Research article

Open Access

Reliable identification of mycobacterial species by PCR-restriction enzyme analysis (PRA)-*hsp65* in a reference laboratory and elaboration of a sequence-based extended algorithm of PRA-*hsp65* patterns

Erica Chimara¹, Lucilaine Ferrazoli¹, Suely Yoko Misuka Ueky¹, Maria Conceição Martins¹, Alan Mitchel Durham², Robert D Arbeit³ and Sylvia Cardoso Leão^{*4}

Address: ¹Instituto Adolfo Lutz, São Paulo, Brazil, ²Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil, ³Tufts University School of Medicine, Division of Geographic Medicine and Infectious Diseases, Boston, Massachusetts, USA and ⁴Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil

Email: Erica Chimara - echimara@ial.sp.gov.br; Lucilaine Ferrazoli - lferrazoli@ial.sp.gov.br; Suely Yoko Misuka Ueky - satie@osite.com.br; Maria Conceição Martins - mcmartin@ial.sp.gov.br; Alan Mitchel Durham - alan@ime.usp.br; Robert D Arbeit - rda@ahkx.com; Sylvia Cardoso Leão* - sylvia.leao@unifesp.br

* Corresponding author

Published: 20 March 2008

BMC Microbiology 2008, 8:48 doi:10.1186/1471-2180-8-48

This article is available from: http://www.biomedcentral.com/1471-2180/8/48

© 2008 Chimara et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 17 October 2007 Accepted: 20 March 2008

Abstract

Background: Identification of nontuberculous mycobacteria (NTM) based on phenotypic tests is time-consuming, labor-intensive, expensive and often provides erroneous or inconclusive results. In the molecular method referred to as PRA-*hsp65*, a fragment of the *hsp65* gene is amplified by PCR and then analyzed by restriction digest; this rapid approach offers the promise of accurate, cost-effective species identification. The aim of this study was to determine whether species identification of NTM using PRA-*hsp65* is sufficiently reliable to serve as the routine methodology in a reference laboratory.

Results: A total of 434 NTM isolates were obtained from 5019 cultures submitted to the Institute Adolpho Lutz, Sao Paulo Brazil, between January 2000 and January 2001. Species identification was performed for all isolates using conventional phenotypic methods and PRA-*hsp65*. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing a 441 bp fragment of *hsp65*. Phenotypic evaluation and PRA-*hsp65* were concordant for 321 (74%) isolates. These assignments were presumed to be correct. For the remaining 113 discordant isolates, definitive identification was based on sequencing a 441 bp fragment of *hsp65*. PRA-*hsp65* identified 30 isolates with *hsp65* alleles representing 13 previously unreported PRA-*hsp65* patterns. Overall, species identification by PRA-*hsp65* was significantly more accurate than by phenotype methods (392 (90.3%) vs. 338 (77.9%), respectively; p < .0001, Fisher's test). Among the 333 isolates representing the most common pathogenic species, PRA-*hsp65* provided an incorrect result for only 1.2%.

Conclusion: PRA-*hsp65* is a rapid and highly reliable method and deserves consideration by any clinical microbiology laboratory charged with performing species identification of NTM.

Background

The genus Mycobacterium comprises organisms that are heterogeneous in terms of metabolism, growth, environmental niche, epidemiology, pathogenicity, geographic distribution and disease association [1]. While there are notable pathogens such as Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium leprae, most are environmental organisms typically acting as opportunistic pathogens. These species, often collectively called nontuberculous mycobacteria (NTM), have been associated with a variety of problems including pulmonary, lymph node, skin, soft tissue, skeletal, and disseminated infections as well as nosocomial outbreaks related to inadequate disinfection/sterilization of medical devices [2]. In recent years, infections due to the subset of rapidly growing NTM, including Mycobacterium fortuitum, Mycobacterium chelonae and Mycobacterium abscessus, have been reported as complications of numerous surgical procedures, particularly involving foreign bodies (e.g., augmentation mammaplasty), high risk sites (e.g., eye) and injections of natural products used as alternative medicines [3-8].

In most laboratories, identification of mycobacterial species is based on in vitro growth and metabolic activities. Such phenotypic tests are labor-intensive and time-consuming to perform and may take several days to weeks to complete. Further, for many NTM species, the tests may be poorly reproducible [9], and consequently, the identifications may be ambiguous or erroneous [10].

DNA-based methods offer the promise of rapid and accurate species identification. However, commercially available DNA probes are available only for a handful of mycobacterial species; moreover, reagents are quite costly. Nucleotide sequence analyses can be used to resolve essentially any bacterial species, but requires both amplification and sequencing.

Telenti and coworkers described a DNA-based method for species identification of mycobacteria in which a portion of *hsp65*, the gene encoding the 65 kDa heat shock protein, was amplified by PCR and then analyzed by restriction digest [11]. This approach, referred to as PRA-*hsp65*, required only routine PCR and agarose gel electrophoresis equipment and could be completed within a few hours. The different species of mycobacteria yielded distinctly different patterns of restriction fragments and thus the species of an unknown isolate could be determined by comparing the fragments observed with published analyses of clinical isolates [11-17] and of newly described species [4,18-24]. The availability of an on-line internet resource facilitates the process [25].

Some studies have observed limitations to PRA-hsp65 which could, potentially, render the approach impractical for routine use. First, within commonly encountered species of clinical significance, such as Mycobacterium avium and Mycobacterium kansasii, as many as six distinct PRAhsp65 patterns have been encountered [20,26-28]. Such variability could result in a high frequency of ambiguous or uninterpretable patterns. Second, validated protocols for electrophoresis and internal standards have not been defined [17,29]. Lastly, published tables present patterns which differ within a range of 5-15 bp and lack patterns for recently described species [11,14,16]. The aim of this study was to determine whether PRA-hsp65 of mycobacterial isolates provides sufficiently reliable species identification to enable it to be used as the routine methodology in a reference laboratory.

Results

Species identification by phenotype and PRA-hsp65 considered separately

Among the 434 isolates studied, biochemical and phenotypic evaluation alone assigned 371 (85.5%) isolates a species or complex; PRA-*hsp65* assigned 404 (93%) isolates a species. Inconclusive results were obtained for 63 (14.5%) isolates by conventional methods compared with 30 (6.9%) isolates using the rapid DNA-based approach; these included nine isolates that could not be identified by either method.

Species identification by phenotype and PRA-hsp65 compared to sequencing

For 321 (74.0%) of the 434 isolates both methods gave the same species identification, i.e., the results were concordant (Table 1). Based on prior experience by the authors and others [26,30], these identifications were presumed to be correct. The hsp65 genes of the remaining 113 (26.0%) isolates giving discordant or inconclusive results were sequenced. Among these, phenotypic testing had assigned 50 isolates to a species or a complex, but sequencing indicated that 33 (66%) of these assignments were incorrect (Table 2). For 63 isolates the phenotypic results were ambiguous and provided only a broad Runyon classification. Even among these, 19 (30.2%) were misclassified compared to conventional expectations [9,31], including 12 with regard to rate of growth (i.e., slow vs. rapid) and 7 with regard to chromogen production (Table 2). Overall, phenotypic species identification was correct for only 17 (15%) of 113 isolates for which hsp65 sequencing was performed.

