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Abstract
Background: Identification of nontuberculous mycobacteria (NTM) based on phenotypic tests is
time-consuming, labor-intensive, expensive and often provides erroneous or inconclusive results.
In the molecular method referred to as PRA-hsp65, a fragment of the hsp65 gene is amplified by
PCR and then analyzed by restriction digest; this rapid approach offers the promise of accurate,
cost-effective species identification. The aim of this study was to determine whether species
identification of NTM using PRA-hsp65 is sufficiently reliable to serve as the routine methodology
in a reference laboratory.

Results: A total of 434 NTM isolates were obtained from 5019 cultures submitted to the Institute
Adolpho Lutz, Sao Paulo Brazil, between January 2000 and January 2001. Species identification was
performed for all isolates using conventional phenotypic methods and PRA-hsp65. For isolates for
which these methods gave discordant results, definitive species identification was obtained by
sequencing a 441 bp fragment of hsp65. Phenotypic evaluation and PRA-hsp65 were concordant for
321 (74%) isolates. These assignments were presumed to be correct. For the remaining 113
discordant isolates, definitive identification was based on sequencing a 441 bp fragment of hsp65.
PRA-hsp65 identified 30 isolates with hsp65 alleles representing 13 previously unreported PRA-
hsp65 patterns. Overall, species identification by PRA-hsp65 was significantly more accurate than
by phenotype methods (392 (90.3%) vs. 338 (77.9%), respectively; p < .0001, Fisher's test). Among
the 333 isolates representing the most common pathogenic species, PRA-hsp65 provided an
incorrect result for only 1.2%.

Conclusion: PRA-hsp65 is a rapid and highly reliable method and deserves consideration by any
clinical microbiology laboratory charged with performing species identification of NTM.
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Background
The genus Mycobacterium comprises organisms that are
heterogeneous in terms of metabolism, growth, environ-
mental niche, epidemiology, pathogenicity, geographic
distribution and disease association [1]. While there are
notable pathogens such as Mycobacterium tuberculosis,
Mycobacterium bovis and Mycobacterium leprae, most are
environmental organisms typically acting as opportunis-
tic pathogens. These species, often collectively called non-
tuberculous mycobacteria (NTM), have been associated
with a variety of problems including pulmonary, lymph
node, skin, soft tissue, skeletal, and disseminated infec-
tions as well as nosocomial outbreaks related to inade-
quate disinfection/sterilization of medical devices [2]. In
recent years, infections due to the subset of rapidly grow-
ing NTM, including Mycobacterium fortuitum, Mycobacte-
rium chelonae and Mycobacterium abscessus, have been
reported as complications of numerous surgical proce-
dures, particularly involving foreign bodies (e.g., augmen-
tation mammaplasty), high risk sites (e.g., eye) and
injections of natural products used as alternative medi-
cines [3-8].

In most laboratories, identification of mycobacterial spe-
cies is based on in vitro growth and metabolic activities.
Such phenotypic tests are labor-intensive and time-con-
suming to perform and may take several days to weeks to
complete. Further, for many NTM species, the tests may be
poorly reproducible [9], and consequently, the identifica-
tions may be ambiguous or erroneous [10].

DNA-based methods offer the promise of rapid and accu-
rate species identification. However, commercially availa-
ble DNA probes are available only for a handful of
mycobacterial species; moreover, reagents are quite costly.
Nucleotide sequence analyses can be used to resolve
essentially any bacterial species, but requires both ampli-
fication and sequencing.

Telenti and coworkers described a DNA-based method for
species identification of mycobacteria in which a portion
of hsp65, the gene encoding the 65 kDa heat shock pro-
tein, was amplified by PCR and then analyzed by restric-
tion digest [11]. This approach, referred to as PRA-hsp65,
required only routine PCR and agarose gel electrophoresis
equipment and could be completed within a few hours.
The different species of mycobacteria yielded distinctly
different patterns of restriction fragments and thus the
species of an unknown isolate could be determined by
comparing the fragments observed with published analy-
ses of clinical isolates [11-17] and of newly described spe-
cies [4,18-24]. The availability of an on-line internet
resource facilitates the process [25].

Some studies have observed limitations to PRA-hsp65
which could, potentially, render the approach impractical
for routine use. First, within commonly encountered spe-
cies of clinical significance, such as Mycobacterium avium
and Mycobacterium kansasii, as many as six distinct PRA-
hsp65 patterns have been encountered [20,26-28]. Such
variability could result in a high frequency of ambiguous
or uninterpretable patterns. Second, validated protocols
for electrophoresis and internal standards have not been
defined [17,29]. Lastly, published tables present patterns
which differ within a range of 5–15 bp and lack patterns
for recently described species [11,14,16]. The aim of this
study was to determine whether PRA-hsp65 of mycobacte-
rial isolates provides sufficiently reliable species identifi-
cation to enable it to be used as the routine methodology
in a reference laboratory.

Results
Species identification by phenotype and PRA-hsp65 
considered separately
Among the 434 isolates studied, biochemical and pheno-
typic evaluation alone assigned 371 (85.5%) isolates a
species or complex; PRA-hsp65 assigned 404 (93%) iso-
lates a species. Inconclusive results were obtained for 63
(14.5%) isolates by conventional methods compared
with 30 (6.9%) isolates using the rapid DNA-based
approach; these included nine isolates that could not be
identified by either method.

