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Abstract
Background: Escherichia coli can respire anaerobically using dimethyl sulfoxide (DMSO) or
trimethylamine-N-oxide (TMAO) as the terminal electron acceptor for anaerobic energy
generation. Expression of the dmsABC genes that encode the membrane-associated DMSO/TMAO
reductase is positively regulated during anaerobic conditions by the Fnr protein and negatively
regulated by the NarL protein when nitrate is present.

Results: The regions of dmsA regulatory DNA required for Fnr and NarL interactions in response
to anaerobiosis and nitrate, respectively, were examined. Mutations within the Fnr site that
deviated from the wild type sequence, TTGATaccgAACAA, or that removed an entire half-site,
either impaired or abolished the anaerobic activation of dmsA-lacZ expression. The region for
phosphorylated NarL (NarL-phosphate) binding at the dmsA promoter was identified by DNase I
and hydroxyl radical footprinting methods. A large 97 bp region that overlaps the Fnr and RNA
polymerase recognition sites was protected by NarL-phosphate but not by the non-phosphorylated
form of NarL. Hydroxyl radical footprinting analysis confirmed the NarL-phosphate DNase I
protections of both dmsA strands and revealed 8–9 protected sites of 3–5 bp occurring at ten bp
intervals that are offset by 3 bp in the 3' direction.

Conclusion: These findings suggest that multiple molecules of phosphorylated NarL bind along
one face of the DNA and may interfere with Fnr and/or RNA polymerase interactions at the dmsA
regulatory region. The interplay of these transcription factors insures a hierarchical expression of
the dmsABC genes when respiration of the preferred electron acceptors, oxygen and nitrate, is not
possible.

Background
Escherichia coli like many enteric and soil bacteria can re-
spire anaerobically by using a variety of amine-N-oxides

and methyl-sulfoxides as electron acceptors. This ability
depends on the regulated synthesis of a membrane bound
DMSO (dimethylsulfoxide) and/or TMAO (trimethyl-
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amine N-oxide) reductase enzyme. Use of these com-
pounds in E. coli occurs by a broad substrate enzyme
encoded by the dmsABC operon located at 20 minutes on
the chromosome [1–3]. The 100-fold activation of dmsA-
BC gene expression in response to anaerobiosis is control-
led by the Fnr regulatory protein [4]. Following a re-
examination, the dmsABC P1 transcription start site was
located 223 nucleotides upstream of the translational start
of dmsA[5,6]. This centers the Fnr binding site (TT-
GATnnnnAACAA) at -41.5 bp from the dmsABC P1 pro-
moter as also established by DNase I footprinting analyses
[7,8]. The presence of nitrate, a preferred alternative elec-
tron acceptor, elicits a 10-fold repression of dmsABC ex-
pression via the NarXLQP two-component regulatory
system [4,9,10]. Nitrate is detected by either of the two
sensor-transmitter proteins, NarX or NarQ, which then ac-
tivate the DNA binding response-regulatory protein NarL,
by phosphorylating an aspartate residue located at posi-
tion 59. NarL-phosphate then negatively regulates dmsA-
BC operon expression [4]. Additional regulators of
dmsABC expression have also been described that involve
molybdenum dependent gene expression via the ModE
transcription factor, and integration host factor (IHF) that
interacts with DNA at a downstream site called P2
[4,6,11,12]. Neither the presence of TMAO nor DMSO,
substrates for the DMSO reductase, further modulate
dmsABC gene expression [4,6].

In this study, the control of dmsABC gene expression by
Fnr and NarL was investigated. Mutagenesis of the Fnr rec-
ognition sequence at the dmsA promoter region con-
firmed the contribution of Fnr in the 100-fold activation
of dmsABC expression and explored the DNA sequence
and spacing requirements for the Fnr recognition site at
the P1 promoter. The region of dmsA promoter DNA pro-
tected by the NarL regulatory protein was identified by
DNase I and hydroxyl radical footprinting experiments.
These studies define the molecular interactions of Fnr and
NarL at the dmsABC P1 promoter that together provide for
the oxygen and nitrate regulated expression of this respi-
ratory pathway operon.

