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Abstract

Background: Bacterial biofilms are of tremendous concern for clinicians, as they can compromise the ability of the
immune system and antimicrobial therapy to resolve chronic and recurrent infections. Novel antimicrobial therapies
or combinations targeted against biofilm establishment and growth subsequently represent a promising new
option for the treatment of chronic infectious diseases. In this study, we treated bacterial biofilms produced by
methicillin-resistant Staphylococcus pseudintermedius (MRSP) with a combination of fosfomycin and clarithromycin.
We selected these agents, because they prevent biofilm formation and induce antimicrobial synergism that may
also target other staphylococci.

Results: We determined that the combination of fosfomycin and clarithromycin better impairs S. pseudintermedius
biofilm formation compared to treatment with either therapy alone (P < 0.05). Morphological examination of these
biofilms via scanning electron microscopy demonstrated that fosfomycin alone does impact biofilm formation on
orthopaedic implants. However, this activity is enhanced in the presence of clarithromycin. We propose that the
bacteriostatic activity of clarithromycin is accentuated when fosfoymcin is present, as it may allow better penetration
into the biofilm matrix, allowing fosfomycin access to sessile bacteria near the surface of attachment.

Conclusions: Here, we demonstrate that the combination of fosfomycin and clarithromycin may be a useful therapy
that could improve the clinical outcomes of treating antimicrobial resistant MRSP biofilms.
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Background
The extensive use of antimicrobials during the last half
century has promoted the evolution of antimicrobial
resistance characteristics in pathogenic and opportunistic
microorganisms [1,2]. The selective pressures induced by
antimicrobial therapies have forced the acquisition and
spread of a variety of antimicrobial resistance determi-
nants. Resistance mutations may arise spontaneously or
certain organisms may derive these from foreign DNA
encountered at sites of infection. Many organisms have
steadily gained resistance due to their ability to uptake
DNA from the surrounding environment and incorporate
it into their genome. For example, Falsetta [3] studied N.
gonorrhoeae, which is naturally competent and gains
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resistance by using several systems of DNA uptake to
acquire foreign DNA. At the same time, several strains
actively release their DNA into the environment. Thus,
resistance genes can come from self-organisms and non-
self-organisms. In addition to the development of resist-
ance, many pathogenic and opportunistic bacterial species
utilize other strategies that enable them to evade clearance
from their host, such as of the formation of biofilm struc-
tures that are recalcitrant to removal [4]. Although the
definition of a biofilm has fluctuated over the last 20 years,
classically biofilms are defined as microorganisms that are
irreversibly attached to a surface, which are encased in a
protective (often self-produced) matrix that may be
composed of eDNA, exopolysaccharides, host material,
shed membranes, etc. [5,6]. These organisms tend to work
cooperatively to ensure community survival, where some
may forfeit active growth [7,8]. As a result, biofilm infec-
tions are generally difficult to clear, owing to enhanced
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microbial resistance and tight adherence to the surface of
the substrate [6,9]. There are several theories as to why
bacterial biofilms are so resistant to antimicrobial therapy,
which may exist in tandem with one another: i) the matrix
impedes the penetration of antimicrobials into the biofilm,
ii) many cells within the biofilm are not metabolically
active and are thus resistance to many antimicrobials ther-
apies, iii) biofilms are actively resistant through the acqui-
sition of resistance genes and/or the expression of efflux
pumps, and iv) biofilms contain a subpopulation of cells that
are not susceptible to antimicrobials (e.g. resistors) [4,9]. As
a result, the minimum inhibitory concentration (MIC) of
biofilm-embedded bacteria can be 10 to 1000 times higher
than their planktonic counterparts, which often represents a
dose that would be lethal to the host [10,11].
Due to the potential impact of biofilms on the develop-