Species identification by phenotype and PRA-hsp65 
compared to sequencing
For 321 (74.0%) of the 434 isolates both methods gave
the same species identification, i.e., the results were con-
cordant (Table 1). Based on prior experience by the
authors and others [26,30], these identifications were pre-
sumed to be correct. The hsp65 genes of the remaining 113
(26.0%) isolates giving discordant or inconclusive results
were sequenced. Among these, phenotypic testing had
assigned 50 isolates to a species or a complex, but
sequencing indicated that 33 (66%) of these assignments
were incorrect (Table 2). For 63 isolates the phenotypic
results were ambiguous and provided only a broad
Runyon classification. Even among these, 19 (30.2%)
were misclassified compared to conventional expectations
[9,31], including 12 with regard to rate of growth (i.e.,
slow vs. rapid) and 7 with regard to chromogen produc-
tion (Table 2). Overall, phenotypic species identification
was correct for only 17 (15%) of 113 isolates for which
hsp65 sequencing was performed.

Among the 113 isolates with discordant or inconclusive
results, PRA-hsp65 assigned 83 isolates to a species; 71
(85.5%) of these assignments were confirmed by hsp65
partial gene sequencing (Table 3). For most of the remain-
ing isolates, the identifications resolved by PRA-hsp65 and
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sequencing were consistent with close evolutionary rela-
tionships (e.g., M. kansasii and Mycobacterium gastri, Myco-
bacterium intracellulare and M. avium) (Table 3).

There were 30 isolates representing 13 PRA-hsp65 patterns
not in the available databases and the species was resolved
by sequencing. The observed BstEII and HaeIII fragments
for these new patterns (designated NP), the source of
these isolates and the species identification based on
sequencing are listed in Table 4; the observed phenotypes,
including antimicrobial susceptibilities, are presented in
Table 5. In four instances (NP1, NP11, NP14 and NP17,
representing Mycobacterium gordonae Mycobacterium terrae,
Mycobacterium sherrisii and Mycobacterium arupense, respec-
tively) multiple isolates with the pattern were identified.

Overview of results
The overall results of the two methods are summarized in
Table 6. Among 434 NTM isolates, PRA-hsp65 provided
correct species identification significantly more frequently
than phenotypic/biochemical testing (392 (90.3%) vs
338 (77.9%), respectively; p < .0001, Fisher's exact test).

The four species or complex of NTM most commonly
associated with clinically significant disease are M. avium
complex, M. fortuitum complex, M. chelonae complex and
M. kansasii. These represented 333 (76.7%) of the 434 iso-

Table 1: Species identification of 321 isolates which had 
concordant results by both phenotypic and PRA-hsp65 methods.

Phenotypic identification PRA-hsp65b N (%)

M. avium complex (146)a M. avium 1 107 (33.5)
M. avium 2 24 (7.5)
M. avium 3 1 (0.3)

M. intracellulare 1 13 (4.1)
M. intracellulare 4 1 (0.3)

M. kansasii (95) M. kansasii 1 95 (29.7)
M. gordonae (30) M. gordonae 1 2 (0.6)

M. gordonae 3 19 (6.0)
M. gordonae 4 2 (0.6)
M. gordonae 5 1 (0.3)
M. gordonae 7 3 (0.9)
M. gordonae 8 3 (0.9)

M. fortuitum complex (24) M. fortuitum 1 21 (6.6)
M. peregrinum 2 1 (0.3)
M. peregrinum 3 2 (0.6)

M. chelonae complex (21) M. chelonae 1 5 (1.6)
M. abscessus 1 14 (4.4)
M. abscessus 2 2 (0.6)

M. marinum (2) M. marinum 1 2 (0.6)
M. terrae complex (2) M. terrae 1 1 (0.3)

M. nonchromogenicum 2 1 (0.3)
M. szulgai (1) M. szulgai 1 1 (0.3)

a Number of isolates.
b PRA-hsp65 designation; see text for details.

Table 2: Results for 96 NTM isolates for which phenotypic 
methods gave incorrect species identification as determined by 
hsp65 sequencing.

Species Nb Phenotypic result

M. abscessus (1)c 1 SGN
M. arupense (5) 1 M. chelonae complex

2 SGN
1 SGS

M. asiaticum (3) 2 M. avium complex
1 M. gordonae

M. avium (18) 1 M. chelonae complex
1 M. fortuitum
2 M. kansasii
10 SGN
1 RGN
1 SGP
1 SGS

M. celatum (2) 1 M. xenopi
1 SGN

M. chelonae (2) 2 SGN
M. cosmeticum (1) 1 M. chelonae
M. farcinogenes (1) 1 M. chelonae complex
M. flavescens (1) 1 RGS
M. fortuitum (6) 2 M. chelonae complex

1 RGN
1 SGN

M. genavense (1) 1 SGN
M. gordonae (26) 1 RGP

1 SGN
12 SGS

M. hassiacum (1) 1 RGS
M. intracellulare (9) 1 M. chelonae complex,

1 M. gordonae
7 SGN

M. kansasii (7) 1 M. nonchromogenicum
2 RGP
1 SGN
2 SGP
1 SGS

M. lentiflavum (3) 2 M. avium complex
1 M. gordonae

M. mageritense (1) 1 M. fortuitum
M. marinum (1) 1 M. kansasii
M. mucogenicum (8) 2 M. chelonae complex

1 M. fortuitum complex
1 M. peregrinum
3 SGN
1 SGS

M. nebraskense (1) 1 M. gordonae
M. nonchromogenicum (2) 1 SGN
M. peregrinum (4) 4 M. chelonae complex
M. phlei (1) 1 RGS
M. scrofulaceum (3) 1 M. avium complex

2 SGN
M. sherrisii (3) 2 M. avium complex

1 SGN
M. szulgai (1) 1 SGS
M. terrae (2) 1 SGN

a Species identification was determined by hsp65 sequencing for 113 
isolates that had discordant results by PRA-hsp65 and phenotypic 
studies. For 17 isolates sequencing confirmed the species 
identification obtained by phenotypic methods.
b Number of isolates for which the phenotypic identification shown 
was incorrect.
c Total number of isolates of that species sequenced. SGS: slowly 
growing scotochromogen; SGN: slowly growing nonchromogen; SGP: 
slowly growing photochromogen; RGS: rapidly growing 
scotochromogen; RGN: rapidly growing nonchromogen; RGP: rapidly 
growing photochromogen.
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lates in this collection. PRA-hsp65 provided incorrect spe-
cies identification for only 4 (1.2%) of these isolates and
a new pattern for an additional 3 (0.9%). In contrast, phe-
notypic/biochemical testing provided incorrect assign-
ments for 9 (2.7%) and ambiguous results for 31 (9.3%).
Thus, the frequency of incorrect or uncertain species iden-
tification among these isolates of potential clinical impor-
tance was almost 6-fold higher for the phenotypic method
than for PRA-hsp65 (40 (12.0%) vs. 7 (2.1%), respectively;
p < .0001, Fisher's exact test).