Among the 113 isolates with discordant or inconclusive results, PRA-*hsp65* assigned 83 isolates to a species; 71 (85.5%) of these assignments were confirmed by *hsp65* partial gene sequencing (Table 3). For most of the remaining isolates, the identifications resolved by PRA-*hsp65* and

Table 2: Results for 96 NTM isolates for which phenotypic

hsp65 sequencing.

methods gave incorrect species identification as determined by

Phenotypic identification	PRA-hsp65 ^b	N (%)
M. avium complex (146)ª	M. avium I	107 (33.5)
	M. avium 2	24 (7.5)
	M. avium 3	I (0.3)
	M. intracellulare 1	13 (4.1)
	M. intracellulare 4	l (0.3)
M. kansasii (95)	M. kansasii I	95 (29.7)
M. gordonae (30)	M. gordonae I	2 (0.6)
	M. gordonae 3	19 (6.0)
	M. gordonae 4	2 (0.6)
	M. gordonae 5	I (0.3)
	M. gordonae 7	3 (0.9)
	M. gordonae 8	3 (0.9)
M. fortuitum complex (24)	M. fortuitum I	21 (6.6)
	M. peregrinum 2	I (0.3)
	M. peregrinum 3	2 (0.6)
M. chelonae complex (21)	M. chelonae I	5 (1.6)
	M. abscessus 1	14 (4.4)
	M. abscessus 2	2 (0.6)
M. marinum (2)	M. marinum I	2 (0.6)
M. terrae complex (2)	M. terrae I	I (0.3)
	M. nonchromogenicum 2	I (0.3)
M. szulgai (1)	M. szulgai 1	l (0.3)

Table I: Species identification of 321 isolates which had concordant results by both phenotypic and PRA-*hsp65* methods.

^a Number of isolates.

^b PRA-hsp65 designation; see text for details.

sequencing were consistent with close evolutionary relationships (e.g., *M. kansasii* and *Mycobacterium gastri*, *Mycobacterium intracellulare* and *M. avium*) (Table 3).

There were 30 isolates representing 13 PRA-*hsp65* patterns not in the available databases and the species was resolved by sequencing. The observed BstEII and HaeIII fragments for these new patterns (designated NP), the source of these isolates and the species identification based on sequencing are listed in Table 4; the observed phenotypes, including antimicrobial susceptibilities, are presented in Table 5. In four instances (NP1, NP11, NP14 and NP17, representing *Mycobacterium gordonae Mycobacterium terrae*, *Mycobacterium sherrisii* and *Mycobacterium arupense*, respectively) multiple isolates with the pattern were identified.

Overview of results

The overall results of the two methods are summarized in Table 6. Among 434 NTM isolates, PRA-*hsp65* provided correct species identification significantly more frequently than phenotypic/biochemical testing (392 (90.3%) vs 338 (77.9%), respectively; p < .0001, Fisher's exact test).

The four species or complex of NTM most commonly associated with clinically significant disease are *M. avium* complex, *M. fortuitum* complex, *M. chelonae* complex and *M. kansasii*. These represented 333 (76.7%) of the 434 iso-

Species	NÞ	Phenotypic result
M. abscessus (1) ^c	I	SGN
M. arupense (5)	I	M. chelonae complex
	2	SGN
	I	SGS
M. asiaticum (3)	2	M. avium complex
	I	M. gordonae
M. avium (18)	I	M. chelonae complex
	I.	M. fortuitum
	2	M. kansasii
	10	SGN
	I	RGN
	I	SGP
	I	SGS
M. celatum (2)	I	M. xenopi
	I	SGN
M. chelonae (2)	2	SGN
M. cosmeticum (1)	I	M. chelonae
M. farcinogenes (1)	I	M. chelonae complex
M. flavescens (1)	I	RGS
M. fortuitum (6)	2	M. chelonae complex
	I.	RGN
	I.	SGN
M. genavense (1)	I.	SGN
M. gordonae (26)	I.	RGP
	I.	SGN
	12	SGS
M. hassiacum (1)	I.	RGS
M. intracellulare (9)	I.	M. chelonae complex,
	I.	M. gordonae
	7	SGN
M. kansasii (7)	I	M. nonchromogenicum
	2	RGP
	I	SGN
	2	SGP
	I	SGS
M. lentiflavum (3)	2	M. avium complex
	I	M. gordonae
M. mageritense (1)	I	M. fortuitum
M. marinum (1)	I	M. kansasii
M. mucogenicum (8)	2	M. chelonae complex
	I	M. fortuitum complex
	I	M. þeregrinum
	3	SGN
	I	SGS
M. nebraskense (1)	I.	M. gordonae
M. nonchromogenicum (2)	I.	SGN
M. þeregrinum (4)	4	M. chelonae complex
M. phlei (1)	I	RGS
M. scrofulaceum (3)	I	M. avium complex
	2	SGN
M. sherrisii (3)	2	M. avium complex
	I	SGN
M. szulgai (1)	I	SGS
M. terrae (2)	I	SGN

^a Species identification was determined by *hsp65* sequencing for 113 isolates that had discordant results by PRA-*hsp65* and phenotypic studies. For 17 isolates sequencing confirmed the species identification obtained by phenotypic methods.

^b Number of isolates for which the phenotypic identification shown was incorrect.

^c Total number of isolates of that species sequenced. SGS: slowly growing scotochromogen; SGN: slowly growing nonchromogen; SGP: slowly growing photochromogen; RGS: rapidly growing scotochromogen; RGN: rapidly growing nonchromogen; RGP: rapidly growing photochromogen. Table 3: Results for 12 NTM isolates for which PRA-*hsp65* gave incorrect species identification as determined by *hsp65* sequencing.

Species	NÞ	PRA-hsp65 result
M. avium (18)°	I	M. kansasii I
M. farcinogenes (1)	I	M. scrofulaceum 1
M. intracellulare (9)	I	M. avium 3
M. kansasii (7)	I	M. avium 2
	I	M. gastri I
M. mucogenicum (8)	I	M. chitae I
o ()	I	M. gordonae I
	I	M. nonchromogenicum 1
M. nebraskense (1)	I	M. avium 3
M. scrofulaceum (3)	2	M. lentiflavum 3
,	I	M simiae I

^a Species identification was determined by *hsp65* sequencing for 113 isolates that had discordant results by PRA-*hsp65* and phenotypic studies. For 71 isolates sequencing confirmed the species identification obtained by PRA-*hsp65*. For an additional 30 isolates, the PRA-*hsp65* patterns obtained were previously unreported (see Table 4).

 $^{\rm b}$ N, number of isolates for which the PRA-hsp65 identification shown was incorrect.

^c Total number of isolates of that species sequenced.

lates in this collection. PRA-*hsp65* provided incorrect species identification for only 4 (1.2%) of these isolates and a new pattern for an additional 3 (0.9%). In contrast, phenotypic/biochemical testing provided incorrect assignments for 9 (2.7%) and ambiguous results for 31 (9.3%). Thus, the frequency of incorrect or uncertain species identification among these isolates of potential clinical importance was almost 6-fold higher for the phenotypic method than for PRA-*hsp65* (40 (12.0%) vs. 7 (2.1%), respectively; p < .0001, Fisher's exact test).