ment and persistence of serious and life-threatening infec-
tions and the difficulty in eliminating them, understanding
the mechanisms used to produce them in clinically rele-
vant bacteria along with the identification of potentially
novel strategies to prevent or remove them is paramount.
Staphylococcus pseudintermedius is a critically import-
ant, opportunistic, canine pathogen found in skin, soft
tissue, and surgical site infections (SSIs) [12]. Methicillin-
resistant strains (MRSP) are of concern, because of their
inherent resistance and ability to form biofilms [13,14].
Overall, MRSP may be a good model of methicillin resist-
ant biofilms that may have application to human methicil-
lin resistant infections [15]. In vitro studies of other
staphylococcal strains have shown that biofilm-associated
SSIs may be reduced through combinational antimicrobial
therapy [16]. Clarithromycin (CLA), a semi-synthetic broad
spectrum macrolide, has fairly potent in vitro and in vivo
anti-biofilm activity against Gram-positive S. aureus alone
and in combination with other antimicrobials, independent
of its antimicrobial activity [16-18]. A recent study indi-
cated that clarithromycin alone had little to no effect on
biofilm formation by MRSP [19], yet a combinational ther-
apy remained to be evaluated. Therefore, we elected to test
such a therapy on MRSP biofilms.
Fosfomycin (FOS) has been reported to destroy biofilm

and increase penetration of other antimicrobials into the
biofilms of both Gram-positive and Gram-negative bacteria
[20-22]. This antimicrobial has been shown to interfere
with the synthesis of peptidoglycan in the cell wall and en-
ters susceptible bacteria by means to two different trans-
port uptake systems: the L-α-glycerophosphate transport
system (GlpT) and the hexose–phosphate uptake system
(UhpT) [23]. Fosfomycin provides adequate distribution
into tissues in clinically relevant concentrations, and it has
been suggested that its high degree of tissue and biofilm
penetration is attributed to its low molecular weight and
negligible protein binding [24]. However, despite these
favourable pharmacokinetic properties and notable effects
against bacterial biofilms, the emergence of resistance can
preclude its use as a single agent.
The use of combination antimicrobial regimens with

FOS could help to reduce the risk of antimicrobial resist-
ance as well as provide a synergistic effect with other anti-
microbials including beta-lactams, aminoglycosides, and
fluoroquinolones [22,25,26]. Interestingly, synergistic stud-
ies have demonstrated that FOS may even decrease the
level of penicillin-resistance in pneumococci by altering
the degree of expression of penicillin-binding proteins
[27]. When used in combination, FOS appears to exert
substantial antimicrobial activity and may be clinically ef-
fective against infections caused specifically by “problem”
Gram-positive cocci pathogens both in vitro and in vivo
[28,29]. In support to this, we found that FOS in combin-
ation with CLA is highly effective in reducing biofilm
biomass in vitro, more so than either therapy alone. We
suggest that this may be an effective therapy to reduce
biofilm-related wound infections. Further study is war-
ranted to test its impact in vivo; this study lays the founda-
tion for that work.

Results and discussion
Structurally unrelated to other antimicrobials, FOS
uniquely inhibits the first step of peptidoglycan biosyn-
thesis in bacterial cell wall by binding to UDP-N-acetyl-
glucosamine enolpyruvate transferase [23]. Its low mo-
lecular weight (194.1 Da) and non-reactivity with the
negatively charged bacterial glycocalyx allows for effi-
cient diffusion into tissues and the biofilm matrix [30].
This may explain its enhanced antimicrobial activity
against biofilm embedded bacteria, as it has been shown
to destabilize biofilms and thereby enhance the perme-
ability of other antimicrobials [20,22,31].

Fosfomycin and clarithromycin synergistic activity
Microtitre plate assay (MPA) results identified synergism
between CLA and FOS in reducing biofilm production.
Fractional inhibitory concentration index (FICI) values
(Table 1) revealed fractional synergy (FICI ≤ 0.5) of 0.31
to 0.56 in the FOS and CLA resistant strains. As a set
1:1 combination of FOS and CLA (Breakpoint dose for
CLA resistance is ≥ 8 μg/ml) was chosen, the FIC may
be lower based on specific MIC against biofilm for each
strain. In comparison with the control samples, low doses
of FOS at 8 μg/ml (P > 0.05) and CLA at 8 μg/ml (P > 0.05)
independently produced no significant reduction in biofilm
production, whereas treatment with FOS and CLA in com-
bination resulted in a significant (P < 0.05) reduction in the
bacterial biomass (Figure 1) in one-way ANOVA models.
To ensure that this impact was directed against biofilm
formation and was not simply inhibiting bacterial growth
both FOS resistant (≥64 μg/ml) and CLA resistant
(≥256 μg/ml) strains were chosen. As the strains tested are