PRA-hsp65 algorithm
Figures 1, 2 and 3 display an updated algorithm relating
observed restriction fragments to particular species. We
have included refinements of previously assigned frag-
ment sizes based on our observations and analysis of
available hsp65 sequences from validated mycobacterial
species found online [32]. Sequences retrieved from Gen-
Bank [33] comprising the 441 bp Telenti fragment were
analyzed using BioEdit, version 7.0.5.3. [34] and/or the
DNASIS Max version 1 program (Hitashi Software Engi-
neering Co., USA). BstEII restriction patterns were distrib-
uted in seven possible configurations: 440, 320-130, 320-
120, 235-210, 235-130-85, 235-120-100, and 235-120-
85. HaeIII fragment sizes were adjusted considering the
nearest number multiple of 5, to facilitate interpretation
of gel bands. These adjustments were performed based in
our experience with analysis of more than 500 gels both
visually and using the GelCompar program. HaeIII restric-
tion fragments shorter than 50 bp were not taken in
account as their discrimination in 4% agarose gels is often
inaccurate. Different variants of PRA-hsp65 profiles from
each species were numbered using Arabic numbers after
the designation of the species, as reported in the PRASITE,
except for M. avium, for which variants M. avium 1 and M.
avium 2 were defined as reported in Leao et al. [20] and
Smole et al. [27]. There were also PRA-hsp65 patterns fre-
quently found in our routine work that had no sequence
deposited. These patterns were included according to pub-
lished data [11-17] or the PRASITE [25]. Figures 2 and 3
also include the two new patterns we observed in two or
more isolates (NP11 and NP1) and for which we propose
PRA-hsp65 designations, M. terrae 4 and M. gordonae 10,
respectively. The partial hsp65 gene sequences of these iso-
lates have been deposited in GenBank [Gen-

Table 4: BstEII and HaeIII fragment lengths (base pairs) for 30 isolates with new patterns by PRA-hsp65.

Speciesa PRA-hsp65 N Fragment BstEII Length (bp) HaeIII

M. arupense NP17 5 320-115 145-75-60
M. avium NP10 1 320-115 140-90-60

M. cosmeticum NP6 1 320-115 150-95-80
M. fortuitum NP12 1 235-120-85 140-120-100-55
M. fortuitum NP19 1 235-120-100 145-140-100-55

M. gordonae NP1 11 235-120-100 130-110-95
M. gordonae NP3 1 320-130 130-60
M. gordonae NP13 1 235-120-85 130-90
M. gordonae NP22 1 235-130-85 160-90-60

M. mageritense NP5 1 240-130-85 145-100-50
M. nonchromogenicum NP4 1 235-120-85 145-80-60

M. sherrisii NP14 3 235-120-85 145-130
M. terrae NP11 2 235-210 140-115-70

a Species identification based on sequencing of hsp65 gene. Bold indicates sequences submitted to GenBank and patterns included in the updated 
PRA-hsp65 algorithm (see Figures 1, 2 and 3). GenBank accession numbers: NP1, EF601222; NP11, EF601223; NP14, AY365190 [23]; NP17, 
DQ168662 [18].
All isolates with new PRA-hsp65 profiles were cultured from sputum, with the following exceptions: NP1: urine (2), feces, liver biopsy and unknown 
(one each); NP17: unknown (2).

Table 3: Results for 12 NTM isolates for which PRA-hsp65 gave 
incorrect species identification as determined by hsp65 
sequencing.

Species Nb PRA-hsp65 result

M. avium (18)c 1 M. kansasii 1
M. farcinogenes (1) 1 M. scrofulaceum 1
M. intracellulare (9) 1 M. avium 3

M. kansasii (7) 1 M. avium 2
1 M. gastri 1

M. mucogenicum (8) 1 M. chitae 1
1 M. gordonae 1
1 M. nonchromogenicum 1

M. nebraskense (1) 1 M. avium 3
M. scrofulaceum (3) 2 M. lentiflavum 3

1 M. simiae 1

a Species identification was determined by hsp65 sequencing for 113 
isolates that had discordant results by PRA-hsp65 and phenotypic 
studies. For 71 isolates sequencing confirmed the species 
identification obtained by PRA-hsp65. For an additional 30 isolates, 
the PRA-hsp65 patterns obtained were previously unreported (see 
Table 4).
b N, number of isolates for which the PRA-hsp65 identification shown 
was incorrect.
c Total number of isolates of that species sequenced.
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Table 5: Phenotypic characteristics of isolates demonstrating previously unreported PRA-hsp65 patterns.

