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Abstract
Background: The obligate intracellular growing bacterium Chlamydia trachomatis causes diseases like
trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Several serovars
and genotypes have been identified, but these could not be linked to clinical disease or outcome. The
related Chlamydophila pneumoniae, of which no subtypes are recognized, causes respiratory infections
worldwide. We developed a multi locus sequence typing (MLST) scheme to understand the population
genetic structure and diversity of these species and to evaluate the association between genotype and
disease.

Results: A collection of 26 strains of C. trachomatis of different serovars and clinical presentation and 18
strains of C. pneumoniae were included in the study. For comparison, sequences of C. abortus, C. psittaci, C.
caviae, C. felis, C. pecorum (Chlamydophila), C. muridarum (Chlamydia) and of Candidatus protochlamydia and
Simkania negevensis were also included. Sequences of fragments (400 – 500 base pairs) from seven
housekeeping genes (enoA, fumC, gatA, gidA, hemN, hlfX, oppA) were analysed. Analysis of allelic profiles by
eBurst revealed three non-overlapping clonal complexes among the C. trachomatis strains, while the C.
pneumoniae strains formed a single group. An UPGMA tree produced from the allelic profiles resulted in
three groups of sequence types. The LGV strains grouped in a single cluster, while the urogenital strains
were distributed over two separated groups, one consisted solely of strains with frequent occurring
serovars (E, D and F). The distribution of the different serovars over the three groups was not consistent,
suggesting exchange of serovar encoding ompA sequences. In one instance, exchange of fumC sequences
between strains of different groups was observed. Cluster analyses of concatenated sequences of the
Chlamydophila and Chlamydia species together with those of Candidatus Protochlamydia amoebophila and
Simkania negevensis resulted in a tree identical to that obtained with 23S RNA gene sequences.

Conclusion: These data show that C. trachomatis and C. pneumoniae are highly uniform. The difference in
genetic diversity between C. trachomatis and C. pneumoniae is in concordance with a later assimilation to
the human host of the latter. Our data supports the taxonomy of the order of Chlamydiales.
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Background
Chlamydia trachomatis is the world's leading cause of pre-
ventable blindness. Also, C. trachomatis is considered the
world's most common sexually transmitted bacterial
pathogen. Many urogenital infections remain unnoticed,
constituting a large reservoir of untreated individuals, a
continuous threat for transmission of this pathogen.
When not treated in time, infection with C. trachomatis
can lead to infertility in women. C. trachomatis strains are
discriminated by serotyping based on the antigenic differ-
ence between the major outer membrane proteins
(MOMP). Nineteen serovars have been described: A, B,
Ba, C (mainly seen among isolates from trachoma infec-
tions) D, Da, E, F, G, Ga, H, I, Ia, J, Ja, K, (urogenital infec-
tions) and L1, L2, L2a and L3 causing lymphogranuloma
venereum (LGV). Among urogenital infections, serovars
D – F are most frequently found [1]. However, serotyping
is laborious, needing culture and a large panel of antibod-
ies [2,3]. To overcome these drawbacks a PCR based RFLP
of ompA was developed for the identification of genotypes
corresponding to serovars [4-6]. Using this method geno-
types were categorised into three geno-groups: the B group
(B, E, D, Da, L1, L2, L2a), the C group (C, A, H, I, Ia, J, K,
L3) and the intermediate group (F, G, Ga). Except for an
immunological relationship between members of a
group, the biological relevance of the geno-groups
remains obscure.

Chlamydophila pneumoniae is a common cause of commu-
nity-acquired pneumonia, bronchitis, pharyngitis and
sinusitis [7]. Although C. pneumoniae often causes mild or
subclinical infections, its persistence in the host can lead
to the establishment of chronic pathologies and an
increasing number of reports indicate an association
between persistent C. pneumoniae infections and arterio-
sclerosis [8] or coronary heart diseases [9,10]. A robust
typing scheme for C. pneumoniae is lacking.

Together with C. trachomatis, C. pneumoniae belongs to the
family of Chlamydiaceae in the order of Chlamydiales.

Based on phylogenetic analyses of 16S and 23S rRNA gene
sequences, C. trachomatis, Chlamydia suis and Chlamydia
muridarum all belong to the genus Chlamydia, while C.
pneumoniae, Chlamydophila psittaci, Chlamydophila pecorum,
Chlamydophila felis, Chlamydophila abortus, and Chlamydo-
phila caviae all belong to the family of Chlamydophila [11-
13]. Other family members of the order of Chlamydiales
are Parachlamydiaceae and Simkaniaceae.

