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Abstract
Background: The incidence and diversity of human methanogens are insufficiently characterised
in the gastrointestinal tract of both health and disease. A PCR and clone library methodology
targeting the mcrA gene was adopted to facilitate the two-fold aim of surveying the relative
incidence of methanogens in health and disease groups and also to provide an overview of
methanogen diversity in the human gastrointestinal tract.

Results: DNA faecal extracts (207 in total) from a group of healthy controls and five
gastrointestinal disease groups were investigated. Colorectal cancer, polypectomised, irritable
bowel syndrome and the control group had largely equivalent numbers of individuals positive for
methanogens (range 45–50%). Methanogen incidence in the inflammatory bowel disease groups
was reduced, 24% for ulcerative colitis and 30% for Crohn's disease. Four unique mcrA gene
restriction fragment length polymorphism profiles were identified and bioinformatic analyses
revealed that the majority of all sequences (94%) retrieved from libraries were 100% identical to
Methanobrevibacter smithii mcrA gene. In addition, mcrA gene sequences most closely related to
Methanobrevibacter oralis and members of the order Methanosarcinales were also recovered.

Conclusion: The mcrA gene serves as a useful biomarker for methanogen detection in the human
gut and the varying trends of methanogen incidence in the human gut could serve as important
indicators of intestinal function. Although Methanobrevibacter smithii is the dominant methanogen in
both the distal colon of individuals in health and disease, the diversity of methanogens is greater
than previously reported. In conclusion, the low incidence of methanogens in Inflammatory Bowel
Disease, the functionality of the methanogens and impact of methane production in addition to
competitive interactions between methanogens and other microbial groups in the human
gastrointestinal tract warrants further investigation.

Background
The methanogens are a group of microorganisms within
the Kingdom Euryarchaeota of the domain Archaea [1].
Methanogenesis is a process confined exclusively to the

methanogens and utilises substrates such as hydrogen,
CO2, acetate, formate, methanol and methylamines for
methane generation. The methanogenic archaea are
widely distributed in natural environments including the
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gastrointestinal tracts of ruminants, termites and humans
[2-4]. Studies to date indicated that Methanobrevibacter
smithii is the predominant archaeal species present in the
human large intestine [2,5,6]. and so far only a second
methanogenic species Methanosphaera stadtmanae, also a
member of the order Methanobacteriales has been isolated
from the human intestinal tract [7].

The reasons underlying methanogen incidence and their
seemingly low diversity in human populations are of con-
siderable interest to gastrointestinal microbial ecologists.
An increasing interest in the methanogenic populations of
the human gastrointestinal tract is also underpinned by
their potential role as environmental factors in obesity [8]
and pneumatosis cystoides intestinalis [9] and any possi-
ble association methanogens or methane production may
have with gastrointestinal disease. As yet, no pathogenic
Archaea have been characterised to date and the aetiolog-
ical role, if any, methanogens play in disease is unknown
[10,11]. Although no pathogenic archaeal species has
been found [11], they are routinely identified in samples
from the sites of oral infections [12-14] leading to specu-
lation that they may be indirectly involved in disease
processes by creating environmental conditions to facili-
tate the growth of microbes involved in pathogenesis.

In methane-producing humans methanogen numbers are
approximately 1.6 × 108 to 8 × 109/g faeces [15,16]. and in
non-methanogenic humans 102 to 5 × 106/g faeces [16].
Traditionally, the characterization of methanogens from
the human intestinal environment has largely focused on
phenotypic, microscopic, biochemical and nutritional
classification methodologies [2,5,7]. and whilst these
techniques are critical to gastrointestinal microbial studies
they are time consuming and laborious [17]. Further-
more, molecular techniques for characterising microbial
communities are considered more comprehensive and
enable a more accurate overview of the diversity and func-
tionality present in the human gastrointestinal tract
[18,19].

This study has undertaken the optimisation of appropri-
ate culture independent methodologies with the aim of
investigating and characterising methanogen incidence
and diversity in human faecal samples. A PCR and clone
library methodology was employed using one set of pre-
viously published PCR primers [20] specific to the α sub-
unit of methyl-coenzyme M reductase (mcrA), a
functional gene that catalyzes the terminal step in the for-
mation of methane by methanogens [21] and a second set
of novel primers which were designed to specifically target
the mrtA gene (mcrA gene holoenzyme) of Methanosphaera
stadtmanae.