Results and Discussion
Effect of cis-acting mutations in the Fnr binding site on 
anaerobic induction of dmsA-lacZ expression
To investigate the effects of sequence changes in the dmsA
Fnr-recognition site on the anaerobic activation of dmsA-
lacZ expression, site-directed mutagenesis and β-galactos-
idase assays were performed (Figure 1). Since the native
Fnr binding site at the dmsA P1 promoter differs from the
Fnr consensus recognition sequence (TTGATnnnnATCAA
[13]) by one base pair (bp) in the right half-site (e.g.,
AACAA vs. ATCAA), the Fnr-site was converted to the con-
sensus sequence and analyzed for β-galactosidase activity
under both aerobic and anaerobic conditions. A 3-fold in-

crease in anaerobic activation of dmsA-lacZ expression was
observed for the consensus Fnr site (300-fold) relative to
the 114-fold anaerobic activation by Fnr seen for the na-
tive dmsA sequence (Figure 1, λJA303 and λJA250, respec-
tively). The λJA303 consensus mutant fnr+ strain
exhibited a 1000-fold anaerobic increase in β-galactosi-
dase expression relative to the corresponding fnr- strain
(i.e., 22,200 vs. 19 units). To our knowledge, this "con-
sensus" Fnr-dependent dmsA promoter exhibits the high-
est anaerobic induction of any Fnr-regulated E. coli
promoter examined. The enhanced ability of Fnr to acti-
vate dmsABC gene expression is possibly, by analogy to
Crp, due to increased affinity of Fnr at the consensus ver-
sus the native non-consensus Fnr recognition sequence at
dmsA. Likewise, the poor match of the Fnr site at the pro-
moter for the fumarate reductase gene, frdA to the consen-
sus Fnr sequence may account for the relatively weak
anaerobic induction for this respiratory operon [14].

Several additional DNA sequence changes were intro-
duced into the dmsA promoter region to alter the Fnr rec-
ognition sequence as well as to alter the spacing between
the Fnr site and the RNA polymerase recognition sequenc-
es (Figure 1). A single base substitution in the left half-site
when combined with the Fnr consensus sequence at the
right half-site exhibited a 138-fold activation of dmsA-lacZ
expression (Figure 1, λJA450), an induction equivalent to
the wild-type dmsA promoter that has the symmetrical de-
viation in the right half-site (ca. 114-fold). Thus, the left
and right half-sites are equivalent in their ability to confer
Fnr-dependent activation of dmsA gene expression by RNA
polymerase. This is in contrast to the requirement for the
left half-site of the Fnr1 regulatory site needed for Fnr-de-
pendent repression at the cydA P1 promoter [15]. When a
two base-pair change was introduced into the left Fnr half-
site (e.g., TTGAT to TTAGT) of the native dmsA sequence,
it nearly abolished the anaerobic induction of dmsA-lacZ
expression (Figure 1, λJA257). The deletion of the entire
left half-site Fnr sequence, while preserving the right half-
site as consensus, exhibited similar results (λJA304).
Hence, a single Fnr half-site is not sufficient to allow Fnr-
dependent activation of the E. coli DMSO reductase genes.

To evaluate how the spacing between the Fnr binding site
and the start of dmsA transcription alters the anaerobic ac-
tivation of dmsA-lacZ expression, single basepair inser-
tions were introduced at position -35 (λJA448 and
λJA449). The 114-fold anaerobic activation seen for the
wild-type dmsA promoter was reduced to about 35-fold in
each of the two mutants (Figure 1), indicating that the po-
sition of the Fnr site at the wild-type dmsA promoter is im-
portant for controlling optimal dmsA gene expression.
Thus, the dmsA promoter exhibits a preference for -41.5
target sites like other Fnr-regulated class II promoters [16].
By analogy to the CAP transcription regulator [17,18], the
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proposed mechanism for Fnr activation of gene expres-
sion involves its ability to promote open complex forma-
tion by RNA polymerase [13,16,19]. As suggested by the
appearance of DNase I hypersensitive cleavage sites, a
change in the DNA conformation occurs upon Fnr bind-
ing at the dmsA promoter [7,8]. The presence of hypersen-
sitive DNase I cleavage sites at other FNR-regulated
promoters as well as DNA bending experiments support

this conclusion [8,20]. Furthermore, recent studies pro-
pose the protein-protein interaction of σ70 and Fnr at the
narG and dmsA promoters [7,21–23]. Finally, for each of
the site-directed mutations of the Fnr binding site in this
study, the level of dmsA-lacZ expression was not signifi-
cantly altered in an fnr deletion strain either aerobically or
anaerobically, indicating that the Fnr-independent expres-