Species PRA hsp65 25°C 37°C 45°C pg TCH nit Tween NaCl Aryl3 Aryl15 ag pic β-gal LJ HA PNB INH RF EMB CIP OFL

M. arupense NP17 3 3 0 N 2–3 0 1 0 0–1 0–2 nd 0 0–1 nd 3 2–3 3 0 0 0–1 3

M. avium NP10 3 3 0 N 3 3 1 1 2 3 3 0 0 3 3 1 1 1 0 0 0

M. cosmeticum NP6 3 3 2 N 3 0 1 0 1 2 1 2 1 nd 2 3 2 3 2 1 2

M. fortuitum NP12 3 3 0 S 3 3 1 3 1 3 2 1 0 3 3 3 3 3 3 0 3

M. fortuitum NP19 3 3 0 N 3 3 0 3 3 3 3 3 1 3 3 3 3 3 3 0 2

M. gordonae NP1 2–3 3 0 S 3 0 1 0 1 2 0 0 0 3 1–3 3 0–3 0–3 0–1 0–1 1–3

M. gordonae NP3 3 1 0 S 3 0 2 0 0 2 0 0 0 3 1 2 0 0 0 0 0

M. gordonae NP13 1 2 0 P 3 1 0 nd 0 1 0 0 0 3 3 3 0 1 1 2 1

M. gordonae NP22 3 3 3 S 3 3 2 0 0 0 nd 0 0 3 0 3 1 3 3 0 nd

M. mageritense NP5 3 3 0 N 3 2 1 0 0 2 3 0 0 3 3 3 0 3 0 0 0

M. nonchromogenicum NP4 2 3 2 N 2 1 1 0 0 0 nd 1 1 nd 2 2 2 2 0 0 0

M. sherrisii NP14 1 2 0 S 1–2 0 0 1–2 0 0 1 0 1 2 1–2 1–2 1 1 2 2 1–2

M. terrae NP11 2 3 0 N/S 2–3 0–3 1, 2 1 0 0–1 0 0 0–1 3 3 1, 2 3 0 0 0, 1 3

Phenotypes: 24°C, 36°C, 45°C: growth at temperature shown; pg: pigmentation (N, nonchromogen; P, photochromogen; S, scotochromogen); TCH: growth on 
thiophene-2-carboxylic acid hydrazide; nit: nitrate reduction; Tween: hydrolysis of Tween 80; NaCl: growth on 5% NaCl; Aryl 3. Aryl 15: arylsulfatase activity after 3 and 
15 days of growth, respectively; ag: growth on nutrient agar; pic: growth on picric acid; β-gal: β-galactosidase activity; LJ: growth on Löwenstein-Jensen media; HA: growth 
on hydroxylamine 500 μg/ml; PNB: growth on p-nitrobenzoic acid; INH: isoniazid; RF: rifampicin; EMB: ethambutol; CIP: ciprofloxacin; OFL: ofloxacin. Responses are 
graded 0 (negative, no growth, no activity expressed) to 3 (positive, heavy growth, strong activity expressed); nd, not done. For patterns with multiple isolates, the result 
shown represents the most common phenotype(s) or the range of phenotypes observed.
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Bank:EF601223 and GenBank:EF601222, respectively].
The figures also indicate the basic phenotypic characteris-
tics (time for growth and pigment production) observed
for each species.

Discussion
The incidence of individual infections and outbreaks asso-
ciated with NTM has risen dramatically over the past dec-
ade establishing these organisms as significant human
pathogens. Traditionally, the identification of mycobacte-
ria to the species level has relied upon biochemical tests,
which require three to six weeks to complete. Biochemical
identification, even when performed by skilled microbiol-
ogists, may yield uncertain or even misleading results
because (a) the tests used are inherently poorly reproduc-
ible; (b) the expected phenotypes are not an absolute
property of the species, but may exhibit substantial varia-
bility; and (c) the database of phenotypic characteristics is
limited to common species [10].

In recent years, DNA-based techniques have greatly facili-
tated identifying the species of NTM isolates and enabled
a number of new species to be documented as infecting
agents [35-39]. These approaches can be applied to a sin-
gle isolated colony and a definitive result can typically be
obtained within a day. PRA-hsp65, first described by Tel-
enti et al., is based on detection of restriction fragment
polymorphisms in the hsp65 gene and thereby resolving
the species of a mycobacterial isolate [11].

In the present study, 434 NTM isolates from clinical spec-
imens were analyzed by conventional phenotypic meth-
ods and by PRA-hsp65; further, those isolates for which
the results from the two methods were discordant were
analyzed using nucleotide sequencing of the hsp65 gene.
For 63 (14.5%) isolates phenotypic methods could not
provide a species identification and for almost a third of
these isolates even the apparent Runyon classification
proved inconsistent with conventional expectations. For
an additional 33 (7.6%) isolates the phenotypic identifi-
cation proved incorrect. Phenotypic variability among

fresh clinical isolates has been observed in other studies
[10,40,41].

In contrast, PRA-hsp65 correctly identified over 90% of
evaluable isolates using currently available databases of
restriction digest patterns. For most of the remaining iso-
lates, the PRA-hsp65 pattern observed was not previously
reported. There were only 4 (1.2%) clinically significant
isolates for which the current PRA algorithm indicated an
incorrect species.

PRA-hsp65 has proven similarly effective in other studies.
Hafner et al. used 16S rDNA sequencing to analyze 126
isolates selected at random from a larger collection [17].
The hsp65 method correctly identified 120 (95.2%) of
these isolates. They also sequenced 10 additional isolates
from the larger collection that gave PRA-hsp65 patterns
not previously reported. All these isolates represented
environmental species rarely associated with clinically sig-
nificant disease.

Among our 434 isolates, 30 (6.9%) provided 13 PRA-
hsp65 profiles not previously reported. Our series repre-
sents isolates cultured from varied clinical specimens col-
lected in the metropolitan and surrounding areas of the
city of Sao Paulo, Brazil. Most of the isolates with new
PRA-hsp65 patterns were cultured from sputum. Many
represented species typically considered non-pathogens;
clinical correlation was not available and these isolates
may reflect colonization by environmental organisms.
Previous studies have similarly documented considerable
species diversity as well as the genotypic diversity among
mycobacteria isolates in Brazil [42,43]. Sequence analysis
confirmed that the new profiles were allelic variations
within the species, consistent with previous studies
[13,17,20]. Of interest, four profiles were represented by
more than one isolate, suggesting that they are potentially
prevalent lineages rather than singular mutation events.