Table 1 Interaction of fosfomycin and clarithromycin against MRSP biofilms by microdilution arrays

Isolate selected Sequence type Dru type Adherence capabilities FOS (μg/ml) MIC CLA (μg/ml) MIC FICI

A12 68 10h STRONG ≥1 ≥256 NA

A46 71 9a MODERATE ≥64 ≥256 0.31

A56 71 9a LOW ≥32 ≥256 0.56

A92 71 9a MODERATE ≥64 ≥256 0.31

SP90 71 9a STRONG ≥32 ≥256 0.56

SP106 71 9a LOW ≥64 ≥256 0.31

SP112 71 9a LOW ≥64 ≥256 0.31

SP113 71 9a LOW ≥64 ≥256 0.31

Adherence capabilities were determined based on the model developed by Stepanovic et al., 2000. Fosfomycin and Clarithromycin susceptibility was determined
by agar dilution and Kirby Bauer disk diffusion, respectively.
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resistant to FOS in high doses, and MRSP has been found
to resist the anti-biofilm effect of CLA in mono-therapy
[19], this demonstrated synergism between FOS and CLA
in an in vitro setting is particularly interesting.

Potential mechanism of synergism against MRSP
The mechanism behind the synergism between the fosfo-
mycin and clarithromycin is unknown. In S. aureus, cellu-
lar adhesion is mediated by adhesive matrix molecules
which are covalently anchored to the cell wall peptidogly-
can [32,33]. In addition, extracellular matrix fibronectin
can serve as a bridging molecule between several bacterial
species and variety of host type cells or non-biological
Figure 1 Enhanced antibacterial activity of fosfomycin (FOS) and clari
forming potential of one ST68 strain (A12) and seven ST71 strains (A46, A56
mono and combination therapy. Combination therapy had a significant eff
effect (P > 0.05) on MRSP biofilm formation.
surfaces [34]. S. pseudintermedius expresses surface
proteins that resemble those from S. aureus and has the
capacity to bind to the fibrinogen, fibronectin, and
cytokeratin of host cells [35]. Cell wall associated adhe-
sive proteins, particularly the fibrinogen-binding pro-
tein ClfA present on the surface of Staphylococcus
pseudintermedius, is a candidate therapeutic target for
the control of bacterial pyoderma on skin infections
[35]. It also produces an immunoglobulin-binding
protein called staphylococcal protein A (Spa), similar to
that of S. aureus [34]. Although speculative, FOS may
alter these binding mechanisms through its interference
with peptidoglycan biosynthesis of the bacteria.
thromycin (CLA) against MRSP following 24 h growth. Biofilm
, A92, SP90, SP106, SP112, SP113) and the effect of FOS and CLA in
ect (P < 0.05) while low doses of FOS and CLA alone had no significant
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Quorum sensing regulates biofilm formation and
cell-cell communication in bacteria, and it can be
influenced by the combined antimicrobials against
MRSP biofilms [36,37]. The accessory gene regulator
(agr) quorum sensing and signal transduction has been
described in S. aureus [38,39], which mediates bacterial
oxidation response via intramolecular disulfide redox
switch, which was also very recently identified in S. pseu-
dintermedius [40]. Quorum sensing in Gram-positive
bacteria has been found to regulate a number of physio-
logical activities, including induction of virulence factors
in S. aureus. Macrolide antimicrobials have been shown to
affect quorum sensing within biofilms, leading to reduced
polysaccharide synthesis and instability of the biofilm
architecture [41,42]. Thus, it is possible that FOS may also
influence the quorum-sensing signals of these strains. We
plan to investigate this further in future studies by exam-
ining mRNA expression of agr and or protein levels in
response to FOS treatment.
Figure 2 Characteristic cell morphologies of MRSP biofilms and its su
fosfomycin against MRSP A12 strain on titanium orthopaedic screws was a
old MRSP biofilms on orthopaedic screws are shown without (A), (C) and trea
biofilm extracellular matrix is indicated by the arrows in the control samples.
Surface coverage and morphological effects of fosfomycin
Monotherapy with concentrations of FOS below the
selected strain’s MIC were also found to reduce adherence
and biofilm structure on titanium orthopaedic screws. The
percent particulate (clusters of biofilms) on the orthopaedic
screw surfaces decreased significantly (P < 0.05) between
control and FOS treated samples. In control samples, com-
plicated fibrous structures, biofilm-embedded cells, and
colonies of bacteria were noted as early as 4 h with increas-
ing amounts of surface coverage after 24 h of growth
(Figure 2A and C). Comparisons between the samples indi-
cated that surface area coverage by MRSP biofilm
decreased from 13.9% to 0.8% due to FOS treatment over
4 h and from 18.2% to 0.3% over 24 h (Figure 3). A
decreased change in extracellular polymeric substance pro-
duction and the density of adherent bacteria and biofilm
structures was also noted at 4 h in samples treated with
0.8 μg/ml of FOS (Figure 2A and B). There is a significant
difference in biofilm coverage between the control and FOS
rface coverage on titanium orthopaedic screws. The effect of
ssessed microscopically. Scanning electron micrographs of 4 and 24 h
ted with fosfomycin (B), (D) respectively. The biofilm cells embedded in



