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Abstract 

Background Antimicrobial resistance poses a huge risk to human health worldwide, while Bangladesh is confronting 
the most severe challenge between the food supply and the huge consumption of antibiotics annually. More impor-
tantly, probiotics containing Bacillus spp. are claimed to be an alternative to antimicrobial stewardship programs. 
However, their antibiotic resistance remains elusive. Thus, we employed the antimicrobial susceptibility test and PCR 
to assess the prevalence of resistance, including multidrug resistance (MDR) and resito-genotyping of isolated Bacillus 
spp.

Results The phenotypic profile showed that Bacillus spp. were 100% sensitive to gentamicin (2 µg/mL), whereas 
lowered sensitivity to levofloxacin (67.8%, 0.5–1 µg/mL), ciprofloxacin (62.3%, 0.5–1 µg/mL), clindamycin (52.2%, 
0.25–0.5 µg/mL), amoxicillin-clavulanic acid (37.6%, 0.06 µg/mL), azithromycin (33.4%, 1–2 µg/mL), tetracycline 
(25.6%, 2–4 µg/mL), nitrofurantoin (21.1%, 16–32 µg/mL), co-trimoxazole (19.2%, 2 µg/mL), and erythromycin (18.8%, 
0.25–0.5 µg/mL). The strains were completely resistant to penicillin, amoxicillin-clavulanic acid, cefixime, ceftriaxone, 
vancomycin, and co-trimoxazole, and a species-specific trend was seen in both phenotypic and genotypic resistance 
patterns. Genotypic resistance indicated prevalence of the bla1 (71.5%), tetA (33%), erm1 (27%), blaTEM (13.1%), blaCTX-

M-1/blaCTX-M-2 /sul1 (10.1%), blaSHV (9.6%), and qnrS (4.1%) genes. The β-lactamase resistance gene bla1 was found in all 
penicillin-resistant (MIC ≥ 32 µg/mL) Bacillus spp. One hundred ninety-one isolates (89.6%) were MDR, with 100% 
from diarrhea, 90.3% from food, and 88.7% from animal feed.

Conclusion Based on the MIC value and profile analysis of antibiotic resistance genes, this is the first study that Bacil-
lus spp. antimicrobial susceptibilities have been identified in Bangladesh, and our study will shed light on the adverse 
effects of feed-borne Bacillus spp. emerging from animal feed to the food chain. A comprehensive investigation 
is urgently needed by  policymakers on tolerance limits and harmful effects in the animal industry.
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Background
Antimicrobial resistance (AMR) is a serious, multifac-
eted, and complicated healthcare concern worldwide that 
impacts people, animals, and the environment, resulting 
in harder-to-treat infections and even death. The “One 
Health” approach, which incorporates public health and 
veterinary regulators, the food and agriculture industry, 
financiers, environmentalists, and customers, is high-
lighted in the WHO-led Global Action Plan on Antimi-
crobial Resistance [1, 2]. AMR develops naturally over 
time, generally through genetic mutations that can trans-
mit from one generation to another or between humans 
and animals via animal-sourced food. A variety of strate-
gies, including target defence, target replacement, detoxi-
fication, and suppression of cellular antibiotic deposition, 
are used by bacteria to develop antimicrobial resistance 
(AMR) [2–4]. Although not all resistant bacteria produce 
diseases, they may initiate the manifestation of a dis-
ease or spread the gene encoding AMR to new bacterial 
pathogens in favorable environments [4]. Consequently, 
improper and abusive antibiotics might contribute to 
the development of different drug-resistant bacteria and 
can disperse antibiotic residues from various settings 
throughout the food supply chain, acting as a reservoir 
and propagation matrix for AMR with the potential for 
antibiotic-resistant gene (ARG) to cross the animal-to-
human microbes due to bacterial contamination [5–7]. 
The transfer of ARGs is a common way that ABR spreads. 
Once resistant genes are transmitted by plasmids, trans-
posons, or integrons, dispersion is quick, and horizontal 
gene transfer across bacteria is frequent. Hitherto, it was 
thought that this type of genetic exchange only occurred 
among the same bacterial species. Nevertheless, the 
transmission of ARGs among phylogenetically distinct 
bacterial clusters, particularly across gram-positive and 
gram-negative bacteria, has now been proven in natural 
habitats [8].

Bacillus spp. has long been used as probiotics in 
human, veterinary, aquaculture, plant, and environ-
mental applications, either directly as microbial food 
or as food additives heavily contaminated in animal 
feed and food chains, making a major financial burden 
for livestock producers and a potential threat to pub-
lic health [6, 9–11]. B. cereus-caused foodborne dis-
eases are classified into diarrheal (toxico-infections) 
and emetic (intoxications) syndromes resulting from 
the formation of several toxins (enterotoxins such as 
nhe, hbl, cytK, entFM, BceT, HlyII; emetic toxins ces), 
which occur globally and are becoming a serious chal-
lenge [7, 12]. B. cereus exacerbates severe diarrhea 
and malnutrition in chickens and ducks by causing 
gizzard erosion and ulceration (GEU) and facilitating 

recurrent bacterial infections in the lungs by disrupt-
ing the gastrointestinal tract and following lung hem-
orrhagic lesions [13–16]. More interestingly, B. cereus 
was reported to induce non-gastrointestinal diseases, 
including bacteremia, septicemia, endophthalmitis, 
meningitis, endocarditis, urinary tract infections, and 
lung infections. Furthermore, B. cereus may lead to 
serious health effects, especially in newborn infants 
and immunosuppressed individuals [7, 12].

Nonetheless, some B. cereus and other bacteria pos-
sess ARG, which may spread among bacteria and ulti-
mately impact humans through the food supply chain 
or the surroundings [5, 6]. Probiotic strains of B. cereus, 
B. clausii, B. subtilis, and B. licheniformis have shown 
resistance markers for β-lactams (blaBCL-1), chloram-
phenicol (catBcl), aminoglycosides (aadD2), macrolides 
(erm34), tetracycline (tetM and tetK), and erythro-
mycin (ermD and ermK) [6]. The existence of mobile 
genetic components in B. cereus enables the uptake and 
transmission of drug-resistance genes from the envi-
ronment [12].

Bangladesh, with a significant level of AMR and mul-
tidrug-resistant (MDR) bacteria against drugs indicated 
for use in both animals and people, confronts a local 
and worldwide hazard [3, 17–19]. However, B. cereus 
is resistant to numerous antibiotics, posing a global 
issue [20]. To inhibit the spread of AMR, it is essen-
tial to evaluate Bacillus spp. and their AMR profile. 
Some strains of Bacillus spp. are becoming increasingly 
resistant to antibiotics, allowing for the acquisition and 
emergence of new AMR strains. In our prior report, 
39% of Bacillus spp. from animal feed and animal-based 
foods at a contamination level >  105  CFU/g carried 
80%, 71%, 55%, and 33% of the entFM, cytK, nheABC, 
and hblACD enterotoxin genes, respectively, and food-
borne Bacillus spp. caused 4.5% of human diarrhea 
cases in south-eastern Bangladesh [15]. There is a lack 
of scientific data on the AMR in the livestock sector 
in Bangladesh. According to available report, resistant 
bacteria such as E. coli, Salmonella spp., Klebsiella spp., 
Pseudomonas spp., Staphylococcus spp., and Vibrio 
spp., were commonly detected in poultry, dairy cattle, 
raw milk, farm surroundings, and fish items [21, 22]. 
Nevertheless, there is a dearth of comprehensive data 
regarding the antibiotic resistance patterns of Bacillus 
spp. in the human, animal, and environmental sectors 
in Bangladesh. Thus, to fillin this knowledge gap, this 
work aimed to determine the prevalence of resistance, 
particularly MDR, and the correlated genetic factors in 
isolated Bacillus spp. In the present study, we focused 
on whether animal feed, food, and human stool could 
harbor MDR strains and disseminate them through the 
food supply chain.
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Results
Bacterial isolates
The isolates tested in this investigation were chosen from 
our prior work [15] and identified to be B. cereus, B. sub-
tilis, B. amyloliquefaciens, B. licheniformis, B. thuringien-
sis, B. megaterium, and B. coagulans, with 152, 56, and 
10 strains from animal feed, food, and human diarrheal 
cases, respectively (Table S1, Figure S1-S4, Table S2-S3). 
In all analyzed samples, B. cereus was the predominant 
isolate (49.3–70%), followed by B. subtilis (14.2–30%), 
B. amyloliquefaciens (5.2–21.4%), B. thuringiensis (3.9–
8.9%), B. licheniformis (8.5%), B. megaterium (5.2%), and 
B. coagulans (1.7–2.6%). Particularly, 7 B. cereus and 3 
B. subtilis were isolated and identified from human stool 
with diarrhea cases.