PRA-hsp65 algorithm

Figures 1, 2 and 3 display an updated algorithm relating observed restriction fragments to particular species. We have included refinements of previously assigned fragment sizes based on our observations and analysis of available hsp65 sequences from validated mycobacterial species found online [32]. Sequences retrieved from Gen-Bank [33] comprising the 441 bp Telenti fragment were analyzed using BioEdit, version 7.0.5.3. [34] and/or the DNASIS Max version 1 program (Hitashi Software Engineering Co., USA). BstEII restriction patterns were distributed in seven possible configurations: 440, 320-130, 320-120, 235-210, 235-130-85, 235-120-100, and 235-120-85. HaeIII fragment sizes were adjusted considering the nearest number multiple of 5, to facilitate interpretation of gel bands. These adjustments were performed based in our experience with analysis of more than 500 gels both visually and using the GelCompar program. HaeIII restriction fragments shorter than 50 bp were not taken in account as their discrimination in 4% agarose gels is often inaccurate. Different variants of PRA-hsp65 profiles from each species were numbered using Arabic numbers after the designation of the species, as reported in the PRASITE, except for *M. avium*, for which variants *M. avium* 1 and *M*. avium 2 were defined as reported in Leao et al. [20] and Smole et al. [27]. There were also PRA-hsp65 patterns frequently found in our routine work that had no sequence deposited. These patterns were included according to published data [11-17] or the PRASITE [25]. Figures 2 and 3 also include the two new patterns we observed in two or more isolates (NP11 and NP1) and for which we propose PRA-hsp65 designations, M. terrae 4 and M. gordonae 10, respectively. The partial hsp65 gene sequences of these isohave been deposited in GenBank [Genlates

Table 4: BstEII and HaeIII fragment lengths (base pairs) for 30 isolates with new patterns by PRA-hsp65.

Species ^a	PRA-hsp65	Ν	Fragment BstEll	Length (bp) Haelll
M. arupense	NP17	5	320-115	145-75-60
M. avium	NP10	I	320-115	140-90-60
M. cosmeticum	NP6	I	320-115	150-95-80
M. fortuitum	NPI2	I	235-120-85	140-120-100-55
M. fortuitum	NP19	I	235-120-100	145-140-100-55
M. gordonae	NPI	11	235-120-100	130-110-95
M. gordonae	NP3	I	320-130	130-60
M. gordonae	NPI3	I	235-120-85	130-90
M. gordonae	NP22	I	235-130-85	160-90-60
M. mageritense	NP5	I	240-130-85	145-100-50
M. nonchromogenicum	NP4	I	235-120-85	145-80-60
M. sherrisii	NP14	3	235-120-85	145-130
M. terrae	NPII	2	235-210	140-115-70

^a Species identification based on sequencing of *hsp65* gene. Bold indicates sequences submitted to GenBank and patterns included in the updated PRA-*hsp65* algorithm (see Figures 1, 2 and 3). GenBank accession numbers: NP1, <u>EF601222</u>; NP11, <u>EF601223</u>; NP14, <u>AY365190</u> [23]; NP17, <u>DO168662</u> [18].

All isolates with new PRA-*hsp65* profiles were cultured from sputum, with the following exceptions: NP1: urine (2), feces, liver biopsy and unknown (one each); NP17: unknown (2).

Species	PRA hsp65	25°C	37°C	45°C	Pg	тсн	nit	Tween	NaCl	Aryl3	Aryl15	ag	pic	β -gal	IJ	НА	PNB	INH	RF	ЕМВ	CIP	OFL
M. arupense	NP17	3	3	0	N	2–3	0	I	0	0–I	0–2	nd	0	0–I	nd	3	2–3	3	0	0	0–I	3
M. avium	NP10	3	3	0	Ν	3	3	I	I	2	3	3	0	0	3	3	Т	I	Т	0	0	0
M. cosmeticum	NP6	3	3	2	Ν	3	0	I	0	I	2	Т	2	I	nd	2	3	2	3	2	I	2
M. fortuitum	NP12	3	3	0	S	3	3	I	3	I	3	2	Т	0	3	3	3	3	3	3	0	3
M. fortuitum	NP19	3	3	0	Ν	3	3	0	3	3	3	3	3	I	3	3	3	3	3	3	0	2
M. gordonae	NPI	2–3	3	0	S	3	0	I	0	I	2	0	0	0	3	I–3	3	0–3	0–3	0–I	0–I	I–3
M. gordonae	NP3	3	Т	0	S	3	0	2	0	0	2	0	0	0	3	T	2	0	0	0	0	0
M. gordonae	NPI3	Т	2	0	Ρ	3	I	0	nd	0	I	0	0	0	3	3	3	0	Т	I	2	Т
M. gordonae	NP22	3	3	3	S	3	3	2	0	0	0	nd	0	0	3	0	3	Т	3	3	0	nd
M. mageritense	NP5	3	3	0	Ν	3	2	I	0	0	2	3	0	0	3	3	3	0	3	0	0	0
M. nonchromogenicum	NP4	2	3	2	Ν	2	Т	I	0	0	0	nd	I	I	nd	2	2	2	2	0	0	0
M. sherrisii	NPI4	I	2	0	s	I–2	0	0	I–2	0	0	I	0	Т	2	I–2	I–2	I	Т	2	2	I–2
M. terrae	NPII	2	3	0	N/S	2–3	0–3	I, 2	I	0	0–I	0	0	0–1	3	3	١, 2	3	0	0	0, I	3

Table 5: Phenotypic characteristics of isolates demonstrating previously unreported PRA-hsp65 patterns.

Phenotypes: 24°C, 36°C, 45°C: growth at temperature shown; pg: pigmentation (N, nonchromogen; P, photochromogen; S, scotochromogen); TCH: growth on thiophene-2-carboxylic acid hydrazide; nit: nitrate reduction; Tween: hydrolysis of Tween 80; NaCl: growth on 5% NaCl; Aryl 3. Aryl 15: arylsulfatase activity after 3 and 15 days of growth, respectively; ag: growth on nutrient agar; pic: growth on picric acid; β-gal: β-galactosidase activity; LJ: growth on Löwenstein-Jensen media; HA: growth on hydroxylamine 500 µg/ml; PNB: growth on p-nitrobenzoic acid; INH: isoniazid; RF: rifampicin; EMB: ethambutol; CIP: ciprofloxacin; OFL: ofloxacin. Responses are graded 0 (negative, no growth, no activity expressed) to 3 (positive, heavy growth, strong activity expressed); nd, not done. For patterns with multiple isolates, the result shown represents the most common phenotype(s) or the range of phenotypes observed.

hsp65 sequence	Ν		PRA-hsp65		Phenotypic identification					
		Concordant	New Pattern	Discordant	Concordant	Ambiguous	Discordant			
Not done ^a	321	321			321					
Done	113	71	30	12	17	63	33			
Total	434	392 (90.3%)	30 (6.9%)	12 (2.8%)	338 (77.9%)	63 (14.5%)	33 (7.6%)			

Table 6: Summary of concordance among species identification results obtained by PRA-*hsp65*, phenotypic evaluation and sequence analysis of the *hsp65* gene.

^a Isolates for which species identification by PRA-*hsp65* and phenotypic/biochemical evaluation were concordant were not sequenced. Based on prior reports by the authors and others, sequencing *hsp65* in such isolates almost invariably confirms the species identification of the other methods.

Bank:<u>EF601223</u> and GenBank:<u>EF601222</u>, respectively]. The figures also indicate the basic phenotypic characteristics (time for growth and pigment production) observed for each species.

Discussion

The incidence of individual infections and outbreaks associated with NTM has risen dramatically over the past decade establishing these organisms as significant human pathogens. Traditionally, the identification of mycobacteria to the species level has relied upon biochemical tests, which require three to six weeks to complete. Biochemical identification, even when performed by skilled microbiologists, may yield uncertain or even misleading results because (a) the tests used are inherently poorly reproducible; (b) the expected phenotypes are not an absolute property of the species, but may exhibit substantial variability; and (c) the database of phenotypic characteristics is limited to common species [10].