Results and discussion
High molecular weight DNA, free from PCR inhibitors is
critical to PCR analysis [22] and each DNA sample in this
study was tested in order to ensure that a negative mcrA
gene or mrtA gene PCR result were not as a consequence
of poor DNA extraction and quality. An initial PCR target-
ing the 16S rRNA gene was used as a control measure for
DNA quality and all faecal DNA extracts gave a positive
signal for a 16S rRNA gene PCR assay. The mcrA gene was
chosen as a proxy for methanogen detection as this gene
can be readily amplified from Mbb. smithii (data not
shown) which is the dominant methanogen in the human
gut [2,5,6,23,24]. Furthermore, the detection limits of the
primers for mcrA gene amplification were calculated and a
positive PCR result obtained using the mcrA primer set
from spiked samples at cell numbers ≥ 107 cells per gram
of faeces using Mbb. smithii PST as the test organism. There-
fore, results recorded and reported in this study were
obtained from faecal samples where methanogen cell
numbers equalled or exceeded 107 cells per gram of faeces
making its detection level equivalent to that of the meth-
ane breath test [25] and real-time PCR assay using metha-
nogen specific 16S rRNA gene primers [26].

Interestingly, the results from the PCR survey of methano-
gen frequency in different groups of individuals found
that in the control, colorectal cancer, polypectomised and
irritable bowel syndrome groups, the percentage of indi-
vidual's positive for methanogens were largely equivalent
and fell within a range of 45 – 50% (see Table 1). The per-
centage of individuals within the inflammatory bowel dis-
ease cohorts harboured methanogens at a lower rate of
30% for Crohn's disease (P < 0.1) and a significantly
lower rate of 24% for Ulcerative Colitis compared to the
control group (48%) (P < 0.01). Although these data can
not be directly correlated with previous published studies,
the same general trend was observed in a methane detec-
tion survey where methane excretion was detected in 54%
of healthy controls, 53% of non gastrointestinal patients
and 32% of gastrointestinal patients [27]. In that study
the patients within the gastrointestinal disease group that
had Inflammatory Bowel Disease had significantly lower
methane detection; 13% for Crohn's Disease and 15% for
Ulcerative Colitis [27]. Furthermore, methane production
in the predominantly diarrhoeal conditions of Ulcerative
Colitis and Crohn's Disease is reportedly almost non
existent [28], a finding that may be due to loss of slow
growing methanogens that are displaced during condi-
tions of rapid gut transit. Collectively, these data for
reduced methanogens in IBD may support the hypothesis
that methane is not in fact biologically inert but may play
a role in intestinal motility with consequences for irritable
bowel syndrome associated constipation [29], diverticuli-
tis [25] and encopresis [30].
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The results from the healthy group reported in this study
are also similar to those obtained from a real time-PCR
analysis of methanogen incidence and diversity in the
human gastrointestinal tract using 16S rRNA gene as a tar-
get [31]. Only 12 adults were analysed as part of this study
and 5/12 adults (42%) gave a positive PCR result. In the
majority of samples analysed in the total study PCR
amplicons generated were beyond the quantitative limits
of the PCR assay. Furthermore, Mbb. smithii was the pre-
dominant sequence obtained from extensive sequence
analysis with no Msp.stadtmanae sequences recovered
[31].

With respect to the diversity of methanogens in the
present study, restriction fragment length polymorphism
(RFLP) analysis of the mcrA gene clones (558 clones in
total) revealed only 4 unique RFLP types (designated
RFLP Type A to D) the results of which are outlined in
Table 2 and illustrated in Figures 1 and 2. In fact, all clone
libraries generated with the exception of Ulcerative Colitis
(UC), Crohn's Disease (CD) and Irritable Bowel Syn-
drome (IBS) exhibited a uniform RFLP profile identical to
that obtained from Mbb. smithii PST and Mbb. smithii
(DSM 2374) (designated Type A) with all clones that were
subsequently sequenced showing 100% amino acid iden-
tity to Mbb. smithii. This finding reinforces the prevailing
knowledge that Mbb. smithii is the dominant methanogen
in the human gastrointestinal tract. Three additional RFLP
profiles were identified in the UC, CD and IBS clone
libraries. Amino acid sequence analysis of these clones
indicated that RFLP type B from the IBS and Crohn's Dis-
ease clone library was most closely related to Methanobre-
vibacter oralis, Type C from Ulcerative colitis (UC-14)