Currently, the typing scheme for C. trachomatis is based on
epitopes in the major outer membrane protein (MOMP).
Variants of this protein are subjected to selection and iso-
lates of the same serovar may not be closely related
[14,15]. Here we present an MLST typing scheme using
gene segment sequences of seven housekeeping genes.
These genes were selected using the criteria that they are
widely separated on the chromosome and not adjacent to
putative outer membrane, secreted, or hypothetical pro-
teins that might be under diversifying selection. In addi-
tion, each locus has a similar extent of nucleotide
substitutions to ensure consistency [16]. The results iden-
tified three sub-groupings within C. trachomatis, but no
subdivision within C. pneumoniae. A phylogenetic tree
based on the concatenated sequences of six of the house-
keeping gene fragments is consistent with a tree based on
16S and 23S rRNA gene sequences.

Results
MLST of C. trachomatis and C. pneumoniae
Analogous to the MLST schemes of e.g. Neisseria meningi-
tidis [17] and Streptococcus pneumoniae [18] fragments of
seven housekeeping genes scattered around the chromo-
some of C. trachomatis and C. pneumoniae were obtained
(Tables 1 and 2). The gene order on the chromosome of
both species is identical. None of the sequences of the
seven different loci among the C. trachomatis strains con-
tained gaps after alignment.

Variation among the sequences of the seven loci was very
limited. In C. trachomatis the highest number (three) of

Table 1: Properties of gene fragments sequenced, 26 C. trachomatis strains

gene locus tag position in genome of Ct A/
HAR-13

Length (bp) No. of synonymous 
substitutions

dS
a No. of non-synonymous 

substitutions
dN

a

gatA CTA_0003 2759 – 3183 425 2 0.00409 0 0.00000
oppA_3 CTA_0216 224745 – 225217 473 3 0.00209 3 0.00248
hflX CTA_0413 435569 – 435135 435 2 0.00663 1 0.00151
gidA CTA_0546 580102 – 580575 474 1 0.00235 3 0.00205
enoA CTA_0637 665021 – 665401 381 2 0.00562 1 0.00094
hemN CTA_0812 871011 – 870580 432 0 0.00000 1 0.00082
fumC CTA_0932 1007488 – 1007952 465 0 0.00000 4 0.00217

Total 3085 10 0.00294 13 0.00147

aJukes & Cantor corrected
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synonymous substitutions was seen in oppA while the
highest number (four) of non-synonymous substitutions
was seen in fumC. Analogous to other MLST schemes, we
assigned allele numbers to each unique allele sequence
for each house-keeping gene [16]. The number of alleles
per locus varied between two and six. Most of the alleles
were seen more than once. However, among the oppA alle-
les four unique alleles were found while among the gidA
and enoA sequences one unique allele was observed.

For each isolate, the alleles at each of the seven loci define
the allelic profile or sequence type (ST). Among the 26 C.
trachomatis strains 15 ST's could be assigned. Analysis by
eBurst revealed three non-overlapping groups or clonal

complexes, consisting of related strains sharing identical
alleles at six of the seven loci with at least one other mem-
ber of the group (Figure 1). An UPGMA cluster analysis
showed the same groups (Figure 2A). SplitsTree decompo-
sition demonstrated that alternative routes of descent in
the tree resulted in the same groupings (Figure 3). An
UPGMA cluster analyses of the concatenated sequences of
the seven gene fragments yielded the same groupings as
when allelic profiles were used (Figure 2B), while Split-
sTree decomposition analysis yielded a more simpler net-
work but with the same groupings as with the distances
matrix of allelic profiles.

Table 2: Properties of gene fragments sequenced, 18 C. pneumoniae strains.

gene locus tag position in genome of Cp 
CWL029

Length (bp) No. of synonymous 
substitutions

dS
a No. of non-synonymous 

substitutions
dN

a

gatA CPn0003 952 – 1376 425 0 0.00000 0 0
oppA_1 CPn0195 234253 – 234746 494 0 0.00000 0 0

hflX CPn0478 557187 – 556753 435 0 0.00000 0 0
gidA CPn0617 710937 – 711410 474 1 0.00373 0 0
enoA CPn0800 906070 – 905690 381 1 0.00124 1 0.00147
hemN CPn0889 1016340 – 1015909 432 0 0.00000 0 0
fumC CPn1013 1162452 – 1162916 465 0 0.00000 0 0