In recent years, DNA-based techniques have greatly facilitated identifying the species of NTM isolates and enabled a number of new species to be documented as infecting agents [35-39]. These approaches can be applied to a single isolated colony and a definitive result can typically be obtained within a day. PRA-*hsp65*, first described by Telenti et al., is based on detection of restriction fragment polymorphisms in the *hsp65* gene and thereby resolving the species of a mycobacterial isolate [11].

In the present study, 434 NTM isolates from clinical specimens were analyzed by conventional phenotypic methods and by PRA-*hsp65*; further, those isolates for which the results from the two methods were discordant were analyzed using nucleotide sequencing of the *hsp65* gene. For 63 (14.5%) isolates phenotypic methods could not provide a species identification and for almost a third of these isolates even the apparent Runyon classification proved inconsistent with conventional expectations. For an additional 33 (7.6%) isolates the phenotypic identification proved incorrect. Phenotypic variability among fresh clinical isolates has been observed in other studies [10,40,41].

In contrast, PRA-*hsp65* correctly identified over 90% of evaluable isolates using currently available databases of restriction digest patterns. For most of the remaining isolates, the PRA-*hsp65* pattern observed was not previously reported. There were only 4 (1.2%) clinically significant isolates for which the current PRA algorithm indicated an incorrect species.

PRA-*hsp65* has proven similarly effective in other studies. Hafner et al. used 16S rDNA sequencing to analyze 126 isolates selected at random from a larger collection [17]. The *hsp65* method correctly identified 120 (95.2%) of these isolates. They also sequenced 10 additional isolates from the larger collection that gave PRA-*hsp65* patterns not previously reported. All these isolates represented environmental species rarely associated with clinically significant disease.

Among our 434 isolates, 30 (6.9%) provided 13 PRAhsp65 profiles not previously reported. Our series represents isolates cultured from varied clinical specimens collected in the metropolitan and surrounding areas of the city of Sao Paulo, Brazil. Most of the isolates with new PRA-hsp65 patterns were cultured from sputum. Many represented species typically considered non-pathogens; clinical correlation was not available and these isolates may reflect colonization by environmental organisms. Previous studies have similarly documented considerable species diversity as well as the genotypic diversity among mycobacteria isolates in Brazil [42,43]. Sequence analysis confirmed that the new profiles were allelic variations within the species, consistent with previous studies [13,17,20]. Of interest, four profiles were represented by more than one isolate, suggesting that they are potentially prevalent lineages rather than singular mutation events.

The most commonly identified new profile (designated NP1) was observed in 11 isolates, representing 20% of all *M. gordonae* in this collection. Comparison to the proto-

BstEll			F	laelll	species	type	phenotypic	strain or reference
	105	00	60		confluentia	4	DON	CID 105510
	195	90	60		confluentis	1	RGN	CIP 105510
	180	145			gilvum	1	RGS	DSM 44503
	175	90	60		gadium	1	RGS	CIP 105388
	175	90			tusciae	1	SGS	CIP 106367
	170	130			triviale	1	SGN	ATCC 23292 DSM 44153
	160	90	60		vaccae	1	RGS	ATCC 15483 CIP 105934
	160	85	55		flavescens	3	RGS	PRAsite
	145	130			florentinum	1	SGN	DSM 44852
	145	130			lentiflavum	1	SGS	CIP 105465
440	145	130			simiae	5	SGP	PRAsite
	145	90	60	50	komossense	1	RGS	CIP 105293
	145	90	60		parafortuitum	1	RGN	CIP 106802
	145	70	60	55	brumae	1	RGS	CIP 103465
	140	100	60	50	holsaticum	1	RGS/RGN	DSM44478
	140	60	50		novocastrense	1	RGP	CIP 105546
	140	55	50		flavescens	1	RGS	CIP 104533
	135	130	65		duvalii	1	RGS	CIP 104539
	130	115	70	60	aurum	2	RGS	ATCC 23366 CIP104465
	130	105	70		szulaai	1	SGS	CIP 104532 ATCC 35799
	125	105	60		nebraskense	1	SGS	DSM 44803
	120	100	50		nooraononoc		300	
	265	130			leprae	1	-	[16]
	200	70	60	55	immunogenum	2	RGN	[4]
	200	60	E E	50	abalanaa	4	DON	ATCC 35749 CIP 104535
	200	60	55	50	chelonae	1	RGN	ATCC 35752 ATCC 19237
	160	110			haemophilum	1	SGN	ATCC 29548 CIP 105049
	145	70	60	55	immunogenum	1	RGN	ATCC 700506 CIP 106684
320 130	140	130	50		elephantis	1	RGS	CIP 106831
	140	95	80		cosmeticum	1	RGS	ATCC BAA-879
	140	90	80		canariasense	1	RGN	CIP 107998
	140	65	60		mucogenicum	1	RGN	ATCC 49650 ATCC 49651
	130	115	60	50	botniense	1	SGS	DSM 44537
	125	95	80		lacus	1	SGN	DSM44577
	245	140			fluoranthenivorans	1	RGN	DSM 44556
	195	70	60	50	aichiense	1	RGS	ATCC 27280 DSM 44147
	185	145			fallax	1	RGN	CIP 81.39
	185	140			terrae	2	SGN	[44]
	180	160	55		frederiksbergense	1	RGS	DSM 44346
	180	130			terrae	1	SGN	ATCC 15755 CIP 104321
	175	90	60		sphagni	1	RGN	DSM 44076
	170	140			neoaurum	1	RGS	CIP 105387
	170	140			parafortuitum	2	RGN	ATCC 19686
	160	125	60		rhodesiae	1	RGS	CIP 106806
	145	140	60		diernhoferi	1	RGN	CIP 105384
	145	130	60		montefiorense	1	SGN	ATCC BAA-256 ATCC 700071
	145	120			lantiflauum	2	808	DSM 44602
	140	130			aimiaa	2	363	[10] DDAoite
	145	120	50		siniae	4	SOF	CID 106108
000 445	145	130	50		unplex		SGN	
320 115	145	80	60		aubagnense		RGN	CIP 108543
	145	75	60		arupense	1	SGN	CS10506 CS17052
	145	65	60		mucogenicum	2	RGN	CIP 105223 ATCC 49649
	145	65	60		pnocalcum	1	RGN	CIP 108542
	145	405	50		COOKII	1	SGS	CIP 105396
	140	135	50		puiveris	1	RGN	
	140	90	60		chitae	1	RGN	AI CC 19627 CIP 105383
	140	90	60		mucogenicum	3	RGN	clinical isolate
	140	90	60		nonchromogenicum	2	SGN	clinical isolate
	140	60	50		terrae	3	SGN	[44]
	130	115	60		gordonae	4	SGS	isolate 87-613
	130	110	70	60	gordonae	8	SGS	[12]
	130	110	70		kumamotonense	1	SGN	CST7247
	130	95	75	60	kansasii	5	SGP	[28]
	125	105			genavense	1	SGN	DSM 44424

Figure I

Algorithm of PRA-hsp65 patterns based on analysis of the 441 bp fragment of the hsp65 gene. BstEll patterns: 440 bp, 320 bp/130 bp, 320 bp/115 bp. Columns I and 2: calculated BstEll and Haelll fragment sizes in base pairs. Column 3: species names according to [32]. Column 4: PRA-hsp65 pattern type. Column 5: RGN: rapidly growing non-pigmented, RGS: rapidly growing scotochromogen, RGP: rapidly growing photochromogen, SGN: slowly growing non-pigmented, SGS: slowly growing scotochromogen, SGP: slowly growing photochromogen. Column 6: strain(s) used for hsp65 sequencing or reference of the publication describing this pattern.