The most commonly identified new profile (designated
NP1) was observed in 11 isolates, representing 20% of all
M. gordonae in this collection. Comparison to the proto-

Table 6: Summary of concordance among species identification results obtained by PRA-hsp65, phenotypic evaluation and sequence 
analysis of the hsp65 gene.

hsp65 sequence N PRA-hsp65 Phenotypic identification

Concordant New Pattern Discordant Concordant Ambiguous Discordant

Not donea 321 321 -- -- 321 -- --
Done 113 71 30 12 17 63 33
Total 434 392 (90.3%) 30 (6.9%) 12 (2.8%) 338 (77.9%) 63 (14.5%) 33 (7.6%)

a Isolates for which species identification by PRA-hsp65 and phenotypic/biochemical evaluation were concordant were not sequenced. Based on 
prior reports by the authors and others, sequencing hsp65 in such isolates almost invariably confirms the species identification of the other 
methods.
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Algorithm of PRA-hsp65 patterns based on analysis of the 441 bp fragment of the hsp65 gene. BstEII patterns: 440 bp, 320 bp/130 bp, 320 bp/115 bpFigure 1
Algorithm of PRA-hsp65 patterns based on analysis of the 441 bp fragment of the hsp65 gene. BstEII patterns: 
440 bp, 320 bp/130 bp, 320 bp/115 bp. Columns 1 and 2: calculated BstEII and HaeIII fragment sizes in base pairs. Column 
3: species names according to [32]. Column 4: PRA-hsp65 pattern type. Column 5: RGN: rapidly growing non-pigmented, RGS: 
rapidly growing scotochromogen, RGP: rapidly growing photochromogen, SGN: slowly growing non-pigmented, SGS: slowly 
growing scotochromogen, SGP: slowly growing photochromogen. Column 6: strain(s) used for hsp65 sequencing or reference 
of the publication describing this pattern.

species type phenotypic strain or reference

195 90 60 confluentis 1 RGN CIP 105510

180 145 gilvum 1 RGS DSM 44503

175 90 60 gadium 1 RGS CIP 105388

175 90 tusciae 1 SGS CIP 106367

170 130 triviale 1 SGN ATCC 23292 DSM 44153 

160 90 60 vaccae 1 RGS ATCC 15483 CIP 105934 

160 85 55 flavescens 3 RGS PRAsite

145 130 florentinum 1 SGN DSM 44852 

145 130 lentiflavum 1 SGS CIP 105465 

440 145 130 simiae 5 SGP PRAsite

145 90 60 50 komossense 1 RGS CIP 105293

145 90 60 parafortuitum 1 RGN CIP 106802  

145 70 60 55 brumae 1 RGS CIP 103465

140 100 60 50 holsaticum 1 RGS/RGN DSM44478

140 60 50 novocastrense 1 RGP CIP 105546 

140 55 50 flavescens 1 RGS CIP 104533 

135 130 65 duvalii 1 RGS CIP 104539

130 115 70 60 aurum 2 RGS ATCC 23366  CIP104465

130 105 70 szulgai 1 SGS CIP 104532 ATCC 35799 

125 105 60 nebraskense 1 SGS DSM 44803 

265 130 leprae 1 - [16]

200 70 60 55 immunogenum 2 RGN [4]

200 60 55 50 chelonae 1 RGN
ATCC 35749 CIP 104535 

ATCC 35752 ATCC 19237 

160 110 haemophilum 1 SGN ATCC 29548 CIP 105049 

145 70 60 55 immunogenum 1 RGN ATCC 700506 CIP 106684

320 130 140 130 50 elephantis 1 RGS CIP 106831

140 95 80 cosmeticum 1 RGS ATCC BAA-879

140 90 80 canariasense 1 RGN CIP 107998 

140 65 60 mucogenicum 1 RGN ATCC 49650 ATCC 49651

130 115 60 50 botniense 1 SGS DSM 44537

125 95 80 lacus 1 SGN DSM44577

245 140 fluoranthenivorans 1 RGN DSM 44556

195 70 60 50 aichiense 1 RGS ATCC 27280 DSM 44147 

185 145 fallax 1 RGN CIP 81.39

185 140 terrae 2 SGN [44]

180 160 55 frederiksbergense 1 RGS DSM 44346 

180 130 terrae 1 SGN ATCC 15755 CIP 104321 

175 90 60 sphagni 1 RGN DSM 44076

170 140 neoaurum 1 RGS CIP 105387 

170 140 parafortuitum 2 RGN ATCC 19686

160 125 60 rhodesiae 1 RGS CIP 106806 

145 140 60 diernhoferi 1 RGN CIP 105384 

145 130 60 montefiorense 1 SGN
ATCC BAA-256 ATCC 700071 

DSM 44602 
145 130 lentiflavum 2 SGS [15]

145 130 simiae 4 SGP PRAsite

145 130 50 triplex 1 SGN CIP 106108

320 115 145 80 60 aubagnense 1 RGN CIP 108543 

145 75 60 arupense 1 SGN CST0506 CST7052

145 65 60 mucogenicum 2 RGN CIP 105223 ATCC 49649 

145 65 60 phocaicum 1 RGN CIP 108542

145 cookii 1 SGS CIP 105396

140 135 50 pulveris 1 RGN CIP 106804

140 90 60 chitae 1 RGN ATCC 19627 CIP 105383 

140 90 60 mucogenicum 3 RGN clinical isolate

140 90 60 nonchromogenicum 2 SGN clinical isolate

140 60 50 terrae 3 SGN [44]