Phenotypic profile of antimicrobial resistance
MICs and MBCs of isolated bacteria were displayed in 
the Table  1. As for B. cereus, the MIC and MBC values 
were determined in our study: PG-NIT-CFM-CTR/VAN-
TET/GEN/CMX-AZM-EM/CIP/LEV-CM-AMC and 
PG-NIT-CFM/CTR/VAN/CMX-TET/GEN-EM/CIP/
LEV/CM-AZM-AMC respectively. While the MIC/MBC 
ratio for B. subtilis was as follows: NIT-CFM-VAN-CTR/
TET/GEN/CMX-AZM-PG/CIP/LEV-EM/CM-AMC, 
B. amyloliquefaciens recorded a similar trend. In con-
trast, B. licheniformis and B. thuringiensis showed similar 
patterns: PG-NIT-CFM-VAN- CTR/TET/GEN/CMX-
AZM/CIP-LEV/CM-EM-AMC. Interestingly, B. mega-
terium and B. coagulans followed the same pattern as 
NIT-TET/VAN-CTR/GEN/CMX-CFM/AZM- EM/CIP/
LEV-PG/CM-AMC (Table 1).

The antibiogram profiles of 14 antibiotics revealed 
that all isolated Bacillus spp. were generally sensitive to 
GEN (100%), LEV (67.8%), and CIP (62.3%), 52.2% to 
CM, 37.6% to AMC, and 33.4% to AZM (Table S4, Sup-
plementary file 1). Further, the Bacillus spp. were gener-
ally resistant to β-lactam, glycopeptide, and sulfonamide 
antibiotics, including CFM (97.2%), PG (95.8%), CMX 
(81.1%), CTR (72.9%), VAN (71.5%), AMC (62.3%), while 
55.9% were resistant to E, 55.5% to NIT, and 47.2% to 
TET (Fig. 1A, Table S4). The antibiotic-resistant pattern 
of AMC and AZM in diarrheal cases was significantly 
higher (p < 0.01) compared to animal feed and food sam-
ples. In contrast, the antibiotic-resistant pattern of CIP 
in animal feed was substantially greater (p < 0.05) than in 
food and diarrheal cases (Table 2).

Regarding B. cereus, the isolates were generally sensi-
tive to GEN (100%), CIP (61.6%), and LEV (57.1%) and 
generally resistant to PG/CFM (100%), CTR (97.4%), 
CMX (97.3%), VAN (98.2%), EM (85.7%), AMC (80.4%), 
NIT (79.4%), and TET (70.5%). In the instance of B. sub-
tilis, the isolates were generally sensitive to GEN (100%), 

LEV (85.7%), CM (65.3%), CIP (63.3%), and AZM (51%). 
Furthermore, the B. subtilis isolates showed a somewhat 
similar resistant pattern to that of B. cereus. Interestingly, 
all B. megaterium and B. coagulans were 100% sensitive 
to GEN, CM, NIT, CIP, LEV, and CMX (Fig.  1B, Table 
S5). The ABR profiles of PG, AMC, CFM, CTR, VAN, 
AZM, EM, TET, CM, NIT, CIP, LEV, and CMX differed 
significantly (p < 0.01), and species-specific resistance 
was observed among the seven isolated Bacillus spp. 
(Table 3).

Pearson correlation coefficients (ρ) for pairs of antibiotics 
to assess ABR Bacillus isolates
Bivariate analysis showed a highly significant association 
(p =  < 0.001–0.000) between the resistance patterns of 
TET and PG, EM/NIT and CFM, AZM/CM and AMC, 
NIT/CFM/CTR/VAN/EM/CMX and PG, CTR/VAN/
EM/TET/NIT/CIP/LEV/CMX and AMC, CTR/VAN/
CMX and CFM, VAN/AZM/EM/TET/CM/NIT/CIP/
LEV/CMX and CTR, AZM/EM/TET/CM/NIT/CIP/
LEV/CMX and VAN, EM/TET/NIT/CIP/CMX and 
AZM, TET/CM/CIP/LEV/CMX and EM, CM/NIT/CIP/
LEV/CMX and TET, NIT/CIP/LEV/CMX/ and CM, CIP/
LEV/CMX and NIT, LEV/CMX and CIP, CMX and LEV, 
and NIT and EM, CM and AZM. A moderate association 
(p = 0.035–0.017) was found between AMC/CIP/LEV 
and PG, and TET and CFM. There was a weaker corre-
lation (p > 0.05) between AZM/CM/AMC/CIP/LEV and 
CFM, and AMC/AZM and PG (Table 4).

Genotyping profile of antibiotic resistance
Antibiotic resistance genes (ARGs) of isolated Bacillus 
spp. showed unique amplified target genes (Fig. S5A-S5I). 
The ARG profiles exhibited by Bacillus spp. were catego-
rized into ten discrete types of isolates, indicating a con-
siderable degree of genetic heterogeneity (Table 5). Of the 
9 ARGs, the bla1 gene was the most frequent (71.5%), fol-
lowed by tetA (33%), erm1 (27%), blaTEM (13.7%), blaSHV 
(9.6%), and qnrS (4.1%). The blaCTX-M-1, blaCTX-M-2,  and 
sul1 genes were observed with an equivalent frequency 
of 10.1% (Fig. 2, Table S6). According to sample-wise dis-
tribution, the prevalence of bla1 was highest (80.9%) and 
qnrS was lowest (1.3%) in animal feed, whereas bla1 and 
tetA were highest (42.8%) and blaCTX-M-1 and blaCTX-M-2 
were lowest (7.1%) in food, and bla1 was highest (90.0%) 
and blaTEM and sul1 were lowest (10.0%) in diarrheal 
cases. The bla1 and erm1 genes were significantly higher 
in the diarrheal case (p < 0.01 and p < 0.05, respectively) 
compared to the animal feed and food samples. In con-
trast, the qnrS gene was significantly greater (p < 0.01) in 
animal feed compared to both food and diarrheal cases 
(Table S7). The distribution of ARGs among 7 Bacillus 
strains is shown in Fig.  3 and Table S8. Obviously, bla1 



Page 4 of 19Haque et al. BMC Microbiology           (2024) 24:61 

Ta
bl

e 
1 

A
nt

ib
io

tic
 M

IC
s 

an
d 

M
BC

 o
f B

ac
ill

us
 s

pe
ci

es
 s

tr
ai

ns
 is

ol
at

ed
 fr

om
 a

ni
m

al
 fe

ed
, f

oo
d 

an
d 

di
ar

rh
ea

M
IC

 M
in

im
um

 in
hi

bi
to

ry
 c

on
ce

nt
ra

tio
n,

 M
BC

 M
in

im
um

 b
ac

te
ric

id
al

 c
on

ce
nt

ra
tio

n,
 P

G
 P

en
ic

ill
in

 G
, A

M
C 

A
m

ox
ic

ill
in

-C
la

vu
la

ni
c 

ac
id

, C
FM

 C
efi

xi
m

e,
 C

TR
  C

ef
tr

ia
xo

ne
, V

AN
 V

an
co

m
yc

in
, A

ZM
 A

zi
th

ro
m

yc
in

, E
M

 E
ry

th
ro

m
yc

in
, 

TE
T 

Te
tr

ac
yc

lin
e,

 G
EN

 G
en

ta
m

ic
in

, C
M

 C
lin

da
m

yc
in

, N
IT

 N
itr

of
ur

an
to

in
, C

IP
 C

ip
ro

flo
xa

ci
n,

 L
EV

 L
ev

ofl
ox

ac
in

, C
M

X 
Co

-T
rim

ox
az

ol
e

A
nt

ib
io

tic
s

Ba
ct

er
ia

l 
st

ra
in

s →
 

B.
 ce

re
us

B.
 su

bt
ili

s
B.