Figure 1
Nucleotide sequence at the dmsA P1 promoter region and the effects of sequence alterations in the Fnr binding site on dmsA-
lacZ expression. The DNA sequence is shown in the middle portion of the figure and is numbered relative to the 5' terminus of
the dmsA mRNA (not to scale). The transcriptional start site is located at the guanine residue positioned at 223 bp upstream of
the dmsA translational start site and is indicated by the arrow at position +1. The consensus sequence of the RNA polymerase
recognition sequences in the -35 and -10 regions are shown below the DNA sequence. The boxed sequences from position -
35 to -48 indicate a 14 bp region of dyad symmetry similar to the Fnr consensus recognition sequence (TTGATnnnnATCAA).
The location of Fnr-box mutations within the dmsA regulatory region and the corresponding phages carrying the dmsA-lacZ
fusions are indicated in the lower portion of the figure. The effect of cis mutations on Fnr-dependent activation of dmsA-lacZ
expression is shown in the lower right portion of the figure. β-galactosidase activity was measured from the cells containing the
indicated fusion inserted in single copy at the att site. The strains were grown in a buffered LB medium either aerobically or
anaerobically. The asterisk represents the fold difference between the fnr- and fnr+ strains.
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sion from the dmsA promoter was not affected by the se-
quence alterations (Figure 1).

Location of NarL binding sites at the dmsA promoter
Under anaerobic conditions, dmsA expression is repressed
approximately 10-fold by NarL when nitrate is present [4].
Although three putative NarL sites have been proposed
based on their similarity to a NarL consensus recognition
sequence, TACYYMT (Y = C or T, M = A or C) [24–26], no
in vivo or in vitro information is available regarding the lo-
cation of the NarL site(s) within the dmsA regulatory re-
gion. To evaluate where NarL binds, DNase I footprinting
experiments were performed using a dmsA promoter frag-
ment corresponding to -127 to + 62 relative to the start of
transcription at P1. When NarL-phosphate was incubated
with the coding strand of DNA, a 76 bp region was pro-
tected that extends from position -48 to +28 relative to the
start of dmsA transcription (Figure 2, open rectangle).
DNase I hypersensitive cutting sites were seen at positions
+32, +31, +30, +18, +4, -18, -19, -41, and -53 relative to
the start of transcription.

The DNase I footprint of the non-coding strand of dmsA
with phosphorylated NarL revealed an 83 bp protected re-
gion that extends from -51 to +32 relative to the start of
transcription (Figure 3). DNase I hypersensitive cutting
was observed at positions +27, +4, +3, -10, -20, -21, -22
and -32. For the non-coding DNA strand, the size of the
DNase I footprint pattern appears to increase when higher
levels of NarL-phosphate are present. DNase I protection
first occurs within the +10 to -15 region followed by an ex-
tension to the -25 to -50 region and then finally the +20
region. The size of the protected region did not change
further when up to five-fold higher amounts of NarL-
phosphate were used (10 µM, data not shown). Thus, the
sizes of the protected regions on each strand concur. Fur-
thermore, non-phosphorylated NarL gave no DNase I
protections in the dmsA promoter region under the same
conditions for either strand (up to 10 µM), suggesting that
NarL-phosphate, but not NarL, can act as a transcriptional
repressor for dmsA expression. The protections for both
strands are consistent with the binding of multiple mole-
cules of NarL to the DNA.