130 115 60 gordonae 4 SGS isolate 87-613 

130 110 70 60 gordonae 8 SGS [12]

130 110 70 kumamotonense 1 SGN CST7247

130 95 75 60 kansasii 5 SGP [28]

125 105 genavense 1 SGN DSM 44424 

BstEII HaeIII
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Algorithm of PRA-hsp65 patterns based on analysis of the 441 bp fragment of the hsp65 gene. BstEII patterns: 235 bp/210 bpFigure 2
Algorithm of PRA-hsp65 patterns based on analysis of the 441 bp fragment of the hsp65 gene. BstEII patterns: 
235 bp/210 bp. Columns 1 and 2: calculated BstEII and HaeIII fragment sizes in base pairs. Column 3: species names according 
to [32]. Column 4: PRA-hsp65 pattern type. Column 5: RGN: rapidly growing non-pigmented, RGS: rapidly growing scotochro-
mogen, RGP: rapidly growing photochromogen, SGN: slowly growing non-pigmented, SGS: slowly growing scotochromogen, 
SGP: slowly growing photochromogen. Column 6: strain(s) used for hsp65 sequencing or reference of the publication describ-
ing this pattern.

species type phenotypic strain or referenceBstEII HaeIII

225 110 shottsii 1 SGN ATCC 700981 NCTC 13215 

200 90 60 moriokaense 1 RGN CIP 105393

200 70 60 50 abscessus 2 RGN ATCC 14472 

200 70 60 50 bolletii 1 RGN CIP 108541

200 70 60 50 massiliense 1 RGN CCUG 48898

190 105 80 ulcerans 2 SGN/SGS [21]

185 130 genavense 2 SGN ATCC 51233

185 130 simiae 1 SGP ATCC 25275

180 135 70 50 thermorresistibile 1 RGS CIP 105390 ATCC 19527 

180 100 50 hassiacum 1 RGS ATCC 700660 CIP 105218 

160 95 50 poriferae 1 RGS CIP 105394

160 60 50 austroafricanum 1 RGS CIP 105395 

160 60 50 vanbaalenii 1 RGS DSM 7251

155 140 simiae 2 SGP [14]

145 140 100 50 peregrinum 1 RGN CIP 105382  ATCC 14467 

145 140 75 parascrofulaceum 5 SGS [38]

145 130 95 scrofulaceum 1 SGS CIP 105416 ATCC 19981 

145 130 60 parmense 1 SGS CIP 105394

145 130 avium s. avium 3 SGN [20]

145 130 interjectum 1 SGS DSM 44064 ATCC 51457 

145 130 intermedium 1 SGP ATCC 51848 CIP 104542 

145 130 intracellulare 3 SGN PRAsite

145 130 saskatchewanense 1 SGS CIP 108114 

145 130 seoulense 1 SGS [36]

145 130 simiae 6 SGP [44]

145 110 80 pseudoshottsii 1 SGP ATCC BAA-883 NCTC 13318 

145 105 80 malmoense 2 SGN PRAsite

145 105 80 marinum 1 SGP ATCC 927 CIP 104528 

235 210 145 105 80 ulcerans 1 SGN/SGS CIP 105425 ATCC 19423 

145 105 bohemicum 1 SGS CIP 105811 

145 70 60 55 abscessus 1 RGN CIP104536 ATCC19977

140 125 100 50 peregrinum 2 RGN isolate B1285 

140 125 100 50 porcinum 1 RGN
ATCC 49939 DSM 44242 

ATCC BAA-328 ATCC 33776 
140 125 100 50 septicum 1 RGN ATCC 700731 CIP 106642 

140 125 60 50 boenickei 1 RGN CIP 107829 

140 125 60 50 senegalense 3 RGS ATCC 35796 

140 115 70 terrae 4 SGN this work

140 105 80 intracellulare 2 SGN PRAsite

140 100 60 kubicae 1 SGS ATCC 700732 CIP 106428 

140 90 60 chlorophenolicum 1 RGS CIP 104189 

140 90 60 55 chubuense 1 RGS CIP 106810 

140 90 60 conspicuum 1 SGN CIP 105165

140 90 60 obuense 1 RGS CIP 106803 

140 80 60 50 phlei 1 RGS ATCC 11758 CIP 105389 

130 115 gordonae 5 SGS strain 79/02

130 115 heidelbergense 1 SGN CIP 105424 

130 115 interjectum 2 SGS [44]

130 105 80 60 branderi 1 SGN CIP 104592

130 105 80 kansasii 1 SGP ATCC 12478 CIP 104589 

130 105 60 avium s. avium 2 SGN [20]

130 105 60 colombiense 1 SGN CIP 108962

130 105 avium s. avium 1 SGN ATCC 25291

130 105 avium s. paratuberculosis 1 SGN CIP 103963 K10

130 105 avium s. silvaticum 1 SGN CIP 103317

130 95 80 parascrofulaceum 3 SGS [38]

130 95 palustre 1 SGS DSM 44572 

130 80 60 celatum 1 SGN/SGS ATCC 51131 CIP 106109 

120 115 110 intracellulare 4 SGN PRAsite

115 105 asiaticum 1 SGP ATCC 25276 DSM 44297 
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Algorithm of PRA-hsp65 patterns based on analysis of the 441 bp fragment of the hsp65 gene. BstEII patterns: 
235 bp/130 bp/85 bp, 235 bp/120 bp/100 bp, 235 bp/120 bp/85 bp. Columns 1 and 2: calculated BstEII and HaeIII frag-
ment sizes in base pairs. Column 3: species names according to [32]. Column 4: PRA-hsp65 pattern type. Column 5: RGN: rap-
idly growing non-pigmented, RGS: rapidly growing scotochromogen, RGP: rapidly growing photochromogen, SGN: slowly 
growing non-pigmented, SGS: slowly growing scotochromogen, SGP: slowly growing photochromogen. Column 6: strain(s) 
used for hsp65 sequencing or reference of the publication describing this pattern.