which, although exhibiting a unique RFLP profile, is most
closely related to Mbb. smithii (see Figure 2) and a final
RFLP type D (UC-6) which was identified in the Ulcerative
Colitis library. Phylogenetic analysis indicated that UC-6's
closet cultured relative was the alkaliphilic, halophilic and
methylotrophic archaea Methanosalsum zhilinae [32] (see
Figure 2 and supplementary Figure S1 for amino acid
alignment of partial mcrA genes and identity matrix). The
UC-6 sequence obtained in this study was also 100%
identical to a sequence (accession number: EF369488)
obtained from a human faecal sample from a unpub-
lished study indicating that uncultured members of the
methanogen outside the Methanobacteriales have been
identified in other laboratories as well. The constructed
phylogenetic tree further highlights these relationships
amongst clone isolates from this study with cultured and
uncultured methanogens (see Figure 2).

Several mismatches to the mrtA gene sequence of
Msp.stadtmanae were evident with the mcrA primer set
and phylogenetic analysis and tree construction illustrates
that although the mrtA gene of Msp. stadtmanae encodes
an enzyme of the same function and inhabits the same
niche it is phylogenetically distinct from mcrA gene
sequences of Mbb. smithii and related clones (see Figure
2). A second set of primers were designed and optimised
for mrtA gene amplification serving as a marker for Msp.
stadtmanae detection. PCR and clone library analysis
indicate that the primers were highly specific for and read-
ily amplified DNA from pure Msp. stadtmanae DNA at
concentrations less than 0.01 ng ul-1. However, no posi-
tive PCR results were obtained for mrtA gene from faecal
DNA extracts in this study. Further analysis of available

Table 1: Overview of age and number of participants and the percentage of individuals positive for methanogens within each different 
disease group analysed.

Disease group Number of individuals per 
group (n = 207 total)

Mean age, SD and range Disease status % Methanogen positive 
(mcrA gene)

Healthy Controls (HC) 44 25.8 ± 8.3 (range 19–56) No history of 
gastrointestinal illness

48%

Crohn's Disease (CD) 27 41.3 ± 11.9 (range 25–70) Both remission and relapse 
(CDAI >150 a) individuals

30%

Ulcerative Colitis (UC) 29 49.0 ± 12.0 (range 32–70) Both remission and relapse 
individuals b

24% d

Irritable Bowel Syndrome 
(IBS)

46 44.4 ± 12.8 yrs, (range 24–74) Diagnosed according to the 
Rome II criteria c

48%

Colorectal Cancer (CC) 31 60.3 ± 6.6 yrs, (range 45–70) In remission, >95% 
receiving a wide range of 

medication

45%

Polypectomised (PP) 30 53.5 ± 9.1 yrs, (range 30–69) Pre-cancerous polyps 
removed

50%

No data was available on the time of collection of samples and all samples analysed in this study were participants in larger trials. The individuals 
selected for each trial was done so in a randomised fashion with only the disease status of the host being the primary prerequisite for inclusion.
a CDAI: Crohn's Disease Activity Index. Individuals with a CDAI greater than 150 are considered to be in relapse [47].
b Diagnosed by clinician.
c see [48].
d Significantly (P < 0.01) different from Control group using Fischers' exact statistical test.
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16S rRNA gene libraries from published literature [6,31]
and analysis in silico of metagenomic clones libraries gen-
erated from human faecal samples also support the idea
that Msp. stadtmanae is not a common feature of the
human gastrointestinal microbiota. Therefore, it is quite
possible that if Msp. stadtmanae was present in any of the
faecal samples analysed in this study its concentration was
below the detection levels of this novel primer set.

Methanobrevibacter smithii and Msp.stadtmanae are phylo-
genetically diverse methanogens and the metabolic capac-

ity of both microbes may provide evidence for the
predominance of Mbb.smithii in the human gastrointesti-
nal tract. Genome comparisons between both methano-
gens indicate that Mbb. smithii is more adapted to the gut
environment in terms of persistence, metabolic versatility
and capacity for genomic evolution [33]. Not only is the
Mbb. smithii genome significantly enriched for genes
involved in CO2, H2 and formate utilisation during meth-
anogenesis, Mbb. smithii also possesses the capacity for
non methanogenic removal of other bacterial fermenta-
tion end-products, namely methanol and ethanol.
Although both genomes exhibit limited global synteny,
Msp.stadtmanae has the most restricted energy metabolism
of any archaea studied to date [34] and can only use
hydrogen to reduce methanol to methane. It is possible
that this limited substrate range could be a factor in com-
petition between Msp.stadtmanae and other microorgan-
isms such as Mbb. smithii and the sulphate reducing
bacteria which also require hydrogen for growth [35].
However, further insight into Msp.stadtmanae incidence
and interaction is now possible with this novel primer set
which also have application to the rumen gut and other
ecosystems where Msp.stadtmanae like sequences have
been reported [36,37]