BstEll			H	laelli	species	type	phenotypic	strain or reference
	225	110			shottsii	1	SGN	ATCC 700981 NCTC 13215
	200	90	60		moriokaense	1	RGN	CIP 105393
	200	70	60	50	abscessus	2	RGN	ATCC 14472
	200	70	60	50	bolletii	1	RGN	CIP 108541
	200	70	60	50	massiliense	1	RGN	CCUG 48898
	190	105	80	00	ulcerans	2	SGN/SGS	[21]
	185	130	00		genavense	2	SGN	ATCC 51233
	185	130			simiae	1	SGP	ATCC 25275
	180	135	70	50	thermorresistibile	1	RGS	CIP 105390 ATCC 19527
	180	100	50		hassiacum	1	RGS	ATCC 700660 CIP 105218
	160	95	50		poriferae	1	RGS	CIP 105394
	160	60	50		austroafricanum	1	RGS	CIP 105395
	160	60	50		vanbaalenii	1	RGS	DSM 7251
	155	140			simiae	2	SGP	[14]
	145	140	100	50	peregrinum	1	RGN	CIP 105382 ATCC 14467
	145	140	75		parascrofulaceum	5	SGS	[38]
	145	130	95		scrofulaceum	1	SGS	CIP 105416 ATCC 19981
	145	130	60		parmense	1	SGS	CIP 105394
	145	130			avium s. avium	3	SGN	[20]
	145	130			interjectum	1	SGS	DSM 44064 ATCC 51457
	145	130			intermedium	1	SGP	ATCC 51848 CIP 104542
	145	130			intracellulare	3	SGN	PRAsite
	145	130			saskatchewanense	1	SGS	CIP 108114
	145	130			seoulense	1	SGS	[36]
	145	130			simiae	6	SGP	[44]
	145	110	80		pseudoshottsii	1	SGP	AICC BAA-883 NCIC 13318
	145	105	80		malmoense	2	SGN	PRAsite
005 040	145	105	80		marinum	1	SGP	ATCC 927 CIP 104528
235 210	145	105	80		uicerans	1	SGN/SGS	CIP 105425 ATCC 19423
	145	105	60	55	bonemicum	1	SGS BCN	
	140	125	100	50	abscessus	2		CIF 104550 ATCC 19977 isolato B1285
	140	120	100	50	peregnitum	2	NON	ATCC 49939 DSM 44242
	140	125	100	50	porcinum	1	RGN	ATCC BAA-328 ATCC 33776
	140	125	100	50	septicum	1	RGN	ATCC 700731 CIP 106642
	140	125	60	50	boenickei	1	RGN	CIP 107829
	140	125	60	50	senegalense	3	RGS	ATCC 35796
	140	115	70		terrae	4	SGN	this work
	140	105	80		intracellulare	2	SGN	PRAsite
	140	100	60		kubicae	1	SGS	ATCC 700732 CIP 106428
	140	90	60		chiorophenolicum	1	RGS	CIP 104189
	140	90	60	55	chubuense	1	RGS	
	140	90	60		obuonso	1	DCS	CIP 105105
	140	80	60	50	obuense	1	PCS	ATCC 11758 CIP 105380
	140	115	00	50	gordonao	5	868	strain 79/02
	130	115			heidelbergense	1	SGN	CIP 105424
	130	115			interiectum	2	SGS	[44]
	130	105	80	60	branderi	1	SGN	CIP 104592
	130	105	80		kansasii	1	SGP	ATCC 12478 CIP 104589
	130	105	60		avium s. avium	2	SGN	[20]
	130	105	60		colombiense	1	SGN	CIP 108962
	130	105			avium s. avium	1	SGN	ATCC 25291
	130	105			avium s. paratuberculosis	1	SGN	CIP 103963 K10
	130	105			avium s. silvaticum	1	SGN	CIP 103317
	130	95	80		parascrofulaceum	3	SGS	[38]
	130	95			palustre	1	SGS	DSM 44572
	130	80	60		celatum	1	SGN/SGS	ATCC 51131 CIP 106109
	120	115	110		intracellulare	4	SGN	PRAsite
	115	105			asiaticum	1	SGP	ATCC 25276 DSM 44297

Figure 2

Algorithm of PRA-hsp65 patterns based on analysis of the 441 bp fragment of the hsp65 gene. BstEll patterns: 235 bp/210 bp. Columns I and 2: calculated BstEll and HaellI fragment sizes in base pairs. Column 3: species names according to [32]. Column 4: PRA-hsp65 pattern type. Column 5: RGN: rapidly growing non-pigmented, RGS: rapidly growing scotochromogen, RGP: rapidly growing photochromogen, SGN: slowly growing non-pigmented, SGS: slowly growing scotochromogen, SGP: slowly growing photochromogen. Column 6: strain(s) used for hsp65 sequencing or reference of the publication describing this pattern.

BstEll			Н	aelli	species	type	phenotypic	strain or reference
	180	160			doricum	1	SGS	DSM 44339
	175	80			aurum	1	RGS	[14]
	160	145	60		agri	1	RGN	CIP105391
	160	90	60		monacense	1	SGS	[37]
	145	140	100	60	perearinum	3	RGN	isolate FI-05382
	145	130			simiae	3	SGP	[22]
	145	125	60		goodii	1	RGN	CIP 106349 ATCC 700504
	145	125	60		mageritense	1	RGN	CIP 104973
	145	125	60		smegmatis	1	RGN	ATCC 35796 ATCC 19420
	145	100	50		alvei	1	RGN	CIP 104444 CIP 103464
235 130 85	145	80	60		murale	1	RGN	CIP 105980
	140	125	60	50	senegalense	2	RGS	[39]
	140	125	60		wolinski	1	RGN	ATCC 700010 CIP 106348
	140	120	95		gordonae	6	SGS	[14]
	140	105	70		shimodei	1	SGN	DSM 44152 ATCC 27962
	140	80	60		hodleri	1	RGS	CIP 104909
	140	80	60		tokaiense	1	RGS	CIP 106807
	130	105	80		celatum	2	SGN/SGS	ATCC 51130
	130	105	70		gastri	1	SGN	CIP 104530 ATCC 15754
	130	105	70		kansasii	6	SGP	[44]
	130	105			kansasii	2	SGP	PRAsite
	130	95	70		kansasıı	3	SGP	PRAsite
	130	95			parascrotulaceum	4	565	[38]
	160	115	60		gordonae	9	SGS	strain 49/21/03
	160	105	60		heckeshornense	1	SGS	DSM 44428
	155	110			gordonae	7	SGS	PRAsite
	145	130	60		chimaera	1	SGN	CIP 107892
235 120 100	145	130	60		intracellulare	1	SGN	ATCC 13950 CIP 104243
	145	130			lentiflavum	3	SGS	strain 21210
	145	105	80		malmoense	1	SGN	AICC 295/1 CIP 105//5
	140	125	100		brisbanense	1	RGN	CIP 107830 DSM44241
	140	00 115			niberniae	2	565	DSM44241
	130	110	05		gordonae	10	363	[12] this work
	150	110	55		gordonae	10	000	
	215	110			gordonae	2	SGS	[12]
	180	140	50		senegalense	4	RGS	AICC 35796
	160	115	60		gordonae	1	SGS	CIP 104529 ATCC 14470
	160	100	70		tuboroulooio complox	1	SGN	ATCC 27204
	100	130	70		shorrisii	1	SGN	
	1/5	120	60	55	fortuitum	1	RGN	ATCC 6841 CIP 104534
	145	120	60	55	fortuitum s acetamidolyticum	1	RGN	CIP 105423
	145	60	55	00	nonchromogenicum	1	SGN	ATCC 19530
235 120 85	140	125	60	55	conceptionense	1	RGN	CIP 108544
200 120 00	140	125	60	55	farcinogenes	1	SGN	ATCC 35753
	140	125	60	50	houstonense	1	RGN	ATCC 49403 DSM 44676
	140	125	60	50	neworleanense	1	RGN	ATCC 49404
	140	125	60	50	senegalense	1	RGS	CIP 104941 ATCC BAA-850 ATCC 35755 ATCC BAA-849
	140	120	60	55	fortuitum	2	RGN	ATCC 49404 ATCC 49403
	140	95			parascrofulaceum	1	SGS	[38]
	135	90	85		fortuitum	3	RGN	[35]
	130	115	75	60	kansasii	4	SGP	[28]
	130	95			lentiflavum	4	SGS	[15]
	130	95			parascrofulaceum	2	SGS	CIP 108112 strain BAA-614