Total 3106 2 0.00073 1 0.00018

aJukes & Cantor corrected

Clonal groupings among C. trachomatis strainsFigure 1
Clonal groupings among C. trachomatis strains. Allelic profiles were analysed by eBurst and groups were defined as sets 
of related strains sharing identical alleles at six of the seven loci loci with at least one other member of the group. Blue dot in 
group I indicate the putative founder, yellow dot that of a subgroup.
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Phylogenetic analyses of seven housekeeping gene fragments of C. trachomatis strainsFigure 2
Phylogenetic analyses of seven housekeeping gene fragments of C. trachomatis strains. A) The tree was con-
structed using UPGMA algorithm in SplitsTree4 using MLST allelic profiles. Distance matrix was obtained from allelic profiles 
using the SplitsTree program. B) UPGMA cluster analyses, with Jukes-Cantor correction, using concatenated sequences. Bold 
numbers indicate bootstrap values over 50%. Horizontal lines are scale for genetic distance.
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Group I, with ST13 as the putative founder, defined as the
ST with the most single locus variants, and ST6 as the
founder of a subgroup consisted of C. trachomatis strains
isolated from patients with urogenital infection (serovars
D to K) as well as trachoma infections (serovars A, Ba C).
The latter formed a separate branch in the UPGMA cluster
analyses. Group II comprises the LGV strains (serovar L)
and strain B/TW-5 (serovar B). Group III is formed by all,
except one, serovar E strains and one serovar F and two
serovar D strains.

Sequence variation among C. pneumoniae was far less than
among C. trachomatis (Table 1). Substitutions were only
seen among the sequences of gidA (1 synonymous) and
enoA (1 synonymous and 1 non-synonymous). This
means that all 16 strains shared identical alleles at least
five of the seven loci, i.e. C. pneumoniae appeared to be
highly uniform. In addition, none of the alleles in C. tra-
chomatis and C. pneumoniae are the same.

Recombination in C. trachomatis
In group II, the allelic profile of ST2 (B/TW-5) differs from
that of ST11 (serovar L strains) at one locus (Table 3). It
shares the fumC allele with the majority of the strains in
group I and II, indicating exchanges of the fumC
sequences between a strain with genotype ST11 and a
strain with genotype other than ST11 or ST5 (with fumC
allele different from that of ST1 and all other ST's; Table
3), resulting the B/TW-5 strain with genotype ST2. The dif-
ference in fumC sequences are three substitutions in an 89
bp region, albeit that all three appear to be non-synony-
mous (Figure 4).

In addition, while ST11 strains are serovar L, ST 2 is sero-
var B, indication exchange of ompA (encoding MOMP,

defining the serovar type) sequences between a serovar B
strain and a serovar L strain. Other indications of recom-
bination between different C. trachomatis genotypes and
exchange of ompA sequences might be inferred from the
position of the only serovar E (serovar E11A, ST6) in
group I, while all other serovar E strains cluster in group
III.

MLSA based phylogeny of Chlamydiales
The oppA sequences of C. pneumoniae contained several
indels when compared to the sequences of C. trachomatis
and other species of Chlamydiales. All genomes of the
Chlamydiales contain multiple copies of oppA genes. In
each genome, these copies are highly homologous, but
vary between the different species, making selection of the
right oppA copy from these genome sequences indecisive.

An insert was observed in the enoA sequences of Candida-
tus protochlamydia and Simkania negevensis. Also, the hemN
sequences of these strains contained small indels as com-
pared to the hemN sequences of the other members of the
Chlamydiales. Small indels were also observed among the
hlfX sequences of C. abortus, C. caviae, C. felis, C. psittaci,
Candidatus protochlamydia and Simkania negevensis.
Recently, multilocus sequence analysis (MLSA) was intro-
duced to study relatedness of closely related species
[19,20]. In this analysis the sequences of multi locus
housekeeping fragments are concatenated and used in
cluster analysis. Phylogenetic analysis of the Chlamydiales
by Neighbour-Joining method of the aligned concate-
nated sequences of the housekeeping gene fragments,
except that of oppA, resulted in a tree (Fig 5A) comparable
to that obtained with 16S rRNA gene and 23S rRNA gene
(Fig 5B) sequences [11].