 a
m

yl
ol

iq
ue

fa
ci

en
s

B.
 li

ch
en

ifo
rm

is
B.

 th
ur

in
gi

en
si

s
B.

 m
eg

at
er

iu
m

B.
 co

ag
ul

an
s

M
IC

 
ra

ng
e 

te
st

ed
 

(µ
g/

m
L)

M
IC

 (µ
g/

m
L)

M
BC

 (µ
g/

m
L)

M
IC

 (µ
g/

m
L)

M
BC

 (µ
g/

m
L)

M
IC

 (µ
g/

m
L)

M
BC

 (µ
g/

m
L)

M
IC

 (µ
g/

m
L)

M
BC

 (µ
g/

m
L)

M
IC

 (µ
g/

m
L)

M
BC

 (µ
g/

m
L)

M
IC

 (µ
g/

m
L)

M
BC

 (µ
g/

m
L)

M
IC

 (µ
g/

m
L)

M
BC

 (µ
g/

m
L)

PG
0.

25
–3

2
 >

 3
2

 >
 3

2
0.

5
1

0.
5

1
 >

 3
2

 >
 3

2
 >

 3
2

 >
 3

2
0.

25
0.

5
0.

25
0.

5

A
M

C
0.

01
–0

.5
0.

06
0.

12
0.

06
0.

12
0.

06
0.

12
0.

06
0.

12
0.

06
0.

12
0.

06
0.

12
0.

06
0.

12

C
FM

0.
5–

8
 >

 4
 >

 4
 >

 4
 >

 4
1

2
 >

 4
 >

 4
 >

 4
 >

 4
1

2
1

2

C
TR

 
0.

5–
8

4
8

2
4

1
2

2
4

2
4

2
4

1
2

VA
N

0.
5–

64
4

8
4

8
4

8
4

8
4

8
4

8
4

8

A
ZM

0.
5–

8
1

2
1

2
1

2
1

2
2

4
1

2
1

2

EM
0.

25
–3

2
0.

5
1

0.
25

0.
5

0.
25

0.
5

0.
25

1
0.

5
1

0.
5

1
0.

5
1

TE
T

0.
25

–3
2

2
4

2
4

2
4

2
4

4
8

4
8

2
4

G
EN

0.
5–

32
2

4
2

4
2

4
2

4
2

4
2

4
2

4

C
M

0.
25

–8
0.

25
1

0.
25

1
0.

25
0.

5
0.

5
1

0.
5

1
0.

25
0.

5
0.

5
1

N
IT

1–
12

8
16

32
16

32
16

32
16

32
32

64
16

32
16

32

C
IP

0.
12

–1
6

0.
5

1
0.

5
1

0.
5

1
1

2
1

2
0.

5
1

0.
5

1

LE
V

0.
12

–1
6

0.
5

1
0.

5
1

0.
5

1
0.

5
1

1
2

0.
5

1
0.

5
1

C
M

X
1–

12
8

2
8

2
4

2
4

2
4

2
4

2
4

2
4



Page 5 of 19Haque et al. BMC Microbiology           (2024) 24:61  

and tetA were predominantly distributed among Bacil-
lus isolates, accounting for 40.1–100%. Furthermore, B. 
cereus and B. licheniformis harbored the remaining ARGs 
(blaTEM, blaCTX-M-1, blaCTX-M-2, blaSHV, qnrS, sul1, and 
erm1) at a rate of 6.2–38.4%. Interestingly, B. coagulans 
lacked almost all of the ARGs except for the bla1 gene. 
The distribution of ARGs among animal feed, food and 
diarrheal cases is depicted in Fig. 4 and Table S9. Impor-
tantly, there were substantial variations in the prevalence 
of 6 ARGs among 7 isolated Bacillus spp., including 
blaTEM/blaCTX-M-1/blaCTX-M-2/tetA (p < 0.01), sul1/erm1 
(p < 0.05), and species-specific occurrence was observed 
(Table S8).

Pearson correlation coefficients (ρ) for pairs of ARGs 
of Bacillus isolates
A bivariate analysis conducted on ARGs of Bacil-
lus isolates showed a highly significant correlation 
(p =  < 0.001–0.000) between bla1 and blaSHV/blaCTX-

M-1/blaCTX-M-2, sul1 and blaTEM, sul1 and blaSHV, bla1 
and blaTEM/tetA/erm1, blaTEM and blaCTX-M-1/blaCTX-

M-2/blaSHV/tetA/erm1, blaCTX-M-1 and sul1/tetA/erm1, 
blaCTX-M-2 and blaSHV/sul1/tetA/erm1, blaSHV and tetA/
erm1, and erm1 and tetA, blaCTX-M-1 and blaCTX-M-2. A 
moderate association (p = 0.027–0.015) was observed 

Fig. 1 A Overall antibiogram profile of the isolated Bacillus spp. The bar diagram displayed the proportions of susceptible, intermediate 
and resistant strains among 218 isolated Bacillus strains to 14 antibiotics. PG: Penicillin G, AMC: Amoxicillin-Clavulanic acid, CFM: Cefixime, CTR: 
Ceftriaxone, VAN: Vancomycin, AZM: Azithromycin, EM: Erythromycin, TET: Tetracycline, GEN: Gentamicin, CM: Clindamycin, NIT: Nitrofurantoin, CIP: 
Ciprofloxacin, LEV: Levofloxacin, CMX: Co-Trimoxazole. B Overall antibiogram profile of 7 Bacillus strains

Table 2 Antibiotic resistance pattern of Bacillus spp. in animal 
feed, food and diarrhea

PG Penicillin G, AMC Amoxicillin-Clavulanic acid, CFM Cefixime, CTR  Ceftriaxone, 
VAN Vancomycin, AZM Azithromycin, EM Erythromycin, TET Tetracycline, 
GEN Gentamicin, CM Clindamycin, NIT Nitrofurantoin, CIP Ciprofloxacin, LEV 
Levofloxacin, CMX Co-Trimoxazole, n Number of resistant isolates, N Number 
of Bacillus isolates, * = significant (p < 0.05), ** = significant (p < 0.01), ns = non-
significant

Antibiotic Antibiotic resistance pattern (%)

Animal feed Food Diarrhea Level of 
significance

% (n/N) % (n/N) % (n/N)

PG 94.1 (143/152) 98.2 (55/56) 100 (10/10) NS

AMC 55.2 (84/152) 87.5 (49/56) 100 (10/10) **

CFM 95.3 (145/152) 100 (56/56) 100 (10/10) NS

CTR 73.6 (112/152) 67.8 (38/56) 100 (10/10) NS

VAN 69 (105/152) 73.2 (41/56) 100 (10/10) NS

AZM 23 (35/152) 30.3 (17/56) 70 (7/10) **

EM 53.9 (82/152) 60.7 (34/56) 70 (7/10) NS

TET 48.6 (74/152) 39.2 (22/56) 70 (7/10) NS

GEN 0 0 0 -

CM 23.6 (36/152) 37.5 (21/56) 20 (2/10) NS

NIT 57.2 (87/152) 46.4 (26/56) 70 (7/10) NS

CIP 44 (67/152) 33.9 (19/56) 0 *

LEV 33.5 (51/152) 23.2 (13/56) 50 (5/10) NS

CMX 80.2 (122/152) 85.7 (48/56) 100 (10/10) NS
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between qnrS/sul1 and bla1, tetA/erm1, and sul1. There 
were weaker correlations (p > 0.05) between qnrS and 
sul1/blaTEM/erm1/blaCTX-M-1/blaCTX-M-2/blaSHV/ tetA 
(Table 6).