Figure 3

Algorithm of PRA-hsp65 patterns based on analysis of the 441 bp fragment of the hsp65 gene. BstEll patterns: 235 bp/130 bp/85 bp, 235 bp/120 bp/100 bp, 235 bp/120 bp/85 bp. Columns I and 2: calculated BstEll and HaellI fragment sizes in base pairs. Column 3: species names according to [32]. Column 4: PRA-hsp65 pattern type. Column 5: RGN: rapidly growing non-pigmented, RGS: rapidly growing scotochromogen, RGP: rapidly growing photochromogen, SGN: slowly growing non-pigmented, SGS: slowly growing scotochromogen, SGP: slowly growing photochromogen. Column 6: strain(s) used for hsp65 sequencing or reference of the publication describing this pattern.

type *M. gordonae* sequence indicated two point mutations that resulted in the loss of two HaeIII sites and the addition of 95-bp fragment to the profile [Gen-Bank:<u>EF601222</u>]. A similar profile was assigned to *M. gordonae* by da Silva Rocha et al. [13], although sequence confirmation was not reported. Hafner et al. also noted that *M. gordonae* is a particularly polymorphic species [17].

The NP17 profile, demonstrated for five isolates, was identified by sequencing as M. arupense, a recently described species related to the M. terrae complex [18]. The NP14 profile, observed for three Mycobacterium simiae isolates, was similar profile to the M. simiae 3 pattern reported by Legrand et al. [22] as well as to the prototype M. simiae 1 pattern [11]. Sequencing confirmed that the nucleotide sequence is intermediate between those two strains. The sequence also matches that recently reported by Selvarangan et al., who proposed that their isolates represented a new species (M. sherrisii sp. nov) based on a distinct pattern of cellular fatty acids and a unique 16S rRNA gene [23]. The NP11 profile, represented by two isolates of M. terrae, was similar to a PRA-hsp65 pattern described by McNabb et al. [44] with the addition of a unique HaeIII restriction site [GenBank: EF601223].

We would concur with Hafner et al. that additional work is required to define and standardize the most effective electrophoresis conditions for resolving *hsp65* digests of mycobacteria [17]. In a recent multicenter study evaluating PRA-*hsp65*, variations related to gel preparation, running conditions and documentation tools all complicated the interpretation of digestion patterns [29].

The ever-increasing amount of data available and the identification of new profiles make the analysis more complex. We present an updated PRA-*hsp65* algorithm, which includes 174 patterns among 120 species and subspecies and have the basic cultural characteristics (rate of growth and pigment production). These core phenotypic traits can be readily determined and, as emphasized in a recent statement by the American Thoracic Society [45], can assist in confirming the molecular identification, detecting mixed cultures, and classifying species with indistinguishable PRA-*hsp65* patterns.

Despite the complexities noted above, PRA-*hsp65* analysis proved both more rapid and more reliable than phenotypic methods; it was particularly effective at resolving the most common pathogenic species. Commercial DNA probes are available only for a very few species and their expense may be prohibitive in some settings. DNA sequencing is more definitive, but sequencing capability is not yet widely available in clinical laboratories.

Conclusion

Based on our extensive practical experience, we believe that PRA-*hsp65* has the potential to provide clinicians with more timely, more accurate and, ultimately, more useful information and therefore deserves consideration by any clinical microbiology laboratory charged with performing species identification on NTM.

Methods

Mycobacterial isolates

From January 2000 to January 2001, 5019 cultures were received at Institute Adolfo Lutz, São Paulo, Brazil for mycobacterial identification. *M. tuberculosis* complex was identified by direct observation of colony aspect and by Ziehl-Neelsen stained smears for presence/absence of cord formation. Cord-positive isolates with nonpigmented rough cultures were excluded from this study.

A total of 439 isolates consistent with NTM were cultured from 435 (8.7%) specimens; five isolates were excluded because they could not be unambiguously resolved as NTM by the three methods used (phenotypic, PRA-*hsp65* and sequencing), leaving a total of 434 isolates in the study. The specimens yielding NTM included sputum (280), blood (41), bronchial lavage (13), bone marrow (13), urine (7), skin biopsy (6), lymph node (5), feces (6), corneal scraping (4), pleural fluid (4), ascitic fluid (2), liver biopsy (2), liquor (1), gastric fluid (1), synovial fluid (1), abscess/secretion from unknown origin (11) and unknown (38). The majority (61.4%) of these specimens were from the Metropolitan Region of São Paulo, with 36.1% from elsewhere in São Paulo State and 2.5% from other States in Brazil.

Conventional identification

Isolates were identified based on phenotypic characteristics, including growth rate (fast/slow), pigment production, growth in different temperatures (26°C, 37°C and 45°C), biochemical tests (nitrate reduction, catalase activity, urease activity, tween 80 hydrolysis, arylsulfatase), specific chemicals (sodium chloride 5%, sodium salicylate), and growth in the presence of drugs (isoniazid 10 µg/ml, rifampicin 25 µg/ml, ethambutol 5 µg/ml, thiophen-2-carboxylic acid hydrazide 5 µg/ml, p-nitro-benzoic acid 0.5 µg/ml, cycloserine 30 µg/ml, ciprofloxacin 5 μ g/ml, hydroxylamine 500 μ g/ml, ofloxacin 2.5 μ g/ml) [9,31]. Some closely related mycobacterial species cannot be resolved by these biochemical tests. In such instances, isolates were designated as M. avium complex, M. terrae complex, M. chelonae complex or M. fortuitum complex, as appropriate.

DNA extraction and PRA-hsp65 method

For DNA extraction, a loop-full of organisms grown on Löwenstein-Jensen medium was suspended in 500 μl of

ultrapure water, boiled for 10 min and frozen at -20 °C for at least 18 h. Five microliters of DNA-containing supernatant were subjected to PCR amplification of the 441 bp of the gene *hsp65* [11]. Separate aliquots of the PCR product were digested with BstEII and HaeIII, and the resulting restriction fragments separated by electrophoresis in a 4% agarose gel (Nusieve, FMC Bioproducts, Rockland, Maine USA) with 50 bp ladder as molecular size standard.