Table 3: Alelelic profiles of Sequence Types (ST) among C. trachomatis

Allele no. of housekeeping locus

ST gatA oppA hflX gidA enoA hemN fumC clonal group

ST1 3 3 4 5 1 2 3 I
ST2 1 3 3 3 2 2 3 II
ST3 3 3 4 5 3 2 3 I
ST4 3 1 1 2 4 2 3 III
ST5 3 3 2 5 3 2 1 I
ST6 3 3 2 5 3 1 3 I
ST7 2 2 1 2 4 2 3 III
ST8 2 1 1 2 4 2 3 III
ST9 3 3 2 4 3 2 3 I
ST10 3 3 2 1 3 2 3 I
ST11 1 3 3 3 2 2 2 II
ST12 3 4 1 2 4 2 3 III
ST13 3 3 2 5 3 2 3 I
ST14 3 6 2 5 3 1 3 I
ST15 3 5 2 5 3 1 3 I
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Discussion
To assess the population structure of C. trachomatis and C.
pneumoniae sequences of fragments of seven housekeep-
ing genes, obtained from 26 C. trachomatis strains and 18
C. pneumoniae strains, were analysed. C. pneumoniae
appeared to be highly uniform. Among the C. trachomatis
strains three very coherent clonal complexes were
observed, consisting of strains sharing identical alleles of
at least 6 of the 7 loci with one other member of the
group. C. pneumoniae appeared to be highly uniform.

Recently, an MLST scheme has been published, in which
five target regions were selected based on their relatively
high variability as compared to the rest of the genome and

analysed. In addition, these targets were not widely sepa-
rated on the genome [21]. That typing scheme was
intended to be highly discriminatory and to be applied in
contact tracing.

In the present study, 7 housekeeping genes were chosen,
which were widely separated on the chromosome and not
adjacent to putative outer membrane, secreted, or hypo-
thetical proteins that might be under diversifying selec-
tion. In addition, each locus has a similar level of
variation in terms of nucleotide substitutions to ensure
consistency [16]. Fifteen sequence types were found
among 26 C. trachomatis isolates (0.6 STs per isolate).
Many organisms show more diversity, i.e. more sequence

Phylogenetic analyses of concatenated sequences of 6 housekeeping gene fragments.Figure 5
Phylogenetic analyses of concatenated sequences of 6 housekeeping gene fragments. A) Concatenated sequences 
of six housekeeping gene fragments were aligned and analysed in MEGA 3.1. Phylogenetic tree was constructed using the 
Neighbour-Joining algorithm with Kimura-2 parameter. Bootstrap test was for 1000 repetitions. Bold numbers indicate boot-
strap values over 50%. Horizontal lines are scale for genetic distance. B) Phylogenetic tree based 23S rRNA gene sequences 
(Adapted from Everett et al [10]).
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                         268                                                                                           364 
Allel 1 (ST5)            CCGGTATTGGAACATTTAAAAAAAGTTGTTGATGCTAAAGCTTTAGAGTTTGCTCGAGATATAAAAATTGGAAGAACGCATTTGATGGATGTAGTTC 
Allel 2 (ST11)           CCGGTATTGGAACATTTAAAAAAAGTTGTTGATGCTAAAGCTTTAGAGTTTGCTCGAGATATAAAAATTGGAAGAACGCATTTGATGGATGTAGTTC 
Allel 3 (ST2)            CCGGCATTGGAACATTTAAAAAAAGTTATTGATGCTAAAGCTTTAGAGTTTGCTCGAGATATAAAAATTGGAAGAACGCATTTGATGGATGCAGTTC 
Allel 3 (all others STs) CCGGCATTGGAACATTTAAAAAAAGTTATTGATGCTAAAGCTTTAGAGTTTGCTCGAGATATAAAAATTGGAAGAACGCATTTGATGGATGCAGTTC 
                         **** ********************** *************************************************************** ***** 
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types per isolate, but a significant number of organisms
shows comparable or less sequence types per isolate [16].
In these organisms MLST has been applied for strain char-
acterization and epidemiological surveillance (e.g. Listeria
monocytogenes, 29 STs among 62 isolates; Acinetobacter
baumannii, 20 STs among 49 isolates), population struc-
ture analyses (e.g. Porphyromonas gingivalis, 50 STs in 59
isolates) and evolutionary analyses studies (e.g. Batra-
chochytrium dendrobatidis, 10 STs in 35 isolates) [16]. The
here presented MLST scheme for C. trachomatis may be
similarly used. Our results show three clonal complexes
among C. trachomatis of which one is associated with LGV.