Hydroxyl radical footprinting of the NarL interactions
with dmsA promoter DNA was also performed for both
strands of DNA (Figure 2 and 3). In hydroxyl radical foot-
printing, the small, highly reactive hydroxyl radical
(•OH) attacks the deoxyribose sugars along the DNA
backbone with no sequence or base specificity, thereby
providing a high resolution of structural information
[27,28]. A total of eight to nine distinct hydroxyl radical
protected regions were observed of three to five basepairs
in size for each DNA strand that extended over a 97 bp re-
gion (Figure 4). These NarL-phosphate protections ex-

tended from position -59 to +38, consistent with the
results of the DNase I footprinting experiments described
above. The hydroxyl radical protected regions for the
dmsA strands of DNA were offset by 3 bp in the 3' direc-
tion (Figure 4). This offset suggests that the NarL protein
either occludes the minor groove of DNA, or that the DNA
conformation is distorted upon NarL binding. In the
former case, the DNA backbone sites located closest to
one another are across the minor groove and separated in
sequence by 3 bp [28–30]. The second proposal is sup-
ported by a recent 2.2 angstrom NarL-DNA structure for
NarL-C-terminal domain complexed to a synthetic 7-2-7
NarL consensus binding site where the protein causes a
conformational change of B-DNA to A-DNA (Ann Maris,

Figure 2
DNase I and hydroxyl radical footprint analyses of the dmsA
coding strand by NarL and NarL-phosphate. The closed
boxes denote the hydroxyl radical protected regions
whereas the open box indicates the DNase I protected
region. The asterisks note positions with increased sensitivity
to DNase I cleavage when NarL-phosphate is bound to the
DNA. Numbering of the DNA is relative to the start of dmsA
transcription. The amount of NarL used in each lane is indi-
cated above each lane. Lane G contains the Maxam-Gilbert
sequencing reaction. The NarL protein used in Lanes 2 and
6–9 was phosphorylated with acetyl phosphate prior to incu-
bation with the dmsA fragment.
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personal communication). Furthermore, the hydroxyl
radical protected regions occur at ten bp intervals, a regu-
lar phasing of the helix repeat. This signifies that NarL-
phosphate binds to only one side of the DNA molecule
dmsA promoter region [27–30]. The hydroxyl radical data
are also consistent with the binding of multiple molecules
of NarL-phosphate to the dmsA promoter region as sug-
gested by the DNase I data. Therefore, a simple model that
accounts for the footprint data is the assembly of multiple
NarL-phosphate molecules onto one face of the DNA that
somehow protect the minor groove from hydroxyl radical
attack [28–30]. In an alternative model, NarL binds only
at the three proposed NarL heptamer consensus sites
spaced at 20 bp intervals within the dmsA regulatory re-

gion (Figure 4). However, this model is difficult to envi-
sion since the DNase I and hydroxyl radical cleavage
patterns extend over seven to nine turns of DNA.

By either of the above models, the location of the NarL-
phosphate protected regions suggests that NarL may com-
pete with Fnr and/or RNA polymerase for occupancy on
the DNA but only when the bacteria are grown anaerobi-
cally in the presence of nitrate, conditions where NarL is
in the activated form. No hydroxyl radical or DNase I pro-
tected regions of DNA were observed when non-phospho-
rylated NarL protein was used at a concentration of 10 µM
(data not shown). In addition, β-galactosidase assays re-
vealed that the 10-fold nitrate dependent repression of
dmsA-lacZ expression was unaffected by the deletion of
upstream DNA sequence to -71 relative to the start of
dmsA transcription, further pinpointing the location of
the 5' end of the NarL recognition site for dmsA (data not
shown). Furthermore, the NarL footprint pattern does not
extend into the dmsA P2 promoter region. Therefore, NarL
does not appear to directly affect regulation at the P2 site,
unless a large DNA/protein complex that involves multi-
ple transcriptional regulators is involved (i.e. Fnr, NarL,
ModE, and IHF in addition to RNAP). Future investiga-
tion of this complex regulatory region will be needed to
ascertain such a matter. Finally, a similar hydroxyl radical
footprint pattern of 8–9 protected regions of 3–4 bp
spaced 10 nucleotides apart was also observed for NarL-
phosphate at the promoter region of the frdA gene, anoth-
er anaerobically induced gene that is repressed by NarL in
the presence of nitrate (data not shown).