Figure 3 Percent biofilm coverage on orthopaedic screw surface
over 4 and 24 h time periods. Image analysis of particulate coverage
of SEM images demonstrates that a significant difference (P < 0.05)
exists between treated and untreated samples. Extracellular polymeric
substances and adherent and biofilm-embedded cells were highlighted
against the background in the same locations across both samples.
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treated samples; biofilm coverage is reduced by treatment,
indicating higher efficacy and the potential for preventing
MRSP adhesion on clinically relevant surfaces. Further,
enumeration (Table 2) of biofilm collected from titanium
screws confirmed that FOS (at below-MIC levels) signifi-
cantly decreased biofilm formation (P < 0.05).
Assessment of the effect of FOS on MRSP biofilm

through AFM revealed distinct morphological variations
when comparing large clusters of cocci shaped biofilms in
untreated controls and treated samples (Figure 4). The
cocci shape is evident in the control sample, while the
cells appear to have lysed in the FOS treated samples. The
cellular morphology was dramatically altered and the cells
appeared to be collapsed, which is indicative of lysis fol-
lowing FOS treatment. Untreated (control) MRSP biofilms
grown over 4 h on mica sheets had a significantly larger
diameter (1 μm) compared to the FOS-treated MRSP
biofilms, which were an average of 97 nm in diameter. In
the treated samples, MRSP cells were well dispersed and
isolated, appearing to be damaged with a greatly lowered
height. The AFM image analysis clearly indicates that the
effect of FOS on MRSP was significantly detrimental, indi-
cating the possibility of cell-wall degradation. SEM and
AFM image analysis data agree with the MPA data and
Table 2 Average number of MRSP bacterial colonies
grown from titanium screws treated with and without
fosfomycin (n = 3)

Dilution factor Average number of bacterial colonies (CFU)

Control 0.8 μg/ml FOS

1:10−1 468 ± 16.7 4.6 ± 0.5

1:10−2 47.2 ± 1.5 0

1:10−3 4.2 ± 0.4 0

1:10−4 0 0

The values represent the mean and standard deviation of 3 replicates from
two independent experiments.
provide further evidence of fosfomycin’s effect against
MRSP growth in vitro.