species type phenotypic strain or referenceBstEII HaeIII

180 160 doricum 1 SGS DSM 44339

175 80 aurum 1 RGS [14]

160 145 60 agri 1 RGN CIP105391

160 90 60 monacense 1 SGS [37]

145 140 100 60 peregrinum 3 RGN isolate FI-05382 

145 130 simiae 3 SGP [22]

145 125 60 goodii 1 RGN CIP 106349 ATCC 700504 

145 125 60 mageritense 1 RGN CIP 104973 

145 125 60 smegmatis 1 RGN
ATCC 35796 ATCC 19420 

CIP 104444 
145 100 50 alvei 1 RGN CIP 103464

235 130 85 145 80 60 murale 1 RGN CIP 105980

140 125 60 50 senegalense 2 RGS [39]

140 125 60 wolinski 1 RGN ATCC 700010 CIP 106348 

140 120 95 gordonae 6 SGS [14]

140 105 70 shimodei 1 SGN DSM 44152 ATCC 27962 

140 80 60 hodleri 1 RGS CIP 104909

140 80 60 tokaiense 1 RGS CIP 106807 

130 105 80 celatum 2 SGN/SGS ATCC 51130 

130 105 70 gastri 1 SGN CIP 104530 ATCC 15754 

130 105 70 kansasii 6 SGP [44]

130 105 kansasii 2 SGP PRAsite

130 95 70 kansasii 3 SGP PRAsite

130 95 parascrofulaceum 4 SGS [38]

160 115 60 gordonae 9 SGS strain 49/21/03

160 105 60 heckeshornense 1 SGS DSM 44428 

155 110 gordonae 7 SGS PRAsite

145 130 60 chimaera 1 SGN CIP 107892

235 120 100 145 130 60 intracellulare 1 SGN ATCC 13950 CIP 104243 

145 130 lentiflavum 3 SGS strain 21210

145 105 80 malmoense 1 SGN ATCC 29571 CIP 105775 

140 125 100 brisbanense 1 RGN CIP 107830

140 60 hiberniae 1 SGS DSM44241

130 115 gordonae 3 SGS [12]

130 110 95 gordonae 10 SGS this work

215 110 gordonae 2 SGS [12]

180 140 50 senegalense 4 RGS ATCC 35796 

160 115 60 gordonae 1 SGS CIP 104529 ATCC 14470

160 105 60 xenopi 1 SGN ATCC 19250 CIP 104035 

150 130 70 tuberculosis complex 1 SGN ATCC 27294 

145 130 sherrisii 1 SGN ATCC BAA-832

145 120 60 55 fortuitum 1 RGN ATCC 6841  CIP 104534 

145 120 60 55 fortuitum s. acetamidolyticum 1 RGN CIP 105423

145 60 55 nonchromogenicum 1 SGN ATCC 19530 

235 120 85 140 125 60 55 conceptionense 1 RGN CIP 108544

140 125 60 55 farcinogenes 1 SGN ATCC 35753

140 125 60 50 houstonense 1 RGN ATCC 49403 DSM 44676 

140 125 60 50 neworleanense 1 RGN ATCC 49404

140 125 60 50 senegalense 1 RGS
CIP 104941 ATCC BAA-850 

ATCC 35755 ATCC BAA-849 
140 120 60 55 fortuitum 2 RGN ATCC 49404 ATCC 49403

140 95 parascrofulaceum 1 SGS [38]

135 90 85 fortuitum 3 RGN [35]

130 115 75 60 kansasii 4 SGP [28]

130 95 lentiflavum 4 SGS [15]

130 95 parascrofulaceum 2 SGS CIP 108112 strain BAA-614 
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type M. gordonae sequence indicated two point mutations
that resulted in the loss of two HaeIII sites and the addi-
tion of 95-bp fragment to the profile [Gen-
Bank:EF601222]. A similar profile was assigned to M.
gordonae by da Silva Rocha et al. [13], although sequence
confirmation was not reported. Hafner et al. also noted
that M. gordonae is a particularly polymorphic species
[17].

The NP17 profile, demonstrated for five isolates, was
identified by sequencing as M. arupense, a recently
described species related to the M. terrae complex [18].
The NP14 profile, observed for three Mycobacterium simiae
isolates, was similar profile to the M. simiae 3 pattern
reported by Legrand et al. [22] as well as to the prototype
M. simiae 1 pattern [11]. Sequencing confirmed that the
nucleotide sequence is intermediate between those two
strains. The sequence also matches that recently reported
by Selvarangan et al., who proposed that their isolates rep-
resented a new species (M. sherrisii sp. nov) based on a dis-
tinct pattern of cellular fatty acids and a unique 16S rRNA
gene [23]. The NP11 profile, represented by two isolates
of M. terrae, was similar to a PRA-hsp65 pattern described
by McNabb et al. [44] with the addition of a unique HaeIII
restriction site [GenBank:EF601223].

We would concur with Hafner et al. that additional work
is required to define and standardize the most effective
electrophoresis conditions for resolving hsp65 digests of
mycobacteria [17]. In a recent multicenter study evaluat-
ing PRA-hsp65, variations related to gel preparation, run-
ning conditions and documentation tools all complicated
the interpretation of digestion patterns [29].

The ever-increasing amount of data available and the
identification of new profiles make the analysis more
complex. We present an updated PRA-hsp65 algorithm,
which includes 174 patterns among 120 species and sub-
species and have the basic cultural characteristics (rate of
growth and pigment production). These core phenotypic
traits can be readily determined and, as emphasized in a
recent statement by the American Thoracic Society [45],
can assist in confirming the molecular identification,
detecting mixed cultures, and classifying species with
indistinguishable PRA-hsp65 patterns.