MDR and MAR resistance profiles of Bacillus spp.
Antibiogram typing revealed that 89.6% of isolated 
Bacillus strains were MDR (Fig.  5). B. cereus exhibited 
a higher MDR (96.4%), followed by B. subtilis (93.8%), 
B. amyloliquefaciens (90%), B. licheniformis (84.6%), B. 
thuringiensis (81.8%), and B. megaterium (16.6%), while 
B. coagulans had no MDR. Moreover, MDR was found 
in 100% of  diarrheal isolates, followed by food (90.3%) 
and animal feed (88.7%) isolates. Interestingly, the spe-
cies-wise MDR patterns differed significantly (p < 0.01); 
in contrast, the sample-wise distribution was not statis-
tically different (p > 0.05) (Table  7, Table S10). Among 
the antibiogram types, pattern PG-AMC-CFM-CTR-
VAN-CMX showed the highest prevalence (12 isolates) 
in animal feed. On the contrary, the PG-AMC-CFM-
CTR-EM-VAN-NIT-CMX pattern revealed the highest 
prevalence (9 isolates) in food, whereas the PG-AMC-
CFM-CTR-VAN-CMX and PG-AMC-CFM-CTR-AZM-
EM-TET-LEV-VAN-NIT-CMX patterns revealed the 
highest prevalence (3 isolates) in diarrhea (Table 6).

Furthermore, the MAR index of Bacillus spp. was 
arranged from 0.071–0.928, while B. cereus yielded the 
highest MAR index, ranging from 0.285–0.928, fol-
lowed by B. thuringiensis (0.142–0.857), B. subtilis 

(0.142–0.642), B. amyloliquefaciens/B. licheniformis 
(0.142–0.571), B. megaterium (0.142–0.285), and B. 
coagulans (0.071–0.142). Regarding sample type, animal 
feed isolates had the highest MAR index (0.428–0.928), 
followed by diarrheal isolates (0.428–0.857) and food 
isolates (0.071–0.714) (Table S10, Table 6). In our study, 
90.3% of  isolates showed a  MAR index > 0.2, with 100, 
94.6, and 88.1% from diarrhea, food, and animal feed, 
respectively. Furthermore, there was a substantial vari-
ation (p < 0.05) among the MAR index having > 0.2 of 
seven Bacillus strains, while no significant difference 
(p > 0.05) was observed among different sample types 
(Tables S11 and  S12).

Discussion
In the current study, the isolated Bacillus strains were 
sensitive to GEN, CIP, LEV, CM, AMC, TET, EM, AZM, 
NIT, and CMX, which was consistent with the previous 
reports [4, 5, 7, 9, 12, 20, 23, 24]. However, there were 
species-specific sensitivities of the Bacillus strains to CIP, 
LEV, CM, TET, EM, AZM, and NIT at various doses. 
Regarding the resistant pattern, diarrheal strains were 
completely resistant to PG, AMC, CFM, CTR, VAN, and 
CMX, whereas animal feed-borne strains were generally 
resistant to PG, AMC, CFM, VAN, and CMX, and food-
originated strains were generally resistant to PG, CFM, 
CTR, and CMX. As for different species, B. cereus, B. 
thuringiensis, and B. licheniformis strains were all com-
pletely resistant to the beta-lactam antibiotics of PG and 

Table 3 Antibiotic resistant pattern of seven Bacillus species

PG Penicillin G, AMC Amoxicillin-Clavulanic acid, CFM Cefixime, CTR  Ceftriaxone, VAN Vancomycin, AZM Azithromycin, EM Erythromycin, TET Tetracycline, GEN 
Gentamicin, CM Clindamycin, NIT Nitrofurantoin, CIP Ciprofloxacin, LEV Levofloxacin, CMX Co-Trimoxazole. n Number of resistant isolates, N Number of Bacillus 
isolates, *significant (p < 0.05), **significant (p < 0.01)

Antibiotics Fractions of resistant isolates Level of 
significance

B. cereus B. subtilis B. amyloliquefaciens B. licheniformis B. thuringiensis B. megaterium B. coagulans

% (n/N) % (n/N) % (n/N) % (n/N) % (n/N) % (n/N) % (n/N)

PG 100 (112/112) 98 (48/49) 95 (19/20) 100 (13/13) 100 (11/11) 62.5 (5/8) 20 (1/5) **
AMC 80.3 (90/112) 63.3 (31/49) 25 (5/20) 30.7 (4/13) 45.5 (5/11) 12.5 (1/8) 0 **
CFM 100 (112/112) 100 (49/49) 95 (19/20) 100 (13/13) 100 (11/11) 75.0 (6/8) 40 (2/5) **
CTR 97.4 (109/112) 79.6 (39/49) 15 (3/20) 23.1 (3/13) 45.5 (5/11) 0 0 **
VAN 92.8 (104/112) 73.5 (36/49) 10 (2/20) 46.1 (6/13) 8/11 (72.7) 0 0 **
AZM 37.5 (42/112) 8.2 (4/49) 15 (3/20) 30.8 (4/13) 54.5 (6/11) 0 0 **
EM 85.7 (96/112) 14.3 (7/49) 30 (6/20) 53.8 (7/13) 45.5 (5/11) 12.5 (1/8) 0 **
TET 70.5 (79/112) 8.2 (4/49) 35 (7/20) 38.5 (5/13) 45.5 (5/11) 37.5 (3/8) 0 **
GEN 0 0 0 0 0 0 0 -
CM 27.7 (31/112) 14.3 (7/49) 40 (8/20) 53.8 (7/13) 54.5 (6/11) 0 0 **
NIT 79.4 (89/112) 26.5 (13/49) 30 (6/20) 61.5 (8/13) 45.5 (5/11) 0 0 **
CIP 38.4 (43/112) 36.7 (18/49) 35 (7/20) 61.5 (8/13) 54.5 (6/11) 0 0 *
LEV 42.8 (48/112) 14.3 (7/49) 35 (7/20) 30.8 (4/13) 54.5 (6/11) 0 0 **
CMX 97.3 (109/112) 91.8 (45/49) 75 (15/20) 61.5 (8/13) 27.3 (3/11) 0 0 **
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CFM, while B. subtilis strains were completely resistant 
to CFM. Moreover, they were generally resistant to PG, 
AML, CFM, CTR, VAN, EM, TET, and NIT compared to 
AZM, CM, CIP, and LEV, which was compatible with the 
other studies [1, 3, 5, 7, 8, 20, 23–25].

The B. cereus strains were generally sensitive to GN, 
CIP, and LEV, while intermediately sensitive to AZM, 
CM, and TET. In contrast, they were generally resistant 
to PG, CFM, CTR, CFM, VAN, EM, AMC, NIT, and TET. 
This result agreed with earlier findings [4, 7, 20, 23, 24, 
26–28], which were isolated from rice, cereals, chicken 
meat, fresh vegetables, edible fungi, powdered milk, 
foodstuffs, human stool, and clinical samples. The iso-
lated B. subtilis was generally sensitive to GEN, LEV, CM, 
and CIP; intermediately sensitive to EM, TET, AZM, and 
NIT; and generally resistant to CFM, PG, CMX, CTR, 
VAN, and AMC. However, this bacteria strain detected 
in bread, powdered milk, soil, and shrimp culture ponds 
showed sensitivity to GEN, VAN, CM, EM, TET, and 
CMX while  being resistant to PG, ampicillin, cefpo-
doxime, and cefepime [4, 9, 29, 30]. These two dominant 
species had species-specific responses to AMC, AZM, 
EM, TET, NIT, and LEV. The main factor might be large 
abuse, which prolongs time. The high sensitivity to GEN, 
CIP, and LEV could be attributed to the limited admin-
istration of CIP and LEV, while GEN is not absorbed via 
oral application. Consequently, CTR, CFM, AMC, CMX, 
and NIT were largely abused in the animal industry 

and added frequently against infectious diseases. On 
the other hand, antibiotic regulation contributes to AMR. 
In several countries, CIP and LEV are prohibited for use 
on animals due to human drugs.