Combination therapy benefits
Synergistic approaches have been shown to reduce the
possibility of resistance gaining in systemic therapy and
have been proven effective in reducing this occurrence
for Pseudomonas aeruginosa and Escherichia coli in both
in vitro testing and in vivo trials [43,44]. In addition,
development of cross-resistance to FOS through the use
of other antimicrobial agents has been regarded as insig-
nificant, likely due to its unique bioactivity against
bacteria [45,46]. For these reasons the use of FOS/CLA
in combination therapy may prove effective for MRSP
biofilm-forming strains in a clinical setting to reduce
recurrent SSIs on indwelling biomaterials. However, add-
itional in vivo and in vitro studies using biofilm models
across larger populations of strains and in vivo studies
are warranted.
As an in vitro study, this study is focused on using

clinical isolates that are naturally resistant in a biofilm
model being more representative than planktonic
growth. The obtained results will serve the agenda of
investigating the polymicrobial wound infection models,
and will aid in predicting the response in the complex
natural environment of the biofilm.
It is unclear whether the synergistic effect on MRSP

biofilm noted here would also apply to other staphylo-
coccal species, and study of the effect of this combin-
ation of other clinically relevant staphylococci is needed.
This study also only investigated MRSP, not methicillin-
susceptible S. pseudintermedius (MSSP). It is reasonable
to extrapolate results to MSSP given the lack of evidence
of an association between methicillin-resistance and
either biofilm production or resistance to fosfomycin.

Conclusions
Results show that FOS and CLA in combination have a
significant effect on biofilm formation in vitro, inde-
pendent of their antimicrobial activity and in contrast to
monotherapy results. A synergistic effect between FOS
and CLA was noted that increased the apparent the
effectiveness of FOS and CLA, despite the fact that the
strains tested were determined to be resistant to either
therapy alone. In vivo and further in vitro trials evaluat-
ing the effect of these two antimicrobials in combination
on simulated 3D wound infection models are warranted.
Our results indicate that a combinational therapy of FOS
and CLA may be highly effective in preventing biofilm
formation by MRSP strains, even those predisposed to
resistance to either agent alone. Therefore, this therapy
may be promising in the treatment of resistant biofilm
wound infections. Our next steps will be to investigate a
simulated wound infection model in microfluidic systems,



Figure 4 MRSP biofilm surface height profiles with corresponding AFM deflection mode images (Scale = 5 μm). (A), (B) MRSP A12 AFM
image showing clusters of biofilms with extended chains exhibiting stable nanoscale morphology. (C), (D) Fosfomycin treated MRSP biofilms for
4 h exhibits greater deviation in nanoscale morphology and reduced height indicating the efficacy of fosfomycin. The cellular ultrastructure has
been significantly altered with less surface coverage and a smaller cell diameter.
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to test other strains isolated from dogs, and further
characterize the effect of the therapy on biofilm structure
using methods that hydrate or distort the biofilm, such as
confocal microscopy. In the end, we could foresee using
the combination of FOS and CLA as preventative agents
either in a topical application or as an oral dose to limit
the potential for MRSP biofilm formation. Alternatively,
we intend to test their ability to disrupt already established
biofilms as a therapeutic agent once biofilm infection has
been identified. These agents may be more successful than
the currently available modalities, as they are effective
together at doses that could be safely administered to
patients without obvious negative impact. These agents are
already used clinically alone, so they are ideal agents for a
combination therapy and would be both safe and effective.

Methods
Ethics statement
Bacterial isolates from dogs were collected as part of
studies that were approved by the University of Guelph
Animal Care Committee.
Bacterial isolate screening
We tested 31 epidemiologically unrelated MRSP isolates
from dogs from Canada and the United States were
screened for biofilm production via microtiter plate
assay (MPA) [47,48], FOS and CLA resistance by agar
dilution and Kirby Bauer disk diffusion [49,50] respect-
ively, and further characterized by sequence analysis of
the mec-associated direct repeat unit (dru typing) [51].
Clinical and Laboratory Standards Institute (CLSI)
approved susceptibility breakpoints do not exist for FOS
against staphylococci, and instead European Committee
on Antimicrobial Susceptibility Testing (EUCAST) break
point was used to determine susceptibility with an
MIC ≤ 32 μg/ml [14,52]. For susceptibility testing, 25 μg/ml
glucose 6-phosphate (G6P) was added to the agar plates to
improve FOS uptake [23,53,54].