To establish if the entire NarL protected region is required
for NarL-phosphate to bind DNA, a DNA fragment (des-
ignated Fragment B, Figure 5) containing a truncated re-
gion of the dmsA regulatory sequence was constructed.
The fragment extends from position -127 to -13 relative to
the start of dmsA transcription at P1 (Figure 4). In Frag-
ment B, two of the three consensus heptamer sites have
been replaced by the multi-cloning region of pGEM-11Zf
(Methods). When examined by DNase I footprinting anal-
ysis, the altered dmsA Fragment B (Figure 5, lanes 6 to 9)
revealed a 38 bp NarL-phosphate protected region extend-
ing from position -51 to -13. This protected region spans
only the wild-type dmsA DNA sequences but not the adja-
cent foreign DNA sequences. In contrast, the full-length
dmsA fragment (Fragment A, -127 to +62) showed a larger
protected region from -51 to +32 (lanes 2–5). These find-
ings demonstrate that the smaller dmsA region containing
only one of the three consensus heptamer sites (Figure 4)
is sufficient for NarL binding. However, a somewhat
weaker binding of NarL-phosphate to the DNA fragment
containing the truncated dmsA region relative to the full-
length region may suggest that NarL binds at the promoter
in a weakly cooperative fashion. The protections are con-

Figure 3
DNase I and hydroxyl radical footprint analyses of the dmsA
non-coding strand by NarL and NarL-phosphate. The closed
boxes denote the hydroxyl radical protected regions
whereas the open box indicates the DNase I protected
region. The asterisks note positions with increased sensitivity
to DNase I cleavage when NarL-phosphate is bound to the
DNA. Numbering of the DNA is relative to the start of dmsA
transcription. The amount of NarL used in each lane is indi-
cated above each lane. Lane G contains the Maxam-Gilbert
sequencing reaction. Lanes 1 and 5–8 designate the phospho-
rylated NarL protein.
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sistent with the proposal that NarL-phosphate recognizes
and binds at multiple heptamer recognition sites within
the dmsA P1 promoter region.

Three putative NarL binding sites with the consensus hep-
tameric sequence (TACYYMT) have been proposed for
dmsA[26]. These sites, previously assigned at positions +8,
-14 and -34, are now centered at positions + 15, -7, and -
27 (Figure 4) due to the reassignment of the dmsA P1 start
site [5,6]. Since the size of the DNase I and hydroxyl radi-
cal footprints in this study show DNA protections be-
tween and beyond these three consensus sites, other NarL
binding sites may be present in this region. As the three

consensus NarL boxes flank the dmsA promoter and are
spaced 20 bp apart (Figure 4), the spacing and orientation
of the NarL protected regions make it tempting to specu-
late that NarL-phosphate binds at each site. Additional
NarL-phosphate monomers then assemble on the DNA to
form a stable DNA protein complex. Alternatively, mole-
cules of NarL-phosphate may bind at both the consensus
and at related NarL-box sequences that contain one or two
mismatches from consensus (Figure 4). Inspection of the
DNA reveals an additional NarL box within the protected
region that has one mismatch from consensus (Figure 4,
dashed arrows) and nineteen NarL-like boxes with two
mismatches (dotted arrows, not all shown). We note that

Figure 4
Location of the Fnr and NarL binding sites in the dmsA promoter region. The DNA sequence is numbered relative to the start
of transcription. The dmsA Fnr recognition sequence is indicated by the open rectangle. The region of DNA protected by
NarL-phosphate from DNase I cleavage on each strand is denoted by the brackets whereas the sequences protected from
hydroxyl radical cleavage on each strand are represented by the closed boxes. DNase I hypersensitive sites are marked with
asterisks. The RNA polymerase recognition sequences in the -35 and -10 regions are in bold italics. The three consensus NarL
binding sites are represented by the solid arrows whereas dashed arrows mark NarL consensus sequences with one mismatch
and dotted arrows signify two mismatches.
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none of the three consensus heptamers (solid arrows, Fig-
ure 4) are arranged in a 7-2-7 sequence, nor are any of the
consensus heptamers paired with any of the mismatch
heptamers in such an arrangement. This is noteworthy
since a 7-2-7 sequence has been speculated for nucleating
NarL interactions at other promoters [31]. Stoichiometry
experiments are planned to ascertain the number of NarL
molecules that bind the dmsA promoter region, as are
studies to mutagenize one or more of the NarL binding
sites to determine the importance of the NarL consensus
binding sites at the dmsA promoter.