It is worth mentioning that 89.6% of Bacillus isolates 
were MDR, with 100% of isolates from diarrhea, 90.3% 
from food, and 88.7% from animal feed exhibiting the 
MDR pattern. These findings were consistent with other 
reports that found MDR Bacillus spp. in several sources, 
including food [4, 5, 7, 31, 32]. In our investigation, 100% 
B. cereus and 91.8% B. subtilis isolates yielded MAR 
indexes  > 0.2, indicating plasmid-mediated resistance 
and a significant risk of contamination. This implies a 
high inclination and trend for antibiotic resistance among 
the MDR bacterial isolates [33]. In Bangladesh, MDRs of 
E. coli, Salmonella spp., Campylobacter spp., and Enter-
obacter spp. were detected in livestock populations due 
to contamination of animal-derived food and food prod-
ucts [3]. However, MDR in Bacillus spp.  has  not been 
reported. Our data indicated Bacillus strains might pro-
duce extended-spectrum beta-lactamase (ESBL) and 
resistance to third-generation cephalosporins (CFM and 
CTR), macrolide (EM), tetracycline, second- and third-
generation quinolones (CIP and LEV), and sulfonamides 
(CMX).

In this study, genes encoding β-lactamase (bla1, blaTEM, 
blaCTX-M-1, blaCTX-M-2, blaSHV), fluroquinolone (qnrS), 
sulfonamide (sul1), tetracycline (tetA), and macrolide 

Fig. 2 Distribution of antibiotic resistance genes of Bacillus spp. isolated from animal feed, food and diarrheal cases in Bangladesh. The numerical 
value displayed above each bar shows the positive rate associated with the respective antibiotic resistance genes
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Fig. 3 Species wise distribution of antibiotic resistance gene of Bacillus spp. isolated from animal feed, food and diarrheal cases in Bangladesh. The 
numerical value displayed above each specific color bar shows the positive rate associated with antibiotic resistance genes of the respective Bacillus 
strains

Fig. 4 Sample wise distribution of antibiotic resistance gene of Bacillus spp. isolated from animal feed, food and diarrheal cases in Bangladesh. The 
numerical value displayed above each specific color bar shows the positive rate associated with respective antibiotic resistance genes in animal 
feed, food and diarrhea
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(erm1) were derived from animal feed, food, and diar-
rhea. The most commonly observed β-lactamase genes 
were bla1 than blaTEM, blaCTX-M-1, blaCTX-M-2, and blaSHV 

among Bacillus strains. Similar detection of the bla1 gene 
in Bacillus strains was reported by other isolates from 
chicken meat, meat products, human stool, food, and the 

Table 6 Pearson correlation coefficients for pairs of ARGs of Bacillus isolates from animal feed, food and diarrhea

ARGs Antibiotic resistance genes, *Correlation is significant at the 0.05 level (2-tailed), **Correlation is significant at the 0.01 level (2 tailed)

Statistical analysis bla1 blaTEM blaCTX-M-1 blaCTX-M-2 blaSHV qnrS sul1 tetA erm1

bla1 Pearson Correlation Coefficient 1

p-value (two tailed) -

blaTEM Pearson Correlation Coefficient 0.252** 1

p-value (two tailed)  < 0.001 -

blaCTX-M-1 Pearson Correlation Coefficient 0.211** 0.839** 1

p-value (two tailed) 0.002  < 0.001 -

blaCTX-M-2 Pearson Correlation Coefficient 0.211** 0.839** 1.000** 1

p-value (two tailed) 0.002  < 0.001 0.000 -

blaSHV Pearson Correlation Coefficient 0.206** 0.817** 0.975** 0.975** 1

p-value (two tailed) 0.002  < 0.001  < 0.001  < 0.001 -

qnrS Pearson Correlation Coefficient 0.165* 0.092 0.096 0.096 0.097 1

p-value (two tailed 0.015 0.176 0.157 0.157 0.153 -

sul1 Pearson Correlation Coefficient 0.150* 0.208** 0.239** 0.239** 0.233** 0.016 1

p-value (two tailed 0.026 0.002  < 0.001  < 0.001  < 0.001 0.815 -

tetA Pearson Correlation Coefficient 0.443** 0.569** 0.477** 0.477** 0.465** 0.098 0.150* 1

p-value (two tailed  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 0.151 0.027 -

erm1 Pearson Correlation Coefficient 0.384** 0.656** 0.550** 0.550** 0.536** 0.093 0.159* 0.867** 1

p-value (two tailed  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 0.169 0.019  < 0.001 -

Fig. 5 Distributions of multidrug resistant pattern in isolated Bacillus spp., animal feed, food, diarrhea and overall. The numerical value displayed 
above each specific bar shows the positive rate of the respective multidrug resistance pattern
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Table 7 MDR profile of the isolated Bacillus spp

Source Pattern No Antibiotic Resistance 
Pattern

No. of 
antibiotics 
(classes)

No of 
resistance 
isolates

MDR isolates (%) MAR index Level of significance

Animal feed 1 CFM 1(1) 1 0 (0) 0.071 NS (p = 0.517)

2 PG-CFM 2 (1) 9 0 (0) 0.142

3 PG-AMC-CFM 3(1) 1 0 (0) 0.214

4 PG-CFM-TET 3(2) 2 0 (0) 0.214

5 PG-CFM-CTR-CMX 4 (1) 2 0 (0) 0.285

6 PG-CFM-CTR-NIT 4 (2) 2 0 (0) 0.285

7 PG-CFM-TET-EM 4(3) 1 1 (0.6) 0.285

8 PG-CFM-CTR-TET-NIT 5 (3) 1 1 (0.6) 0.357

9 PG-CFM-CTR-TET-CMX 5 (3) 1 1 (0.6) 0.357

10 PG-CFM-CTR-NIT-CMX 5 (3) 3 3 (1.9) 0.357

11 PG-AMC-CFM-CTR-VAN-CMX 6 (3) 12 12 (7.7) 0.428

12 PG-CTR-AZM-NIT-CMX 5 (4) 1 1 (0.6) 0.357

13 PG-CFM-TET-CIP-LEV-VAN 6 (4) 3 3 (1.9) 0.428

14 PG-CFM-CTR-EM-VAN-CMX 6 (4) 2 2 (1.2) 0.428

15 PG-CFM-CTR-CIP-NIT-CMX 6 (4) 4 4 (2.5) 0.428

16 PG-CFM-EM-CIP-LFV-VAN 6 (4) 1 1 (0.6) 0.357

17 PG-CFM-LEV-VAN-NIT-CMX 6 (5) 1 1 (0.6) 0.428

18 PG-CFM-CIP-VAN-NIT-CMX 6 (5) 2 2 (1.2) 0.428

19 CFM-EM-CIP-CL-NIT-CMX 6 (6) 1 1 (0.6) 0.428

20 PG-AMC-CFM-CTR-EM-TET-
CMX

7 (4) 1 1 (0.6) 0.5

21 PG-AMC-CFM-CTR-EM-VAN-
CMX

7 (4) 2 2 (1.2) 0.5

22 PG-AMC-CFM-CTR-CIP-VAN-
CMX

7 (4) 1 1 (0.6) 0.5

23 PG-CFM-CIP-LEV-VAN-NIT-
CMX

7 (5) 1 1 (0.6) 0.5

24 PG-CFM-CTR-EM-VAN-NIT-
CMX

7 (5) 1 1 (0.6) 0.5

25 PG-CFM-AZM-CIP-LEV-CM-
VAN

7 (5) 2 2 (1.2) 0.5

26 PG-CFM-CTR-EM-TET-VAN-
CMX

7 (5) 2 2 (1.2) 0.5

27 PG-CFM-TET-CIP-LEV-VAN-
CMX

7 (5) 1 1 (0.6) 0.5

28 PG-CFM-CTR-EM-CIP-VAN-
CMX

7 (5) 2 2 (1.2) 0.5

29 PG-CFM-AZM-EM-CIP-NIT-
CMX

7 (5) 1 1 (0.6) 0.5

30 PG-CFM-AZM-EM-TET-CM-VAN 7 (5) 1 1 (0.6) 0.5

31 PG-CFM-EM-CIP-CM-NIT-CMX 7 (6) 2 2 (1.2) 0.5

32 PG-CFM-CTR-CIP-LEV-VAN-
NIT-CMX

8 (5) 1 1 (0.6) 0.571

33 PG-CFM-CTR-TET-CIP-LEV-
VAN-NIT

8 (5) 2 2 (1.2) 0.571
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Table 7 (continued)