Evaluation of biofilm production
To determine biofilm adherence characteristics, strains
were first cultured aerobically for 24 h at 35°C in Columbia
Agar with 5% sheep blood before suspension at a 0.5
McFarland standard (~108 CFU/ml) in tryptic soy broth
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supplemented with 1% glucose (TSB-G) + 25 μg/ml G6P.
We transferred 200 μl of each inoculum to a 96-well poly-
styrene microtiter plate in triplicate and incubated aerobic-
ally for 24 h at 35°C. This was followed by washing of the
wells with phosphate buffered saline (PBS) three times to
remove non-adherent cells, and heat fixation at 60°C for
1 h. Crystal violet 0.1% (w/v) was then applied for 15 mi-
nutes to dye the cells before drying at room temperature
overnight, and resolubilization of adherent cells with 95%
ethanol. Used as an indication of biofilm production,
optical density (OD) measurements were taken of the wells
at 570 nm (OD570), and were averaged over each strain and
subtracted from the readings of the negative control (wells
containing uninoculated media). Strains were classified as
biofilm producers if OD570 was >0.200 and further classified
as weak (0.600 >OD570 ≥ 0.200), moderate (1.200 >OD570 ≥
0.600) and strong (OD570 ≥ 1.200) biofilm formers [48].

Impact of FOS and CLA on biofilm production
To assess potential synergism against biofilm formation,
independent of antimicrobial activity, seven biofilm pro-
ducing (OD570 > 0.200) MRSP isolates that were resistant
to CLA and FOS were studied. The impacts of FOS, CLA,
and FOS +CLA on biofilm formation were evaluated by
microtitre plate assay (MPA) by comparing biofilm pro-
duction with and without the antimicrobial therapy as de-
scribed above. The selected isolates were treated with the
following therapy: no treatment, high FOS (64 μg/ml), low
FOS (8 μg/ml), CLA (8 μg/ml), and FOS (8 μg/ml) + CLA
(8 μg/ml). Breakpoint doses for CLA resistance (≥8 μg/ml)
[50] were chosen to represent a concentration that can be
readily achieved in vivo (i.e., safe and effective) [42]. Anti-
microbial synergy was assessed by the fractional inhibitory
concentration index (FICI), represented by the following
formula [43,55].

FICI ¼ MIC FOS þ CLAð Þ
MIC FOSð Þ þMIC FOS þ CLAð Þ

MIC CLAð Þ

FICI values were interpreted as synergistic (FICI ≤ 0.5),
synergistic to additive (0.5 < FICI ≤ 1), indifferent (1 < FI
CI ≤ 4), and antagonistic (FICI > 4) [43].

Scanning electron microscopy (SEM)
To assess the effect of FOS on MRSP adhesion to a differ-
ent abiotic and clinically relevant surface, SEM was used
to image bacterial adherence and the biofilm matrix on
316 LVM titanium 20 mm orthopaedic bone screws
(Veterinary Orthopaedic Implants, St. Augustine, FL,
USA). One strong biofilm producing MRSP isolate was
chosen from the population and inoculated at a 0.5
McFarland standard suspension in 5 ml of TSB-G +
25 μg/ml G6P. The screws were added to test tubes
containing the bacterial suspension with and without
0.8 μg/ml FOS—the MIC for the strain—and incubated
at 35°C. At 4 and 24 h of incubation the screws were
washed with PBS, fixed with 2.5% glutaraldehyde for
24 h and rinsed in Sorensen’s phosphate buffer for 15 min
three times. This was followed by post-fixation in 1%
osmium tetraoxide for 30 min at room temperature, wash-
ing in Sorensen’s phosphate buffer for 15 min two times,
dehydration through an ethanol gradient (50-100%),
critical-point drying, and finally sputter coating with gold.
Samples treated with and without 0.8 μg/ml FOS were im-
aged at 4 levels (3, 10, 30, and 100 μm) at two locations —
along the head and between the threads of the ortho-
paedic screws—using a Hitachi S-570 scanning electron
microscope. Image acquisition location was standardized
across all replicates in relation to the detector beam, with
images taken in the top-right quadrant of the screw head,
and second screw thread along the minor diameter. Per-
cent particulate coverage of the surface of titanium ortho-
paedic screws was determined from multiple SEM images
of the same region of interest using ImageJ image analysis
program (National Institute of Health, Bethesda, USA).
The gray-scale SEM images were converted to binary for-
mat and the percent white-to-black pixels were calculated
for each of the images. The SEM images were also visually
ranked for microbial biofilm morphology.