A phylogeny tree based on the concatenated sequences of
6 loci resulted in a tree consistent with that of obtained
when 16S rRNA and 23S rRNA genes were used in the
phylogeny analyses [11]. This approach, using the con-
catenated sequences to study the relationships among
strains of similar species was recently termed multilocus
sequence analysis (MLSA) [19] and has successfully been
applied to other species [20].

C. trachomatis show limited variation; the average number
of synonymous substitutions in C. trachomatis is in the
same order as that in Yersinia pseudotuberculosis [22-24]. In
contrast, the average number of synonymous substitu-
tions in C. pneumoniae is even smaller, comparable to that
in Vibrio sonnei and Yersinia pestis, but larger than in Myco-
bacterium tuberculosis [23-25]. This may suggest that both
species C. trachomatis and C. pneumoniae are evolutionar-
ily young or recently past severe bottle necks [26].

Three clonal complexes were seen among the 26 strains of
C. trachomatis; each group includes isolates that differ at
only one locus from at least one other isolates within the
group. Singeltons, differing at two or more loci from all
other isolates were not observed. Our data provided some
evidence of recombination, e.g. exchange of the MOMP
(serovar determining) encoding ompA sequences and of
fumC sequences. Discongruence between ompA and the
main part of the genome has also been observed by
Gomes and colleagues and Brunelle and Sensabaugh
[15,27]. In addition, earlier reports of mosaic ompA gene
structures indicated that ompA or parts of ompA do
exchange between C. trachomatis strains [28-30].

Brunelle and Sensabaugh observed recombination in
ompA genes, pmpE genes and pmpH genes, but not in the
remainder of the genome [15]. Recently published data by
Gomes and colleagues suggested frequent recombination
in C. trachomatis, albeit that this recombination occurred
at hotspot near or in ompA and pmp genes [14]. Here we
demonstrated in at least one instance recombination in or
near the housekeeping fumC. The allelic profile of ST2 was
identical to that of ST11 with the exception of the fumC

allele. The fumC allele of ST2 was identical to that of the
majority of the other C. trachomatis strains, while that of
the ST11 strains differed at three positions within 87
nucleotides, suggesting uptake and recombination of (a
part of) fumC sequence by an ST11 genotype C. trachoma-
tis resulting in ST2 genotype. It is unlikely that pmp or
ompA sequences are involved in the exchange of fumC
sequences, since the nearest pmp genes are 54 Kbp
upstream (pmpD, cta0884) and 23 Kbp upstream (pmpE,
cta0949) of fumC.

The three clonal complexes or groups are partly associated
with tissue tropism. All LGV causing strains group
together in group II. The urogenital strains and ocular
strains are distributed over two groups, albeit that the ocu-
lar strains group together with the less frequent occurring
urogenital strains (serovar H to K). In addition, the tra-
choma strains form a separated branch within group I.
The more frequently occurring urogenital strains formed
the separate group III. High frequency occurring geno-
types may be linked with symptomatic infection, but in a
study among woman with urogenital C. trachomatis infec-
tions serovar E and F strains were equally isolated from
patients with symptoms and from patients without symp-
toms [31]. Hence, host factors may determine disease out-
come. Alternatively, the high frequency occurring
genotypes may be associated with higher transmission
rates.

Conclusion
The C. pneumoniae population is highly uniform, while
that of C. trachomatis shows three clonal complexes based
on an MLST scheme of 7 housekeeping genes. More clonal
groups may be identified when more strains will be ana-
lysed with this scheme. The difference in genetic diversity
between C. trachomatis and C. pneumoniae is in concord-
ance with a later assimilation to the human host of the lat-
ter.

