomic classification. Additionally, 
this method demonstrated high precision in accurately 
identifying bacterial species, in contrast to other meth-
ods, and SILVA can only annotate at the genus level. 
The EPI2ME-16S and Kraken2-Silva workflows have 

been shown to effectively classify bacteria at the genus 
level, and the EPI2ME-16S workflow outcomes can be 
improved by changing the alignment accuracy in the 
settings. For example, we found that the percentage of 
misclassified reads was < 1% when a minimum accuracy 
threshold of 95% was applied. However, the proportion 
of sequenced reads included in the analysis was less than 
50% of the total. The presence of misclassified reads has 
a significant impact on the reporting of diversity indices, 
particularly in the case of indices that rely on singleton 
groups and place an emphasis on rare taxa. As such, min-
imising misclassifications leads to improved accuracy of 
the reported diversity index.

One intriguing aspect that merits discussion is the 
effect of varying the number of PCR cycles on the accu-
racy of bacterial identification. It was observed that 
an increased number of PCR cycles, beyond 25, led to 
compromised identification accuracy; specifically, when 
using a starting DNA template of 1 ng in a 25 μL reaction 
mixture, the identification process became increasingly 
imprecise. This is in agreement with previous studies 

Fig. 4 Comparative analysis was performed to determine the most effective combination for accurate species identification of the two primer sets, 
Set#1 and Set#2, and the two Taq Polymerases, LongAmp and iTaq. The analysis was conducted using BugSeq at an annealing temperature of 48°C. 
The relative abundance of each species is presented as %
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that observed a similar trend due to sequence saturation 
[23] and generation of chimeric amplification products 
(a single DNA amplicon consisting of sequences derived 
from various 16S rRNA genes rather than just one) [40]. 
Therefore, to ensure the accurate analysis of bacterial 
populations, we recommend employing effective reac-
tion conditions to minimise the number of required PCR 
amplification cycles. For example, in the case of the gut 
microbiome, which is characterised by significant bacte-
rial diversity, a low number of PCR cycles will provide a 
more rigorous, precise, and robust analysis of the data. 
However, when examining the cutaneous microbiome, 
where bacterial abundance is notably lower, an increase 
in PCR cycles may serve as a critical factor, as a higher 
number of amplification cycles is needed to detect all 
bacterial species. However, a greater number of amplifi-
cation cycles increases the likelihood of false positives.

Furthermore, the choice of a primer set for 16S rRNA 
sequencing is essential for creating DNA libraries and 
analysing bacterial composition [41]. Primer bias result-
ing from differential annealing can result in the over- or 
under-representation of specific taxa. Furthermore, 
certain bacteria may not be detected if their consensus 
sequences do not align well with the primer set used 
[42]. In our protocol, Set#1 (27F-1492R) binds DNA 
in the proximity of Set#2 (GM3-GM4), with the latter 
characterised by a shorter base pair sequence to provide 
primers with more flexibility to attach to bacterial DNA, 
thereby expanding the diversity of the sampled popula-
tion. However, our analysis showed that not only did the 
amplified DNA sequences had the same length (1,456 
bp), but Set#2 demonstrated inferior precision in the 
determination of bacterial identity compared to Set#1. 
These results show that even minor modifications to the 
primer set can lead to significant consequences. There-
fore, it is crucial to be cautious when comparing relative 
abundance across various studies.

Furthermore, we observed that the type of polymer-
ase enzyme used in PCR significantly affected the bacte-
rial community profile. Specifically, iTaq polymerase was 
found to favour 16S gene amplification in gram-negative 
bacteria, altering the analysis of the bacterial composi-
tion within the population. Both polymerases, iTaq and 
LongAmp, required a hot-start initiation step to enhance 
the specificity and sensitivity of the reaction. iTaq pro-
vided excellent yield when amplifying products as small 
as 200–300 bp up to > 2Kbp, and genomic DNA can be 
amplified up to 5 kb. The LongAmp polymerase can 
generate up to 30 kb, with high specificity and through-
put. The difference between the two polymerases is in 
the 3´ → 5´ exonuclease activity of the Deep Vent DNA 
polymerase present in the LongAmp amplification mix, 
which increases the fidelity and robust amplification of 

Taq Polymerase [43]. However, the different concentra-
tions of magnesium chloride  (MgCl2) included in the 
PCR reactions might have affected the selectivity of DNA 
amplification. A DNA sequence enriched with guanine-
cytosine (GC) content, such as that in gram-negative 
bacteria (average 55%) compared to gram-positive bac-
teria (average 41%), often requires a higher magnesium 
concentration to facilitate primer annealing and DNA 
polymerase activity. The higher concentration of  MgCl2 
in the iTaq reaction mix (3 mM) than in LongAmp (2 
mM) might have favoured primer-template binding and 
improved DNA polymerase activity in gram-negative 
bacteria. The increased magnesium ion concentra-
tion promoted the denaturation of GC-rich DNA seg-
ments and facilitated their amplification. This distinction 
emphasises the importance of selecting a suitable buffer 
formulation to achieve desired amplification outcomes in 
PCR applications.