Enumeration of biofilm on screws
Enumeration of adherent biofilm grown on titanium
screws was completed after removal by sonication. The
same high biofilm-forming strain from the population was
grown over night before inoculation at a 0.5 McFarland
standard suspension in 5 ml of TSB-G + 25 μg/ml G6P.
Titanium screws were added to the inoculated media with
and without 0.8 μg/ml of FOS and incubated for 24 h.
Following incubation, the screws were removed from the
inoculum, washed to remove non-adherent bacteria and
then transferred to tubes containing fresh TSB-G. Samples
were then sonicated for 2 min (Branson Ultrasonic Cleaner
Model 2510, Emerson Industrial Automation, Danbury,
USA) and vortexed for 15 s to disperse previously adhered
biofilm amongst the media. Serial dilutions of 10−1 through
10−5 for each screw were plated and colony forming units
(CFU) counted (n = 3) after overnight growth.

Atomic Force Microscopy (AFM)
For morphological studies, one strong biofilm producing
isolate as determined from the MPA study was chosen
from the population and inoculated at a 0.5 McFarland
standard suspension in 10 ml of TSB-G + 25 μg/ml G6P
and grown to late mid-log phase. The cells in a 1 ml
sub-sample were centrifuged in a Scilogex Model D3024
microfuge at 5000 g for 3 min at room temperature, and
washed 3 times with sterile analytical-grade water. The
pellet was again suspended in deionized distilled water
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and the concentration of the bacteria was measured by a
spectrophotometer at 540 nm. Freshly cleaved mica
sheets were added to petri-dishes containing the bacter-
ial cell culture suspension with and without 0.8 μg/ml
FOS and incubated for 4 h and 24 h at 35°C. Upon incu-
bation, the mica sheets were gently removed using fine
tip tweezers, washed in free-flowing nano-pure water to
remove the freely attached cells and dried at room
temperature for 3 hours before imaging. AFM imaging
was carried out for both the control samples and the
bacterial culture treated with FOS (n = 3). Analysis was
done with duplicate cultures for each time point with
cells imaged in air with a tapping mode atomic force
microscope (Dimension Icon SPM, Bruker). AFM height,
amplitude, and phase images were obtained in AC mode
on the air-dried mica substrates. A triangular Si canti-
lever tip (Bruker AFM Probes, Camarilla, CA) with a
spring constant of 0.35 N/m and a resonance frequency
of 18 kHz was used. A scan speed of 0.7-1.5 Hz was set
and resulted in a final resolution of 512 by 512 pixels.

Statistical methods
Data from the MPA was analyzed through one-way
ANOVA with post-hoc Tukey’s Range test to compare
different treatments with the control with a P < 0.05 being
considered significant. Mean particulate coverage on SEM
images in two different areas of the screws were assessed
with Kruskal–Wallis one-way ANOVA (P < 0.05). Enu-
meration profiles of biofilm adhered to screws was
analyzed using Student’s t-test to compare biofilm growth
between FOS treatment and the control (P < 0.05). All
statistical analysis was performed on commercially avail-
able software (SAS 9.2 TS Level 2 M3; SAS Institute Inc.,
N.C., U.S.A).
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