Source Pattern No Antibiotic Resistance 
Pattern

No. of 
antibiotics 
(classes)

No of 
resistance 
isolates

MDR isolates (%) MAR index Level of significance

34 PG-AMC-CFM-CIP-LEV-CM-
NIT-CMX

8 (5) 1 1 (0.6) 0.571

35 PG-AMC-CFM-CTR-EM-TET-
VAN-CMX

8 (5) 2 2 (1.2) 0.571

36 PG-AMC-CFM-CTR-LEV-VAN-
NIT-CMX

8 (5) 3 3 (1.9) 0.571

37 PG-AMC-CFM-CTR-TET-VAN-
NIT-CMX

8 (5) 2 2 (1.2) 0.571

38 PG-AMC-CFM-CTR-TET-LEV-
VAN-CMX

8 (5) 1 1 (0.6) 0.571

39 PG-AMC-CFM-CTR-EM-VAN-
NIT-CMX

8 (5) 3 3 (1.9) 0.571

40 PG-CFM-AZM-EM-TET-CM-
VAN-CMX

8 (6) 2 2 (1.2) 0.571

41 PG-AMC-CFM-EM-CIP-CM-
NIT-CMX

8 (6) 3 3 (1.9) 0.571

42 PG-CFM-TET-CIP-LEV-VAN-
NIT-CMX

8 (6) 2 2 (1.2) 0.571

43 PG-CFM-CTR-AZM-TET-CIP-
NIT-CMX

8 (6) 2 2 (1.2) 0.571

44 PG-CFM-CTR-EM-TET-VAN-
NIT-CMX

8 (6) 2 2 (1.2) 0.571

45 PG-CFM-EM-TET-CIP-VAN-NIT-
CMX

8 (7) 1 1 (0.6) 0.571

46 PG-AMC-CFM-CTR-AZM-EM-
CM-NIT-CMX

9 (5) 2 2 (1.2) 0.642

47 PG-AMC-CFM-CTX-AZM-EM-
TET-NIT-CMX

9 (5) 1 1 (0.6) 0.642

48 PG-AMC-CFM-CTR-TET-CIP-
LEV-VAN-CMX

9 (5) 1 1 (0.6) 0.642

49 PG-AMC-CFM-CTX-EM-CM-
VAN-NIT-CMX

9 (6) 2 2 (1.2) 0.642

50 PG-AMC-CFM-CTR-EM-TET-
VAN-NIT-CMX

9 (6) 4 4 (2.5) 0.642

51 PG-AMC-CFM-CTR-EM-TET-
CIP-LEV-VAN-CMX

9 (6) 1 1 (0.6) 0.642

52 PG-AMC-CFM-CTR-TET-CIP-
VAN-NIT-CMX

9 (6) 1 1 (0.6) 0.642

53 PG-AMC-CFM-TET-CIP-LEV-
VAN-NIT-CMX

9 (6) 1 1 (0.6) 0.642

54 PG-CFM-CTR-EM-TET-LEV-
VAN-NIT-CMX

9 (7) 1 1 (0.6) 0.642

55 PG-CFM-CTX-EM-TET-CIP-VAN-
NIT-CMX

9 (7) 1 1 (0.6) 0.642

56 PG-AMC-CFM-CTR-AZM-EM-
CM-VAN-NIT-CMX

10 (6) 4 4 (2.5) 0.714

57 PG-AMC-CFM-CTR-AZM-ER-
TET-CIP-LEV-VAN-CMX

11 (6) 4 4 (2.5) 0.785

58 PG-AMC-CFM-CTR-EM-TET-
CIP-LEV-VAN-NIT-CMX

11 (7) 5 5 (3.2) 0.785

59 PG-AMC-CFM-CTR-AZM-EM-
TET-CIP-LEV-CM-VAN-NIT

12 (7) 4 4 (2.5) 0.857

60 PG-AMC-CFM-CTR-AZM-EM-
TET-CIP-LEV-VAN-NIT-CMX

12 (7) 7 7 (4.5) 0.857
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Table 7 (continued)

Source Pattern No Antibiotic Resistance 
Pattern

No. of 
antibiotics 
(classes)

No of 
resistance 
isolates

MDR isolates (%) MAR index Level of significance

61 PG-CFM-CTR-EM-TET-LEV-CM-
VAN-NIT-CMX

10 (8) 2 2 (1.2) 0.714

62 PG-CFM-CTR-EM-TET-CIP-LEV-
CM-VAN-NIT-CMX

11 (8) 1 1 (0.6) 0.785

63 PG-AMC-CFM-CTR-EM-TET-
CIP-LEV-CM-VAN-NIT-CMX

12 (8) 5 5 (3.2) 0.857

64 PG-AMC-CFM-CTR-AZM-EM-
TET-CIP-CM-VAN-NIT-CMX

12 (8) 3 3 (1.9) 0.857

65 PG-AMC-CFM-CTR-AZM-EM-
TET-CIP-LEV-CM-VAN-NIT-CMX

13 (8) 7 7 (4.5) 0.928

Total 151 134 (88.7)

Food 1 PG 1 (1) 1 0 (0) 0.071

2 PG-CFM 2 (1) 3 0 (0) 0.142

3 PG-AMC-CFM-LEV 4 (2) 1 0 (0) 0.285

4 PG-AMC-CFM-LEV-NIT 5 (3) 1 1 (0.6) 0.357

5 PG-AMC-CFM-LEV-CMX 5 (3) 2 2 (1.2) 0.357

6 PG-CFM-CIP-CM-CMX 5 (4) 1 1 (2.1) 0.357

7 PG-CFM-TET-CIP-LEV-VAN 6 (4) 3 3 (6.2) 0.428

8 PG-AMC-CFM-CIP-LEV-CM-
CMX

8 (4) 1 1 (2.1) 0.571

9 CFM-EM-TET-CM-CMX 5 (5) 1 1 (2.1) 0.357

10 PG-CFM-EM-TET-CM-CMX 6 (5) 3 3 (6.2) 0.428

11 PG-CFM-EM-CIP-CM-CMX 6 (5) 2 2 (4.1) 0.428

12 PG-AMC-CFM-CTR-VAN-CMX 6 (3) 1 1 (2.1) 0.428

13 PG-AMC-CFM-CTR-VAN-NIT-
CMX

7 (4) 2 2 (4.1) 0.5

14 PG-AMC-CFM-CTR-CIP-LEV-
VAN-CMX

8 (4) 3 3 (6.2) 0.571

15 PG-AMC-CFM-CTR-AZM-CM-
VAN-CMX

8 (5) 4 4 (8.3) 0.571

16 PG-AMC-CFM-CTR-EM-CM-
VAN-CMX

8 (5) 1 1 (2.1) 0.571

17 PG-AMC-CFM-CTR-EM-VAN-
NIT-CMX

8 (5) 9 9 (18.7) 0.571

18 PG-AMC-CFM-CTR-AZM-EM-
CM-VAN-CMX

9 (5) 3 3 (6.2) 0.642

19 PG-AMC-CFM-CTR-EM-TET-
VAN-NIT-CMX

9 (6) 5 5 (10.4) 0.642

20 PG-AMC-CFM-CTR-AZM-EM-
TET-VAN-NIT-CMX

10 (6) 5 5 (10.4) 0.714

Total 52 47 (90.3)