Methods
Strain collection
Twenty-four C. trachomatis strains were used, consisting of
reference strains: (A/Sa-1, H/UW-4, I', D-, Ba/Apache-2,
C/UW-1, Da/mt-566, I/UW-12, K/UW-31, G/IOL-238, J/
UW-36, L1/440-L, L2/434-B, L3/404-L, B/TW5, D/IC-
CAL-8, D', F/MRC-301 and E/DK-20 [32-34] and addi-
tional new isolates from patients, E4a, E7a, E10a, E11a,
and E12a [see additional file 1]. The serovar of these iso-
lates was confirmed by RFLP [32,35]. We also tested 14
reference strains of C. pneumoniae (CM-1, IOL-207, PS-32,
AR-338, BAL-16, CWL-011, CWL-50, GRO-21, H-12, K-7,
NWL-1, UZG-1, 2023, 2043) [33] [see additional file 1].
In addition, we also analyzed C. trachomatis strains D/
UW-3/CX (Accession no. AE001273) [36], A/HAR-13
(Accession no. NC_007429) [37] and C. pneumoniae
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strain CWL-029 (Accession no. NC_000922) [38], AR-39
(Accession no. AE002161) [39], TW-183 (Accession no.
AE017160) and J138 (Accession no. BA000008) [40]
whose complete genome sequences are available in the
database. The collection of C. trachomatis and C. pneumo-
niae strains represents all known serovars and were from
patients with various disease outcomes (see additional file
1). In addition, the corresponding sequences from C.
muridarum Nigg. (Accession no. AE002160) (Chlamydia)
[39] and of C. abortus S26/3 (Accession no. NC_004552)
[41], C. caviae GPIC (Accession no. AE015925) [42], C.
felis Fe/C-56 (Accession no. AP006861) [43] and of Can-
didatus protochlamydia amoebophila UWE25 (Accession no.
BX908798) (Parachlamydiaceae) [22] were obtained from
publicly accessible databases. The corresponding
sequences from C. pecorum E58 (McNutt), C. psittaci 6BC
and Simkania negevensis (Simkaniaceae) were obtained
from TIGR's unfinished genomes database.

DNA, genes, PCR products and sequences
DNA was extracted from elementary bodies from cultures
of C. trachomatis or C. pneumoniae according to Boom et al
[44]. Fragments of 7 genes, i.e. gatA, oppA3, hflX, gidA,
enoA, hemN and fumC encoding aspartyl/glutamyl-tRNA
amidotransferase subunit A, oligopeptide-binding pro-
tein, GTP-binding protein, tRNA (uracil-5-)-methyltrans-
ferase, enolase, coproporphyrinogen III oxidase and
fumarate hydratase, respectively were amplified using the
oligonucleotide primers shown in Table 4. Amplification
primers were designed based on the genome sequence of
A/HAR-13 to yield amplicons that were short enough to
obtain complete double stranded sequences in two single
sequence runs. Each sequence run was performed from a
different PCR amplicon and sequence traces were
obtained with ABI Big-dyes and an ABI 3730 sequencer.

Phylogenetic and other analyses
The number of synonymous and non-synonymous substi-
tutions per site was determined using DnaSP 4.0 [45]. For
C. trachomatis, unique sequences were assigned allele
numbers using the Non-redundant databases (NRDB)
program [46]. Allele profile data were analysed in eBurst

to define clonal complexes or groups [47,48]. Groups
were defined as sets of related strains containing pairs of
strains that share at least six identical alleles at the seven
loci.

A distance matrix in Nexus format was generated from the
set of allelic profiles using SplitsTree [46]. This file was
then used for phylogenetic analyses in SplitsTree 4.0 [49],
both by generating an UPGMA tree and by SplitsTree
decomposition analyses. Decomposition analysis depicts
all the shortest pathways linking sequences, including
those that produce an interconnected network.

Phylogenetic evolutionary analyses of the sequences of
the different members of Chlamydiales were conducted
using MEGA version 3.1 [50].
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Additional file 1
List of Chlamydia trachomatis en Chlamydophila pneumoniae 
strains. Table listing the strains used in this study.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2180-8-42-S1.doc]

Table 4: Oligonucleotide primers

Target gene Forward primer Reversed primer

gatA GCTTTAGAATTARSARAWGCT GATCCTCCGGTATCYGATCC
oppA_3 ATGCGCAAGATATCAGTGGG AAAGCTCCRSTWGMTATMGGWAG
hflX GCTTCTARAGTACTTTTAAATG TATTTRGAAATYTTTKCSAGYCG
gidA GGAGTCWCTACWAAAGAAGG TCGTAYTGYACATCRAAAGG
enoA CCTATGATGAATCTKATCAATGG TCTTCTTCRGCWAGMCCATCT
hemN AGATCTTCTTCWGGRGGWAGAGA TTCYTTCAKAACSTAGGTTTT
fumC ATTAAAAAATGTGCTGCT CCTTCAGGAACATTYAACCC

R = A or G; S = G or C; W = A or T; Y = C or T; M = A or C; K = G or T;
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