Selection of the most appropriate protocol also depends 
on the variability of a particular sample. Finding optimal 
criteria for cut-off values and setting thresholds present a 
challenge because of the complexity of understanding the 
biological meaning of the results. The adoption of prede-
fined thresholds, such as a relative abundance cut-off of 
0.01%, is widely used in microbiome research. Despite its 
wide application, the underlying reasoning for selecting 
these thresholds remains largely subjective and requires 
further investigation, particularly regarding the potential 
influence of false-positive data. To avoid the recurrence 
of false positive results, we recommend the use of nega-
tive and positive controls, implementation of spiking for 
accurate quantification of bacterial abundance, and use of 
statistical software to identify potential contaminations 
[44].

The implementation of these controls may enhance the 
precision of bacterial community identification and must 
be associated with the factors analysed and identified in 
this study. However, it is crucial to consider the limita-
tions of this study, such as the use of a mock community. 
The mock community includes Gram-positive and Gram-
negative bacteria, which introduces similar to the real case 
variability of studied genomes, but does not guarantee that 
all bacteria would be accurately identified in diverse envi-
ronmental conditions, such as faecal samples, urine, or 
skin swabs. Furthermore, the choice of DNA library prepa-
ration protocol should be tailored to the sequencing plat-
form and specific sample types under investigation. For 
example, EPI2ME workflows are limited by the capacity to 
customise workflow parameters, including reference data-
bases and alignment preferences, and workflows can be 
used only by ONT customers through a web-based appli-
cation. Additionally, the selection of a suitable database for 
bacterial identification is a crucial factor that can greatly 
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influence the accuracy and efficiency of the process, and 
this choice is often dependent on available resources. For 
example, database comparisons showed that SILVA and 
RefSeq outperformed Greengenes in terms of accuracy 
(databases not included in this study) [45].

Conclusions
The present study demonstrates the analytical advantages 
of employing the MinION nanopore technology for 16S 
rRNA gene sequencing, notably in achieving a high level 
of discrimination among closely related bacterial taxa. By 

Table 5 The side-by-side analysis of the sequencing variables considered in this study provides a comprehensive evaluation of their 
respective strengths and limitations

NCBI National Centre for Biotechnology Information

Variables Advantages Disadvantages

PCR cycles

 Low number • Reduced PCR amplification time
• More accurate reads

• Loss of identification of rare species in the sample

 High number • Allows detection of bacteria in low-biomass samples, such 
as skin or urine

• Requires longer time
• Introduction of misclassified reads

Annealing Temperature

 48°C • Sequencing results more accurate than 52°C temperature 
with LongAmp polymerase

 52°C • Minimal differences in accuracy with iTaq polymerase • Reduced amplification of Gram-negative bacteria with Lon-
gAmp polymerase

Primer sets

 #1 (27F-1492R) • Universally recognized primers for 16S PCR amplification
• Minimal differences in accuracy with set#2 when used 
with LongAmp polymerase

• With iTaq polymerase, sequencing accuracy lower than set#2

 #2 (GM3-GM4) • With iTaq polymerase, sequencing accuracy higher 
than set#1
• With LongAmp polymerase, minimal differences in accuracy 
compared to set#1

Taq Polymerases

 LongAmp • Higher processivity than iTaq
• Sequencing results more accurate
• Recommended by ONT protocols

 iTaq • Results are not affected by the annealing temperature 
(range 48–52°C)
• Lower price

• Substantially favour amplification of Gram-negative bacteria
• Greater proportion of misclassified bacteria compared 
to LongAmp polymerase

Workflows

 BugSeq • Allows for accurate bacterial identification at both genus 
and species levels

• Subject to payment
• Increasing PCR cycles significantly enhanced the percentage 
of misclassified read

 EPI2ME-16S • Allows for accurate bacterial identification at genus level • Limited capacity of customization
• Workflow can be used only by ONT customers

 EPI2ME-WIMP • Unsuitable for 16S based bacterial identification
• Highest percentage of misclassified reads
• Limited capacity of customization
• Workflow can be used only by ONT customers

 Kraken2 • Allows for accurate bacterial identification at genus levels
• Free of use workflow

• Salmonella is under-represented

16S Databases

 RefSeq • Non-redundant database
• NCBI-managed database compiled from GenBank 
sequences

 Silva • Small and large rRNA subunits database including 16S rRNA 
sequences from the European Nucleotide Archive

Accuracy

 Low (> 80%) • Analysis of all reads, including rare bacterial species • Inclusion in the analysis of possible misclassified reads (~ 3% 
of the total)

 High (> 95%) • Reliable sequencing results, no misclassified reads • Over 50% loss of reads
• Loss of depth in the analysis
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optimising various elements in the sequencing process, 
including PCR cycle numbers, primer sets, Taq polymer-
ases, and bioinformatic workflows, our study contributes 
to the generation of more robust and reliable data on 
microbial community compositions (Table  5). By refin-
ing the methodology, these optimisations lead to more 
reliable results and better representation of the micro-
bial community composition in the analysed samples. 
For genus-level identification, PCR amplification with 
LongAmp polymerase and primer Set#1 (27F-1492R) at 
an annealing temperature of 48°C, followed by EPI2ME-
16S analysis, yielded accurate results (Appendix S1). The 
BugSeq workflow was the most efficient for species-level 
taxonomic assignment.

Our study serves as a resource for optimising the 
experimental protocols in microbial genomics and clini-
cal microbiology. This underscores the nuanced impacts 
of methodological choices on the results and highlights 
the need for careful experimental design and execution. 
Thus, optimising 16S rRNA gene sequencing protocols 
will pave the way for more precise microbial research and 
diagnostics, facilitating timely patient management and 
therapeutic interventions.
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