Diarrhea 1 PG-AMC-CFM-CTR-VAN-CMX 6 (3) 3 3 (30.0) 0.428

2 PG-AMC-CFM-CTR-AZM-EM-
TET-VAN-NIT-CMX

10 (6) 2 2 (20.0) 0.714

3 PG-AMC-CFM-CTR-AZM-EM-
TET-LEV-VAN-NIT-CMX

11 (7) 3 3 (30.0) 0.785

4 PG-AMC-CFM-CTR-AZM-EM-
TET-LEV-CM-VAN-NIT-CMX

12 (8) 2 2 (20.0) 0.857
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environment [27, 34, 35]. However, some of our findings 
were inconsistent with the previous studies [23, 36, 37]. 
They observed a higher prevalence of blaTEM, blaCTX-M-1, 
blaCTX-M-2, and  blaSHV in waste water, clinical samples, 
and food samples. The second dominant gene was  the 
tetA gene in our study, which was consistent with prior 
studies [8, 18, 25], but other authors reported a higher 
occurrence [28, 35]. The prevalence of the erythromy-
cin-resistant gene, erm1, was low compared to earlier 
reports [9, 25, 35, 37]. Furthermore, our study revealed 
a low prevalence of sulfonamide, sul1 and quinolone, 
and qnrS resistance genes. The sul1 gene in Bacillus 
strains isolated from aquaculture ponds was lower than 
our report [1], whereas the sul1 gene in wastewater was 
higher than our report [37]. Bacillus spp. are often used 
as food microbial additives and spread ARGs by horizon-
tal transfer of plasmids, leading to the failure of antibiotic 
treatment and dramatically altering their phenotypes [4, 
5, 38]. The Bacillus anthrax-associated plasmids pXO1 
and pXO2 have been detected in certain B. cereus strains 
with pathogenic potential resembling B. anthracis [39]. 
For instance, atypical B. cereus strains such as B. cereus 
G9241, B. cereus biovar anthracis CA, Bcbva, and Bcbva-
like strain BC-AK were linked to anthrax-like disease in 
mammals, livestock, and humans in the United States, 
China, and West Africa, implying that it may be wide-
spread [40]. The highly efficient mobilization capacities 
and horizontal gene transfer may pose a serious threat 
to gene circulation, particularly ARGs. Probiotic Bacillus 
spp. have already been connected to clinical infections, 
as well as β-lactams, aminoglycosides, macrolides, chlo-
ramphenicol, tetracycline, and erythromycin resistance 
genes, which may contribute to the spread of ABR in 
animal microbiota and the possible transmission of ARG 
to humans [10]. Nevertheless, abusive antibiotic use can 
transmit antibiotic residues in foods derived from ani-
mals, like milk, meat, and eggs, as well as in the environ-
ment [6]. As a potential driver of both genes and bacteria 
resistant to antibiotics, the ARG may be further transmit-
ted to people directly through the food chain [10].

The high resistance of Bacillus strains to CFM, CTR, 
AMC, and PG might be caused by β-lactamase and the 

presence of ABC (ATP binding cassette) efflux trans-
porters from B. subtilis that are tolerant to lincosamide 
[25, 26]. The different antibiotic mechanisms might be 
associated with inherent resistance, built-up resistance, 
gene modification, and DNA transfer that aid in bacterial 
survival by manipulating the penicillin binding protein 
(PBP), enzymatic blockage, porin mutations, and efflux 
pumps [6]. The current study revealed that Bacillus iso-
lates primarily carried the β-lactamase resistance genes 
bla1, blaTEM, blaCTX-M-1, blaCTX-M-2, blaSHV, tetracycline 
resistance gene tetA, and erythromycin resistance gene 
erm1, respectively. It was confirmed that certain ARG 
classes could be acquired by the majority of antibiot-
ics and evaluated in various Bacillus strains. According 
to resistant gene distribution, 10 distinct ARG patterns 
were detected in the isolates. The association of the above 
β-lactamase and other antibiotic genes within the same 
isolate has been reported [9, 23, 28, 36, 37]. However, the 
most common associations were bla1 + erm1, bla1 + tetA, 
bla1 + blaTEM, blaTEM + tetA, and blaCTX-M-1 + tetA 
(Table S2). This occurrence indicates a greater spread of 
β-lactamase, tetracycline, and erythromycin genes, most 
likely owing to a genetic component in their mobilization 
as well as the horizontal transfer of ABR determinants 
between Bacillus strains or from other bacteria into 
Bacillus spp. [7, 8, 36].

In our prior study, we revealed a high Bacillus spp. con-
tamination level with significant toxigenic potential in 
several resources, including animal feed, animal-derived 
goods, and regular food items [15], where 90.3% of iso-
lates displayed > 0.2 MAR index, indicating a high-risk 
source of contamination [41]. The presence of MDR and 
MAR Bacillus in animal feed, food, and diarrhea indi-
cated that the abuse  of antibiotics poses a severe public 
health hazard by transmitting AMR to people through 
the food supply chain.

There is a dearth of research data on the transmis-
sion of ARGs and the AMR of Bacillus strains in Bang-
ladesh. According to a review report, the emergence 
of AMR is mainly attributed to antibiotic misuse or 
overuse by  broiler (> 60%) and layer (94.6%) farmers as 
over-the-counter medication and failure to maintain 

Table 7 (continued)

Source Pattern No Antibiotic Resistance 
Pattern

No. of 
antibiotics 
(classes)

No of 
resistance 
isolates

MDR isolates (%) MAR index Level of significance

Total 10 10 (100)

Grand Total 
(overall MDR 
isolates)

213 191 (89.6)

MDR Multidrug resistance, PG Penicillin G, AMC Amoxicillin-Clavulanic acid, CFM Cefixime, CTR  Ceftriaxone, VAN Vancomycin, AZM Azithromycin, EM Erythromycin, TET 
Tetracycline, CM Clindamycin, NIT Nitrofurantoin, CIP Ciprofloxacin, LEV Levofloxacin, CMX Co-Trimoxazole, NS Not significant
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the drug withdrawal period [3]. Empirical data sug-
gests that antibiotic residues against Bacillus spp. exist 
in the liver and kidney as well as in commercially avail-
able feed in Bangladesh, acting as a subtherapeutic dose 
that hastens the emergence of AMR [15, 42]. Unhygienic 
livestock and poultry farming in Bangladesh is a signifi-
cant risk indicator for spreading zoonotic bacteria and 
antibiotic  resistance to people and the environment [3]. 
Our data confirmed that AMR- B. cereus strains pre-
vailed in all analyzed samples. The significance of this 
finding is underlined by earlier research [4, 5, 7, 20, 24, 
25] that showed Bacillus spp. can transfer ARGs. Bang-
ladesh urgently requires the development of effective 
surveillance and control plans for the identification and 
prevention of ABR bacteria utilizing standard antibiotic 
susceptibility tests in regular animal and human micro-
biological laboratory settings.

Conclusion
It is the first investigation of the presence of ARGs of 
Bacillus spp. with public health significance in animal 
feed, food, and human stool in Bangladesh. The feed- 
and food-borne Bacillus spp. exhibited species-specific 
trends in both phenotypic and genotypic resistance pat-
terns with respect to antibiotic resistance. The asso-
ciations of various antibiotic-resistant genes indicated a 
greater spread of β-lactamase, tetracycline, and eryth-
romycin genes across the food chain. Animal feed and 
animal-derived products might serve as a channel for B. 
cereus propagation regarding their potential pathogenic-
ity and  the development of AMR in humans. This work 
validates the sources examined as major outlets for the 
spread of MDR bacteria and ARGs in the food chain of 
Bangladesh and once again highlights the urgency of a 
global campaign to combat AMR.

Materials and methods
Sampling, selection, isolation, storage, and molecular 
characterization of Bacillus spp. isolates
A total of 218 Bacillus spp. isolates were examined and 
retrieved in our previous study (Table S1), including ani-
mal feed (n = 90), food (n = 40), and human stool (n = 50) 
in southeast Bangladesh [15]. These Bacillus spp. strains 
were initially detected and isolated through cultivation on 
MYPA (HiMedia, Mumbai, Maharashtra, India) plates, 
grams staining, biochemical assays, and PCR target-
ing 16srDNA, nheABC, hblACD, cytK, and entFM genes 
[15, 43, 44] The strains were preserved in TSB medium 
(HiMedia, Mumbai, Maharashtra, India) containing 15% 
glycerol at -800C. The bacterial strains were cultivated 
aerobically in TSB at 37 °C with agitation at 225 rpm. The 
Ethical Reviewing Board on Institutional Animal Care 
and Use Committee at Noakhali Science and Technology 

University, Bangladesh, granted approval for the experi-
mental protocols. An Informed Consent Form (ICF) was 
obtained prior to initiating research activities and col-
lecting human stool samples.