The functionality of methanogens appears to be strongly
associated and facilitated by the presence and activities of
other microbial groups [38,39]. If indeed the carriage of
methanogens is dependent upon or supported by other
microbial groups and their activities, these differences
observed between the methanogen frequency in certain
disease and control groups compared to inflammatory
bowel disease is quite possibly linked to the reduced bac-
terial diversity that is routinely reported in this gastroin-
testinal disease conditions [40-42] Considering these
points, it is reasonable to suggest the presence of metha-
nogens in human gastrointestinal tract is part due to the
presence of other microbial group or groups with fermen-
tation capacities that generate sufficient H2 and substrates
to support methanogenesis in a competitive environment.
The presence of such a bacterial population could be
present due to genetic host factors, diet, intestinal transit

RFLP analysis of mcrA gene ampliconsFigure 1
RFLP analysis of mcrA gene amplicons. 4% (w/v) agar-
ose gel showing representatives of the four unique mcrA gene 
RFLP types identified in this study. Lane 1: RFLP profile of 
mcrA gene from Mbb. smithii PST (RFLP profile type A), Lane 
2: RFLP profile identified in RFLP analysis of IBS clone library, 
sequence most closely related to Mbb. oralis and represented 
in Figure 2 by DC IBS-4, (RFLP profile Type B), Lane 3: RFLP 
profile generated from Ulcerative Colitis clone library analy-
sis, most closely related to Mbb. smithii and represented in 
Figure 2 by clone DC UC-14, (RFLP profile Type C), Lane 4: 
RFLP profile Type D generated from Ulcerative Colitis clone 
library analysis and represented in Figure 2 by DC UC-6, 
uncultured methanogen clone, M: Low Weight Molecular 
DNA Ladder (Promega).

Table 2: Overview of mcrA clone library analysis

Sample Number of Clones analysed (n = 558) Number of different of RFLP profiles Preliminary RFLP profile identification of methanogens

HC 224 1 Mbb. smithii – RFLP Type A
CC 190 1 Mbb. smithii – RFLP Type A
IBS 48 2 Mbb. smithii – RFLP Type A (19) and Mbb. oralis-Type B 

(29)
UC 48 3 Mbb. smithii – RFLP Type A (46), Mbb. smithii – RFLP Type 

C (1) and Unknown (related to Methanosalsum zhilinae) – 
RFLP Type D (1)

CD 48 2 Mbb. smithii – RFLP Type A (45) and Mbb. oralis – 
RFLPType B (3)
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time, stochastic and other environmental factors that
would support such an overall symbiotic community. As
such the reduced frequency of methanogens evident

within the IBD groups could possibly serve as a biomarker
of altered microbial diversity and metabolic processes
within the human gastrointestinal tract.

Evolutionary relationships mcrA gene clone generated from this study to mcrA genes of cultured and uncultured methanogensFigure 2
Evolutionary relationships mcrA gene clone generated from this study to mcrA genes of cultured and uncul-
tured methanogens. The evolutionary history was inferred using the Neighbor-Joining method [49]. The bootstrap consen-
sus tree inferred from 500 replicates [50] is taken to represent the evolutionary history of the taxa analyzed [50]. The 
percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown 
next to the branches [50] and any value below 50% was not shown. The tree is drawn to scale, with branch lengths in the same 
units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed 
using the Maximum Composite Likelihood method [51] and are in the units of the number of base substitutions per site. 
Codon positions included were 1st, 2nd, 3rd and noncoding. All positions containing gaps and missing data were eliminated from 
the dataset (Complete deletion option). There were a total of 348 positions in the final dataset. The accession numbers are 
included in parenthesis after each entry.
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Conclusion
This exploration of a functionally significant microbial
group provides a comprehensive survey of methanogen
incidence and diversity in both health and disease of the
human gastrointestinal tract using a culture independent
approach. The limited diversity of methanogens as evi-
denced by the Mbb. smithii dominance of clone libraries
and failure to amplify Msp. stadtmanae from faecal sam-
ples raises interesting ecological questions on the nature
of microbial competition for resources in the human gut.
Furthermore, the identification of a mcrA gene sequences
only distantly related to cultured methanogens is of signif-
icant interest and highlights the necessity of a culture
independent approach when surveying diversity of this
fastidious group of microorganisms and also the require-
ment to better our cultivation techniques to gain access to
novel and uncultured microbes. In addition, the results of
this study have highlighted some important points on the
nature of methanogen carriage and their prospect as
markers for altered gastrointestinal function. The reduced
incidence of hydrogen utilising microbes in IBD could
also serve as a biomarker for altered biochemical activities
in the intestinal tract of certain individuals and warrants
further exploration. It is now possible with the methods
outlined in this study that functional analysis of mcrA
gene as a proxy for methane production using RNA as a
template could have relevance for the further study of clin-
ical conditions related to methanogen carriage and meth-
ane production and also the competitive interactions
between methanogens and other microbial groups.