Analysis of PRA-hsp65 results

Gels were stained with ethidium bromide, photographed on a UV transilluminator, the images scanned, the restriction fragment sizes estimated using GelCompar II software, version 2.5 (AppliedMaths, St. Marten Latem, Belgium) and the patterns observed compared to the patterns reported on PRASITE [25], in publications [11-17] or calculated *in silico* from sequences deposited in Gen-Bank [33] using BioEdit, version 7.0.5.3 [34].

hsp65 partial gene sequencing

For those isolates for which conventional and PRA-*hsp65* methods gave discordant or inconclusive results, the *hsp65* amplicon was purified using Novagen Spin-prep Kit (Novagen, Canada) and then sequenced using BigDye terminator cycle sequencing reagents. Cycle sequencing was performed by using a Perkin-Elmer 9600 GeneAmp PCR system programmed for 25 cycles at 96°C for 20 s, 50°C for 10 s and 60°C for 4 min. Sequencing products were cleaned with CentriSep Spin Columns (Princeton Separations, Applied Biosystems) and then analyzed on a ABI Prism 377 sequencer (Perkin-Elmer).

Sequence data analysis

Data produced by the sequencer was automatically processed using the EGene platform [46]. The trace files were initially submitted to Phred [47] for base calling and quality assessment. Then, sequences were submitted to a quality filter that eliminated reads that did not present at least one window of 200 bases where 190 bases had phred quality above 15. After, low quality bases were trimmed from the sequence. For each sequence, the trimming procedure isolated a "good quality" subsequence. In this remaining subsequence, any window of 15 bases have at least 12 bases above the quality threshold of 15. After trimming, contaminant screening was performed using Blastn [48] against Homo sapiens, Salmonella typhimurium and Gallus gallus databases. Finally the clean isolates were identified by similarity using Blastn against a database of hsp65 genes. Sequences were considered a positive match when they presented a minimum similarity of 80 percent over a local alignment of at least 90 bases and ev-value of 1e-20. Species identification was confirmed if = 97% match was achieved, according to criteria proposed by McNabb et al. [44],. with any sequence deposited in databases and published.

Authors' contributions

EC carried out the molecular genetic studies, participated in the sequence analysis and drafted the manuscript; LF participated in the design, initiation and coordination of the study; SYMU and MCM performed traditional identification studies; AMD participated in sequence analysis; RDA conceived the study and participated in its design and in the analysis of the results; SCL participated in the coordination of the study and in the analysis of results. All authors read and approved the final manuscript.

Acknowledgements

Simone Guadagnucci Morillo is acknowledged for helping with DNA sequencing. This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Proc. N. 01/13389-6. Erica Chimara was the recipient of a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

- Roth A, Reischl U, Streubel A, Naumann L, Kroppenstedt RM, Habicht M, Fischer M, Mauch H: Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S-23S rRNA gene spacer and restriction endonucleases. J Clin Microbiol 2000, 38(3):1094-1104.
- 2. Saiman L: The mycobacteriology of non-tuberculous mycobacteria. Paediatr Respir Rev 2004, 5 Suppl A:S221-3.
- Sampaio JL, Chimara E, Ferrazoli L, da Silva Telles MA, Del Guercio VM, Jerico ZV, Miyashiro K, Fortaleza CM, Padoveze MC, Leao SC: Application of four molecular typing methods for analysis of Mycobacterium fortuitum group strains causing post-mammaplasty infections. *Clin Microbiol Infect* 2006, 12(2):142-149.
- Sampaio JL, Junior DN, de Freitas D, Hofling-Lima ÀL, Miyashiro K, Alberto FL, Leao SC: An outbreak of keratitis caused by Mycobacterium immunogenum. J Clin Microbiol 2006, 44(9):3201-3207.
- John T, Velotta E: Nontuberculous (atypical) mycobacterial keratitis after LASIK: current status and clinical implications. Cornea 2005, 24(3):245-255.
- Tiwari TS, Ray B, Jost KČ Jr., Rathod MK, Zhang Y, Brown-Elliott BA, Hendricks K, Wallace RJ Jr.: Forty years of disinfectant failure: outbreak of postinjection Mycobacterium abscessus infection caused by contamination of benzalkonium chloride. Clin Infect Dis 2003, 36(8):954-962.
- Wallace RJ Jr., Brown BA, Griffith DE: Nosocomial outbreaks/ pseudo-outbreaks caused by nontuberculous mycobacteria. Annu Rev Microbiol 1998, 52:453-490.
- Freitas D, Alvarenga L, Sampaio J, Mannis M, Sato E, Sousa L, Vieira L, Yu MC, Martins MC, Hofling-Lima A, Belfort R Jr.: An outbreak of Mycobacterium chelonae infection after LASIK. Ophthalmology 2003, 110(2):276-285.
- Collins CH, Grange JM, Yates MD: Tuberculosis Bacteriology: Organization and Practice. 2nd edition edition. Oxford, Butterworth-Heinemann; 1997.
- Springer B, Stockman L, Teschner K, Roberts GD, Bottger EC: Twolaboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol 1996, 34(2):296-303.
- 11. Telenti A, Marchesi F, Balz M, Bally F, Bottger EC, Bodmer T: Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 1993, 31(2):175-178.
- Brunello F, Ligozzi M, Cristelli E, Bonora S, Tortoli E, Fontana R: Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J Clin Microbiol 2001, 39(8):2799-2806.
- da Silva Rocha A, Werneck Barreto AM, Dias Campos CE, Villas-Boas da Silva M, Fonseca L, Saad MH, Degrave WM, Suffys PN: Novel allelic variants of Mycobacteria isolated in Brazil as determined by PCR-restriction enzyme analysis of hsp65. J Clin Microbiol 2002, 40(11):4191-4196.