Antibiotic susceptibility test of the Bacillus isolates
Minimum inhibitory concentration (MIC)
To assess any link between antimicrobial resistance 
patterns and the chosen antibiotic category, the anti-
biogram profile of isolates was tested by estimating the 
MIC in appropriate broth using sterile U bottom 96-well 
plates with lids (SPL Life Science, Pochon, Kyonggi-do, 
South Korea) employing the  microtiter broth dilution 
method [45]. The MIC represented the lowest level of 
antimicrobial that completely inhibited the growth of 
the organism. According to 2020 Clinical and Labora-
tory Standards Institute (CLSI) criteria, susceptible, 
intermediate, and resistant MIC (μg/ml) interpretation 
was done ([45], Table S13). Briefly, 2–3 single pure fresh 
colonies of Bacillus spp. grown on NA (24  h old) were 
inoculated into 5 ml of MHB (HiMedia, Mumbai, Maha-
rashtra, India) and kept at  370C for up to 8 h. To stand-
ardize the turbidity of bacterial suspension, MHB was 
used to achieve a turbidity of 0.5 McFarland concentra-
tion (1 ×  105  CFU/mL) through a two-fold serial dilu-
tion of antibiotics through visual evaluation with a card 
featuring a white backdrop and distinct black lines. The 
microtiter plates were incubated in a shaking incubator 
at  370C. The lowest concentration that inhibited indica-
tor strains growth was noted. All MIC tests were done in 
triplicate. Staphylococcus aureus ATCC 29213 was used 
as a positive control.

Minimum Bactericidal Concentration (MBC)
Five microliters of inoculum from the MIC experiment’s 
well that had no bacterial growth after 24  h were spot-
ted on NA (HiMedia, Mumbai, Maharashtra, India). The 
plates were incubated at  370C for 16 to 24 h in order to 
evaluate the MBC described earlier [46]. MBC was set as 
the lowest level on a NA plate where there was no vis-
ual growth. Bacillus spp. was detected, and it was deter-
mined that the  growth of bacteria was bacteriostatic,  
while the absence of growth indicated bactericidal effects. 
The NA plate was cultivated with the indicated inoculum 
dilution to test for contamination and cell viability [45]. 
All analyses were performed in triplicate.

Determination of multidrug resistant (MDR) and multiple 
antibiotic resistance (MAR) index
MDR was considered to have at least one agent that 
was  resistant to three or more types of antibiotics [47]. 
The following 14 antibiotics procured in powdered form 
from Sisco Research Laboratories Pvt. Ltd. (SRL, E, 
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Mumbai, Maharashtra 400,099, India) were used: Peni-
cillin G, PG (0.25–32  µg/mL); Amoxicillin + Clavulanic 
acid, AMC (0.01–0.5 µg/mL); Cefixime, CFM (0.5–4 µg/
mL); Ceftriaxone, CTR (1–8  µg/mL); Azithromycin, 
AZM (0.5–8  µg/mL); Erythromycin, EM (0.25–32  µg/
mL); Tetracycline, TET (0.25–32 µg/mL); Ciprofloxacin, 
CIP (0.12–16  µg/mL); Levofloxacin, LEV (0.12–16  µg/
mL); Clindamycin, CM (0.25–8  µg/mL); Vancomycin, 
VAN (0.5–32  µg/mL); Gentamicin, GEN (0.5–32  µg/
mL); Nitrofurantoin, NIT (32–128  µg/mL), and Co-Tri-
moxazole, CMX (1–128 µg/mL). The MAR index of iso-
lated Bacillus spp. was determined as a/b, where “a” is the 
number of antibiotics to which a strain is resistant and 
“b” is the total number tested [41].

Resistance genotyping
The genomic DNA of various Bacillus species isolated 
from animal feed, food, and stool samples was extracted 
utilizing the TaKaRa MiniBEST Bacteria Genomic 
DNA Extraction Kit Ver.3.0 (GW Vitek, Seoul, Korea). 
Following the manufacturer’s instructions, pure colo-
nies of Bacillus spp. isolates were prepared for DNA 
extraction from Tryptic Soy Broth (TSB) and Luria 
Bertani (LB) broth. A NanoDropTM 8000 spectropho-
tometer (Thermo Scientific, California, USA) was utilized 
to measure the concentration and purity of the eluted 
DNA.

Phenotypically resistant Bacillus spp. were screened 
by PCR for 9 ARGs, including 5 β-lactamase (bla1, 

blaTEM, blaCTX-M-1, blaCTX-M-2,  and blaSHV), single flu-
roquinolone (qnrS), sulfonamide (sul1), tetracycline 
(tetA), and macrolide (erm1). PCR protocols were fol-
lowed exactly as reported earlier [1, 8, 23, 36, 48–50] 
(Table 8, Table S14). B. cereus ATCC 14579 and E. coli 
ATCC 25922 served as positive controls, while sterile 
Milli-Q water (Sigma Aldrich, Bengaluru, Karnataka 
560,099, India) served as a negative control. The PCR 
reaction was performed in a 25  µl volume with One-
TaqQuick-Load 2 × Master Mix (New England Biolabs 
Inc., United States), 0.2  µmol  L−1 final concentration 
of each primer, and 2.5 µl of ready DNA template. PCR 
was conducted on a  T100 Thermal cycler (Bio-Rad, 
United States). The PCR products were analyzed on 
1.5% agarose gel (MP Biomedicals LLC, United States) 
with a Mini-Sub Cell GT Horizontal Electrophoresis 
System (Bio-Rad, United States), stained with Ethidium 
bromide (EtBr), displayed with a UV transilluminator 
(Gel Doc EZ), and imaged using a gel documentation 
system.

Statistical analysis
The antibiotic susceptibility results were provided in 
MS-2016 Excel sheets and analyzed using IBM SPSS 
Statistics version 24 (SPSS Inc., Chicago, IL, USA). The 
prevalence was computed by a descriptive study and the 
Chi-square test, and the degree of significance was estab-
lished using Pearson correlation coefficients. The statisti-
cal significance was calculated as ∗p < 0.05 and ∗∗p < 0.01.

Table 8 Primer used in this study

Primer Sequence (5´ → 3´) Annealing temperature (oC) Product size (bp) Reference

bla1 F = CAT TGC AAG TTG AAG CGA AA 50 680 [27]

R = TGT CCC GTA ACT TCC AGC TC

blaTEM F = ATG AGT ATT CAA CAT TTC CG 55 850 [25]

R = CCA ATG CTT AAT CAG TGA GG

blaCTX-M-1 F = AAA AAT CAC TGC GCC AGT TC 52 415 [25]

R = AGC TTA TTC ATC GCC ACG TT

blaCTX-M-2 F = CGA CGC TAC CCC TGC TAT T 52 552 [25]

R = CCA GCG TCA GAT TTT TCA GG

blaSHV F = GCG AAA GCC AGC TGT CGG GC 62 304 [26]

R = GAT TGG CGG CGC TGT TAT CGC 

qnrS F = GCA AGT TCA TTG AAC AGG GT 54 428 [28]

R-TCT AAA CCG TCG AGT TCG GCG 

sul1 F = CGG CGT GGG CTA CCT GAA CG 57 433 [1]

R = GCC GAT CGC GTG AAG TTC CG

tetA F = GGC GGT CTT CTT CAT CAT GC 58 502 [8]

R = CGG CAG GCA GAG CAA GTA GA

ermA F = TCT AAA AAG CAT GTA AAA GAA 52 645 [50]

R = CTT CGA TAG TTT ATT AAT ATT AGT 
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