Methods
Sample collection and total DNA extraction
A total of 207 faecal samples from individuals within dis-
eased and healthy colonic groups were obtained and fae-
cal samples were stored at -80°C until analyses (see Table
1 for an overview of participants). All samples were stored
and processed in the same manner. Samples were thawed
on ice and approximately 220 mg of stool was used for
DNA extraction using the Qiagen MiniStool kit (Qiagen,
Hilden, Germany) as per manufacturer's instructions for
pathogen isolation, with an initial bead-beating step of 30
s and heating step of 85°C. DNA concentration was deter-
mined using the Nanodrop spectrophotometer. The
details of each group are outlined in Table 1. No individ-
uals were receiving or had received antibiotics within
three months of faecal sample collection.

PCR amplification of 16S rRNA as DNA quality control
Primers 27f and 1492r specific for the bacterial 16S rRNA
were used in PCR mixtures containing 50 µl containing 1
X TAE Buffer (20 mM Tris-HCl pH 8.4, 50 mM KCl), 3 mM
MgCl2, 200 µM of each deoxynucleoside triphosphate,
1.25 U of Taq polymerase (Invitrogen), 10 pmol of each
primer and 5 ng of extracted DNA. PCR was conducted in

duplicate in a MJ Research PTC-200 Thermal Cycler and
cycling conditions were as follows: 94°C for 5 min initial
denaturation, followed by 30 cycles of 94°C for 30 s,
55°C for 40 s and 72°C for 1 min 30 s, with a final exten-
sion of 72°C for 10 min. PCR amplicons were analysed by
electrophoresis in 1% w/v agarose containing ethidium
bromide (0.25 mg ml-1) and 1 X TAE Buffer [43] with an
applied voltage of 5 V cm-1. DNA was visualised by UV
illumination (302 nm).

PCR procedure for mcrA gene amplification
Previously published primers ME1 (5'-GCMATGCAR-
ATHGGWATGTC-3') and ME2 (5'-TCATKGCRTAGTTDG-
GRTAGT-3') [20] specific for mcrA gene were employed.
Both cycling and reagent concentrations for PCR reactions
targeting the mcrA gene were according to the methodol-
ogy of Hales et al., [20]. Genomic DNA from Methanocal-
dococcus infernus MET, Mbb. smithii (DSM 2374) and Mbb.
smithii PST were used as positive PCR controls. PCR ampli-
cons were analysed as previously outlined for 16S rRNA
gene PCR and target sequences for mcrA gene were
approximately 760 bp.

Primer design and PCR procedure for mrtA amplification
Analysis in silico of mcrA gene primers and the mrtA gene
sequence of Msp. stadtmanae alignments indicated that
several nucleotide mismatches were evident between the
sequences. A second set of primers for the specific ampli-
fication of the mrtA gene from Msp. stadtmanae MCB-3T