Despite the complexities noted above, PRA-hsp65 analysis
proved both more rapid and more reliable than pheno-
typic methods; it was particularly effective at resolving the
most common pathogenic species. Commercial DNA
probes are available only for a very few species and their
expense may be prohibitive in some settings. DNA
sequencing is more definitive, but sequencing capability is
not yet widely available in clinical laboratories.

Conclusion
Based on our extensive practical experience, we believe
that PRA-hsp65 has the potential to provide clinicians
with more timely, more accurate and, ultimately, more
useful information and therefore deserves consideration
by any clinical microbiology laboratory charged with per-
forming species identification on NTM.

Methods
Mycobacterial isolates
From January 2000 to January 2001, 5019 cultures were
received at Institute Adolfo Lutz, São Paulo, Brazil for
mycobacterial identification. M. tuberculosis complex was
identified by direct observation of colony aspect and by
Ziehl-Neelsen stained smears for presence/absence of
cord formation. Cord-positive isolates with nonpig-
mented rough cultures were excluded from this study.

A total of 439 isolates consistent with NTM were cultured
from 435 (8.7%) specimens; five isolates were excluded
because they could not be unambiguously resolved as
NTM by the three methods used (phenotypic, PRA-hsp65
and sequencing), leaving a total of 434 isolates in the
study. The specimens yielding NTM included sputum
(280), blood (41), bronchial lavage (13), bone marrow
(13), urine (7), skin biopsy (6), lymph node (5), feces (6),
corneal scraping (4), pleural fluid (4), ascitic fluid (2),
liver biopsy (2), liquor (1), gastric fluid (1), synovial fluid
(1), abscess/secretion from unknown origin (11) and
unknown (38). The majority (61.4%) of these specimens
were from the Metropolitan Region of São Paulo, with
36.1% from elsewhere in São Paulo State and 2.5% from
other States in Brazil.

Conventional identification
Isolates were identified based on phenotypic characteris-
tics, including growth rate (fast/slow), pigment produc-
tion, growth in different temperatures (26°C, 37°C and
45°C), biochemical tests (nitrate reduction, catalase activ-
ity, urease activity, tween 80 hydrolysis, arylsulfatase),
specific chemicals (sodium chloride 5%, sodium sali-
cylate), and growth in the presence of drugs (isoniazid 10
μg/ml, rifampicin 25 μg/ml, ethambutol 5 μg/ml, thi-
ophen-2-carboxylic acid hydrazide 5 μg/ml, p-nitro-ben-
zoic acid 0.5 μg/ml, cycloserine 30 μg/ml, ciprofloxacin 5
μg/ml, hydroxylamine 500 μg/ml, ofloxacin 2.5 μg/ml)
[9,31]. Some closely related mycobacterial species cannot
be resolved by these biochemical tests. In such instances,
isolates were designated as M. avium complex, M. terrae
complex, M. chelonae complex or M. fortuitum complex, as
appropriate.

DNA extraction and PRA-hsp65 method
For DNA extraction, a loop-full of organisms grown on
Löwenstein-Jensen medium was suspended in 500 μl of
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ultrapure water, boiled for 10 min and frozen at -20°C for
at least 18 h. Five microliters of DNA-containing superna-
tant were subjected to PCR amplification of the 441 bp of
the gene hsp65 [11]. Separate aliquots of the PCR product
were digested with BstEII and HaeIII, and the resulting
restriction fragments separated by electrophoresis in a 4%
agarose gel (Nusieve, FMC Bioproducts, Rockland, Maine
USA) with 50 bp ladder as molecular size standard.

Analysis of PRA-hsp65 results
Gels were stained with ethidium bromide, photographed
on a UV transilluminator, the images scanned, the restric-
tion fragment sizes estimated using GelCompar II soft-
ware, version 2.5 (AppliedMaths, St. Marten Latem,
Belgium) and the patterns observed compared to the pat-
terns reported on PRASITE [25], in publications [11-17]
or calculated in silico from sequences deposited in Gen-
Bank [33] using BioEdit, version 7.0.5.3 [34].

hsp65 partial gene sequencing
For those isolates for which conventional and PRA-hsp65
methods gave discordant or inconclusive results, the
hsp65 amplicon was purified using Novagen Spin-prep Kit
(Novagen, Canada) and then sequenced using BigDye ter-
minator cycle sequencing reagents. Cycle sequencing was
performed by using a Perkin-Elmer 9600 GeneAmp PCR
system programmed for 25 cycles at 96°C for 20 s, 50°C
for 10 s and 60°C for 4 min. Sequencing products were
cleaned with CentriSep Spin Columns (Princeton Separa-
tions, Applied Biosystems) and then analyzed on a ABI
Prism 377 sequencer (Perkin-Elmer).

Sequence data analysis
Data produced by the sequencer was automatically proc-
essed using the EGene platform [46]. The trace files were
initially submitted to Phred [47] for base calling and qual-
ity assessment. Then, sequences were submitted to a qual-
ity filter that eliminated reads that did not present at least
one window of 200 bases where 190 bases had phred
quality above 15. After, low quality bases were trimmed
from the sequence. For each sequence, the trimming pro-
cedure isolated a "good quality" subsequence. In this
remaining subsequence, any window of 15 bases have at
least 12 bases above the quality threshold of 15. After
trimming, contaminant screening was performed using
Blastn [48] against Homo sapiens, Salmonella typhimurium
and Gallus gallus databases. Finally the clean isolates were
identified by similarity using Blastn against a database of
hsp65 genes. Sequences were considered a positive match
when they presented a minimum similarity of 80 percent
over a local alignment of at least 90 bases and ev-value of
1e-20. Species identification was confirmed if = 97%
match was achieved, according to criteria proposed by
McNabb et al. [44],. with any sequence deposited in data-
bases and published.
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