- Devallois A, Goh KS, Rastogi N: Rapid identification of mycobacteria to species level by PCR-restriction fragment length polymorphism analysis of the hsp65 gene and proposition of an algorithm to differentiate 34 mycobacterial species. J Clin Microbiol 1997, 35(11):2969-2973.
- Leao SC, Martin A, Mejia GI, Palomino JC, Robledo J, Telles MAS, Portaels F: Practical handbook for the phenotypic and genotypic identification of mycobacteria. Brugges , Vanden BROELLE; 2004.
- Rastogi N: An introduction to bacterial taxonomy, structure, drug resistance, and pathogenesis. In *Textbook-atlas of intestinal* infections in AIDS Edited by: Dioniosio D. Milano, Italia, Springer-Verlag; 2003:89-115.
- Hafner B, Haag H, Geiss HK, Nolte O: Different molecular methods for the identification of rarely isolated non-tuberculous mycobacteria and description of new hsp65 restriction fragment length polymorphism patterns. *Mol Cell Probes* 2004, 18(1):59-65.
- Cloud JL, Meyer JJ, Pounder JI, Jost KC Jr., Sweeney A, Carroll KC, Woods GL: Mycobacterium arupense sp. nov., a non-chromogenic bacterium isolated from clinical specimens. Int J Syst Evol Microbiol 2006, 56(Pt 6):1413-1418.
- Cooksey RC, de Waard JH, Yakrus MA, Rivera I, Chopite M, Toney SR, Morlock GP, Butler WR: Mycobacterium cosmeticum sp. nov., a novel rapidly growing species isolated from a cosmetic infection and from a nail salon. Int J Syst Evol Microbiol 2004, 54(Pt 6):2385-2391.
- Leao SC, Briones MR, Sircili MP, Balian SC, Mores N, Ferreira-Neto JS: Identification of two novel Mycobacterium avium allelic variants in pig and human isolates from Brazil by PCRrestriction enzyme analysis. J Clin Microbiol 1999, 37(8):2592-2597.
- 21. Leao SC, Sampaio JL, Martin A, Palomino JC, Portaels F: **Profiling** Mycobacterium ulcerans with hsp65. Emerg Infect Dis 2005, 11(11):1795-1796.
- Legrand E, Goh KS, Sola C, Rastogi N: Description of a novel Mycobacterium simiae allelic variant isolated from Caribbean AIDS patients by PCR-restriction enzyme analysis and sequencing of hsp65 gene. Mol Cell Probes 2000, 14(6):355-363.
 Selvarangan R, Wu WK, Nguyen TT, Carlson LD, Wallis CK, Stiglich
- Selvarangan R, Wu WK, Nguyen TT, Carlson LD, Wallis CK, Stiglich SK, Chen YC, Jost KC Jr., Prentice JL, Wallace RJ Jr., Barrett SL, Cookson BT, Coyle MB: Characterization of a novel group of mycobacteria and proposal of Mycobacterium sherrisii sp. nov. J Clin Microbiol 2004, 42(1):52-59.
- Turenne C, Chedore P, Wolfe J, Jamieson F, May K, Kabani A: Phenotypic and molecular characterization of clinical isolates of Mycobacterium elephantis from human specimens. J Clin Microbiol 2002, 40(4):1230-1236.
- 25. **PRASITE:** Identification of Mycobacteria [<u>http://app.chuv.ch/</u> <u>prasite</u>]
- Chimara E, Giampaglia CM, Martins MC, Telles MA, Ueki SY, Ferrazoli L: Molecular characterization of Mycobacterium kansasii isolates in the State of Sao Paulo between 1995-1998. Mem Inst Oswaldo Cruz 2004, 99(7):739-743.
- Smole SC, McAleese F, Ngampasutadol J, Von Reyn CF, Arbeit RD: Clinical and epidemiological correlates of genotypes within the Mycobacterium avium complex defined by restriction and sequence analysis of hsp65. J Clin Microbiol 2002, 40(9):3374-3380.
- Jimenez-Pajares MS, Herrera L, Valverde A, Saiz P, Saez-Nieto JA: [Phenotypic and genotypic characteristics of Mycobacterium kansasii strains isolated in Spain (2000-2003)]. Enferm Infecc Microbiol Clin 2005, 23(5):254-258.
- Leao SC, Bernardelli A, Cataldí A, Zumarraga M, Robledo J, Realpe T, Mejia GI, da Silva Telles MA, Chimara E, Velazco M, Fernandez J, Rodrigues PA, Guerrero MI, Leon CI, Porras TB, Rastogi N, Goh KS, Suffys P, da Silva Rocha A, dos Santos Netto D, Ritacco V, Lopez B, Barrera L, Palomino JC, Martin A, Portaels F: Multicenter evaluation of mycobacteria identification by PCR restriction enzyme analysis in laboratories from Latin America and the Caribbean. J Microbiol Methods 2005, 61(2):193-199.
- Prammananan T, Cheunoy W, Na-Ubol P, Tingtoy N, Srimuang S, Chaiprasert A: Evaluation of polymerase chain reaction and restriction enzyme analysis for routine identification of mycobacteria: accuracy, rapidity, and cost analysis. Southeast Asian J Trop Med Public Health 2005, 36(5):1252-1260.

- Tsukamura M, Sekine K, Yokota A, Kuze A, Shibata M, Sato K: Lung infection due to Mycobacterium xenopi: report of the first case in Japan. *Microbiol Immunol* 1984, 28(1):123-127.
- 32. J.P. Euzéby: List of Prokaryotic names with Standing in Nomenclature [http://www.bacterio.cict.fr/m/mycobacte rium.html]
- 33. GenBank [http://www.ncbi.nlm.nih.gov]
- Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999, 41:95-98.
- 35. da Silva Rocha A, da Costa Leite C, Torres HM, de Miranda AB, Pires Lopes MQ, Degrave WM, Suffys PN: Use of PCR-restriction fragment length polymorphism analysis of the hsp65 gene for rapid identification of mycobacteria in Brazil. J Microbiol Methods 1999, 37(3):223-229.
- Mun HS, Kim HJ, Oh EJ, Kim H, Bai GH, Yu HK, Park YG, Cha CY, Kook YH, Kim BJ: Mycobacterium seoulense sp. nov., a slowly growing scotochromogenic species. Int J Syst Evol Microbiol 2007, 57(Pt 3):594-599.
- Reischl Ú, Melzl H, Kroppenstedt RM, Miethke T, Naumann L, Mariottini A, Mazzarelli G, Tortoli E: Mycobacterium monacense sp. nov. Int J Syst Evol Microbiol 2006, 56(Pt 11):2575-2578.
- Turenne CY, Cook VJ, Burdz TV, Pauls RJ, Thibert L, Wolfe JN, Kabani A: Mycobacterium parascrofulaceum sp. nov., novel slowly growing, scotochromogenic clinical isolates related to Mycobacterium simiae. Int J Syst Evol Microbiol 2004, 54(Pt 5):1543-1551.
- Wallace Jr RJ, Brown-Elliott BA, Brown J, Steigerwalt AG, Hall L, Woods G, Cloud J, Mann L, Wilson R, Crist C, Jost KC Jr., Byrer DE, Tang J, Cooper J, Stamenova E, Campbell B, Wolfe J, Turenne C: Polyphasic characterization reveals that the human pathogen Mycobacterium peregrinum type II belongs to the bovine pathogen species Mycobacterium senegalense. J Clin Microbiol 2005, 43(12):5925-5935.
- Kellogg JA, Bankert DA, Withers GS, Sweimler W, Kiehn TE, Pfyffer GE: Application of the Sherlock Mycobacteria Identification System using high-performance liquid chromatography in a clinical laboratory. *J Clin Microbiol* 2001, 39(3):964-970.
- clinical laboratory. J Clin Microbiol 2001, 39(3):964-970.
 41. Cook VJ, Turenne CY, Wolfe J, Pauls R, Kabani A: Conventional methods versus 16S ribosomal DNA sequencing for identification of nontuberculous mycobacteria: cost analysis. J Clin Microbiol 2003, 41(3):1010-1015.
- 42. Barreto AMW, Campos CED: Micobacterias nao-tuberculosas no Brasil. Bol Pneum Sanit 2000, 8(1):23-32.
- Ueki SYM, Martins MC, Telles MAS, Virgilio MC, Giampaglia CMS, Chimara E, Ferrazoli L: Nontuberculous mycobacteria: species diversity in Sao Paulo state, Brazil. J Bras Patol Med Lab 2005, 41(1):1-8.
- McNabb A, Eisler D, Adie K, Amos M, Rodrigues M, Stephens G, Black WA, Isaac-Renton J: Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. J Clin Microbiol 2004, 42(7):3000-3011.
- 45. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, lademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr., Winthrop K: An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007, 175(4):367-416.
- Durham AM, Kashiwabara AY, Matsunaga FT, Ahagon PH, Rainone F, Varuzza L, Gruber A: EGene: a configurable pipeline generation system for automated sequence analysis. Bioinformatics 2005, 21(12):2812-2813.
- Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998, 8(3):175-185.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.