were designed. Reference mcrA gene sequences and the
mrtA gene from Msp. stadtmanae MCB-3T were imported
into Bioedit from Genbank. Nucleotide sequences were
aligned using CLUSTALW and primers were designed to
target two unique sites specific to mrtA gene from Msp.
stadtmanae and are as follows; MrtA_for (5' AAA CAA TCA
ACC ACG CAC TC 3') and MrtA_rev (5' GTG AGC CCA
ATC GAA GGA 3'). Initial PCR procedure was tested and
optimised using a gradient MJ Research PTC-200 Thermal
Cycler on genomic DNA from Msp. stadtmanae MCB-3T.
The primers were also tested on DNA from Methanocaldo-
coccus infernus MET, Mbb. smithii (DSM 2374) and Mbb.
smithii PST. PCR amplicons generated from Msp. stadtma-
nae MCB-3T were also cloned out (using the procedure for
mcrA gene cloning) to further assess the specificity of the
primer set. Final PCR mixtures for the amplification for
the mrtA gene from faecal DNA extractions consisted of 50
µl containing 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 3
mM MgCl2, 50 mM concentrations of each dNTP, 1.25 U
of Taq polymerase (Invitrogen), 10 pmol of each primer,
and 10 ng of genomic DNA. PCRs were conducted in
duplicate in a MJ Research PTC-200 Thermal Cycler and
cycling conditions were as follows: 95°C for 5 min initial
denaturation, followed by 35 cycles of 94°C for 40 s,
55°C for 40 s and 72°C for 90 s with a final extension of
72°C for 5 min. All PCR reactions were repeated on a sep-
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arate occasion to verify results. Target sequences were
approximately 1170 bp.

Determination of mcrA gene PCR primer detection limits
Faecal samples that tested negative for mcrA gene products
as using PCR protocol as previously outlined were used to
conduct spiking experiments in order to determine the
limits of detection for each primer set. Liquid pure culture
Mbb. smithii (DSM 2374) was obtained from the DSMZ
and the numbers of cells per ml were determined using a
haemocytometer according to standard procedure.
Known number of cells were added to negative faecal
samples at concentrations of 109, 108, 107, 106 and 105

cells per g of faecal sample and extracted as previously
outlined. A non spiked faecal sample and a pure cell cul-
ture of each microbial group were included as controls. All
experiments were conducted in duplicate and PCR for
mcrA gene amplification was conduced on each extract as
previously outlined. DNA from Methanocaldococcus infer-
nus MET and Mbb. smithii (DSM 2374) were included as
PCR controls in each experiment.

Statistical analysis of methanogen detection in different 
groups
The results from the mcrA gene PCR were tabulated and
the numbers of individuals positive for methanogens are
expressed as a percentage of the total number of individu-
als analysed within each specific group. Fisher's Exact test
was used to analyse the statistical significance of the fre-
quency of methanogen carriage from each different dis-
ease cohorts compared to the healthy control group.

Cloning of mcrA gene and analysis of the methanogen 
diversity
Four randomly selected individuals per group that gave a
positive PCR result for mcrA gene amplification were cho-
sen to generate mcrA gene clone libraries. Four PCR prod-
ucts for each group were pooled and cleaned (using the
Qiagen Gel Extraction Kit), before cloning using TOPO®

XL PCR Cloning Kit (Invitrogen). Clones were grown
overnight on LB agar (1.5% w/v agar) containing kanamy-
cin for selection (50 µg ml-1). Kanamycin resistant colo-
nies were picked and colony PCR was performed. Briefly,
the picked colony was suspended in 20 µl of sterile dis-
tilled H2O and heated to 95°C for 5 min before adding 1
µl aliquot to each respective PCR mixture as previously
described. Products were checked for the correct size insert
on 1% (w/v) agarose gel as previously described. Restric-
tion fragment length polymorphism (RFLP) using the
enzymes Alu I and Mse I of cloned mcrA PCR products and
mcrA gene PCR product of Mbb. smithii (DSM 2374) and
Mbb. smithii PST was conducted. RFLP products were elec-
trophoresed for 3 hours at constant 100 V through 2% (w/
v) agarose and stained using ethidium bromide.

Phylogeny of mcrA gene clones
Nucleotide sequences for mcrA were analysed using the
tBLASTx (translated query versus translated database)
function of Basic Local Alignment Search Tool (BLAST)
[44]. Phylogenetic trees were constructed using relevant
mcrA gene sequences in order to highlight phylogenetic
relationships between the sequences retrieved in this
study and other methanogens. Translated nucleotide
sequences for McrA were edited and aligned with relevant
sequences obtained from GenBank using the CLUSTALW
[45] function of MEGA 4 [46]. Unambiguously aligned
sequence regions were used to construct bootstrap-sup-
ported (500 resamplings) phylogenetic trees.

Nucleotide sequence accession numbers
Nucleotide sequence numbers have been deposited in the
EMBL Nucleotide Sequence Database under accession no.
EMBL: AM921680, EMBL: AM921681, EMBL: AM921683
and EMBL:AM921684.
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