Conclusions
This study investigated the effects of sequence changes in
the Fnr-recognition site on the anaerobic activation of
dmsA-lacZ expression as well as examined the NarL recog-
nition sites within the dmsABC regulatory region. The data
illustrates that Fnr is responsible for the 100-fold anaero-
bic activation of dmsA expression. Also, both half-sites of
the Fnr recognition sequence at dmsA are required for Fnr-
dependent expression and are similar in their ability to ac-
tivate dmsA transcription. Furthermore, the spacing be-
tween the Fnr and RNA polymerase recognition sequences
is critical at dmsA. In vitro interactions of the nitrate-re-
sponsive regulatory protein NarL with the promoter re-
gion of dmsABC were examined using DNase I and
hydroxyl radical footprinting techniques. The location of
the NarL-phosphate protected regions within a 97 bp seg-
ment of the dmsA promoter is consistent with the model
for dmsABC expression whereby multiple molecules of
NarL-phosphate recognize and bind to the DNA in a weak
and cooperative fashion. The NarL interactions with the
dmsA promoter region occurred at ten bp intervals and
were offset by 3 bp in the 3' direction, suggesting the as-
sembly of multiple NarL-phosphate molecules onto one
face of the DNA that protect the minor groove. Further-
more, nonphosphorylated NarL was unable to protect the
NarL binding sequences at the dmsA promoter region, sug-
gesting that phosphorylation of NarL is required for re-
pression of dmsABC expression.

Materials and Methods
Bacterial strains, bacteriophages, and plasmids
The genotypes of the E. coli K-12 strains, plasmids, and the
bacteriophage used in this study are listed in Table 1 and
Figure 1. Strains were maintained on Luria broth or solid
LB medium [32]. Ampicillin was added as needed at 100
mg/L. For β-galactosidase assays, cells were grown in
phosphate-buffered LB medium [4]. Aerobic and anaero-
bic cell growth was performed as previously described [4].

Construction of dmsA-lacZ operon fusions
To introduce mutations within or nearby the proposed
Fnr recognition site at the dmsA promoter, site-directed
mutagenesis was performed using the method of Kunkel
[33]. The template for mutagenesis was m13mp19-100
which contained a 676 bp BamHI fragment containing
587 bp of DNA upstream of the dmsA translational start
site and the associated 89 bp of the dmsA coding region.
Each intended mutation was confirmed by DNA sequence
analysis [34]. A HincII/BamHI fragment containing the
regulatory region was excised from the M13 template and
inserted into the plasmid pRS1274 to give the JA250 (wild
type) and related mutant dmsA-lacZ promoter fusions
(Figure 1). These fusions were inserted into the chromo-
some in single copy as previously described [35].

Figure 5
Comparison of the NarL-phosphate protection patterns for
the entire dmsA promoter region versus a truncated dmsA
promoter fragment. The open box denotes the DNase I pro-
tected region for the entire dmsA region (Fragment A, -127
to +62) whereas the closed box indicates the protected
region for the truncated dmsA promoter region (Fragment B,
-127 to -13). Numbering of the DNA is relative to the start
of dmsA transcription. Lane G contains the Maxam-Gilbert
sequencing reaction. The noncoding strand of DNA was used
in both fragments, and the NarL protein used in Lanes 3–5
and 7–9 was phosphorylated with acetyl phosphate prior to
incubation with the dmsA fragment. The amount of NarL
used in each lane is indicated above each lane.
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β-Galactosidase assays
β-Galactosidase activity was determined as previously de-
scribed [4]. The protein concentration was estimated by
assuming that a cell density at OD600 of 1.4 corresponds
to 150 µg protein per ml [32]. β-galactosidase activity is
expressed in nanomol ONPG hydrolyzed per min per mg
protein. Values for β-galactosidase activity represent the
average of three or more experiments and the values var-
ied no more than plus or minus 5% from the mean.

Footprint analysis
A 189 bp DNA fragment containing the dmsA promoter
region was used for DNA footprinting experiments. The
fragment, corresponding to -127 to +62 relative to the
start of transcription, was amplified by PCR using primers
5'GAACGGTCTAGAATATATTGGC'3 (oSB15) and
5'GGGAATTCGCTATATAGGCTTGTATACATCGAA'3

(oSB14) with plasmid pPC25 as template. The PCR prod-
uct was digested with either the EcoRI or XbaI restriction
enzyme, end-labeled with [αP32]-dATP (ICN, Inc.) using
the Klenow fragment of DNA polymerase I, and purified
using a PCR clean-up kit (Qiagen). A smaller DNA frag-
ment representing the 5' end of the dmsA promoter region
from position -127 to -13 relative to the start of transcrip-
tion was also constructed by PCR amplification using
pPC25 as template and oligonucleotides oSB15 and
oSB21 (5'GTAGTATTACTAGTAAGTGAGG'3). The PCR
product was digested with the restriction enzymes XbaI
and SpeI and cloned intoXbaI-digested pGEM-IIZf
(Promega). Only the XbaI site designed near the -127 re-
gion remained intact. Using the resulting plasmid pSB10
as template, the cloned product was PCR amplified with
the vector forward and reverse primers, digested with XbaI

Table 1: Strains, plasmids, and phages.

Strains, plasmids and phages Parent Genotype or Phenotype Source

Strains

MC4100 F-araD139 (argF-lac) U169 rpsL150 
relA1 flb5301 deoC1 ptsF25 rbsR

[38]

PC2 MC4100 fnr [4]

Plasmids

pPC25 pDMS [4]
pJA250 dmsA-lacZ TTGATaccgAACAA this study
pJA303 dmsA-lacZ TTGATaccgATCAA this study
pJA450 dmsA-lacZ TTGTTaccgATCAA this study
pJA257 dmsA-lacZ TTAGTaccgAACAA this study
pJA304 dmsA-lacZ ----∆----accgATCAA this study
pJA448 dmsA-lacZ TTGATaccgAACAAA this study
pJA449 dmsA-lacZ TTGATaccgAACAAC this study
pRS415 lacZ lacY+lacA+ [35]
pRS1274 lacZ lacY+lacA+ [35]
pBluescript Stratagene
pBSDMS4 pBluescript dmsA' this study
pGEM-11Zf Promega
pSB10 pGEM-11Zf dmsA -127 to -13 this study

Phage

M13mp19-100 M13mp19 dmsA' laboratory stock
λRS45 lacZ [35]
λPC25 λRS45 dmsA-lacZ lacY+lacA+ [4]
Page 8 of 10
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and labeled as described above, resulting in Fragment B
(see Figure 5).

DNase I footprinting assays were carried out in 30 µl of
binding buffer (1 mM Tris, pH7.5, 5 mM KCl, 0.1 mM ED-
TA, 0.1 mM DTT, 0.7 mM CaCl2, 40 ng poly-(dI-dC), 12%
glycerol) with a final DNA concentration of 2 nM. NarL
was purified and phosphorylated using acetyl phosphate
as previously described [36]. Following phosphorylation,
NarL was immediately diluted to the indicated concentra-
tions and DNA binding was allowed to proceed at 22°C
for 10 min. DNase I (Sigma) was added (2 µl of a 1:250
dilution of 10 mg ml-1 stock in water) and incubation
continued for six min at 22°C. Reactions were stopped by
the addition of 7 µl of stop buffer (0.1 M ETDA, pH 8, 1.7
M sodium acetate, pH 5, 0.1 µg poly-(dI-dC)). Following
precipitation, the samples were resuspended in loading
dye, subjected to electrophoresis on an 8% polyacryla-
mide gel containing 6 M urea, and detected by autoradi-
ography. Maxam-Gilbert sequencing reactions were
performed as described [37].

Hydroxyl radical footprinting at the dmsA promoter was
performed as described [27]. NarL binding to the indicat-
ed DNA fragment was performed as described above,
omitting glycerol from the binding buffer. Following the
10 min binding reaction, a freshly prepared DNA cleavage
mixture was added (3 µl each of 20 mM L-ascorbic acid,
1.5% hydrogen peroxide, 20 mM iron (Fe+2) EDTA). After
1 min at 22°C, cleavage was terminated by the addition of
3 µl of 0.5 M thiourea and 7 µl stop buffer. The digestion
products were precipitated and analyzed as described
above.
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