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Abstract

Background: The insertion element IS630 found in Aeromonas salmonicida belongs to the IS630-Tc1-mariner
superfamily of transposons. It is present in multiple copies and represents approximately half of the IS present in
the genome of A. salmonicida subsp. salmonicida A449.

Results: By using High Copy Number IS630 Restriction Fragment Length Polymorphism (HCN-IS630-RFLP), strains of
various subspecies of Aeromonas salmonicida showed conserved or clustering patterns, thus allowing their
differentiation from each other. Fingerprints of A. salmonicida subsp. salmonicida showed the highest homogeneity
while ‘atypical’ A. salmonicida strains were more heterogeneous. IS630 typing also differentiated A. salmonicida from
other Aeromonas species. The copy number of IS630 in Aeromonas salmonicida ranges from 8 to 35 and is much
lower in other Aeromonas species.

Conclusions: HCN-IS630-RFLP is a powerful tool for subtyping of A. salmonicida. The high stability of IS630
insertions in A. salmonicida subsp. salmonicida indicates that it might have played a role in pathoadaptation of A.
salmonicida which has reached an optimal configuration in the highly virulent and specific fish pathogen A.
salmonicida subsp. salmonicida.

Keywords: Aeromonas salmonicida, HCN-IS630-RFLP, IS element, Subtyping, Tc1 Mariner transposon, Salmonidae,
Pathoadaptation
Background
Aeromonas salmonicida is one of the predominant bac-
terial species found in fish and water samples [1]. While
some Aeromonas species are able to cause opportu-
nistic disease in warm- and cold blooded vertebrates,
A. salmonicida seems to be specific for fish. Aeromonas
salmonicida subsp. salmonicida a specific primary
pathogen of Salmonidae (salmon, trout and char) has
been known for decades to cause furunculosis. This bac-
terial septicaemia has a significant economic impact on
aquaculture operations as well as on the wild stock of
salmonids and some other fish species [2]. Bergey’s
Manual of Systematic Bacteriology recognizes five sub-
species of A. salmonicida: salmonicida, achromogenes,
smithia, pectinolytica and masoucida [3]. Aeromonas
salmonicida subsp. salmonicida is referred to as typical
Aeromonas salmonicida by reason that these strains are
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very homogeneous and considered to be clonal [4,5].
Clinical strains that cannot be assigned to any of the
known subspecies are referred to as A. salmonicida
‘atypical’. In recent years, it has been recognized that
‘atypical’ strains cause diseases in salmonidae and other
fish species that differ from furunculosis. Therefore
their importance is being increasingly recognized. The
most common clinical manifestation observed, follo-
wing infections with such strains, is chronic skin ulce-
ration [6]. Due to a convoluted history of nomenclature
and taxonomy of Aeromonas sp., clear assignment of
strains using currently available methods remains some-
times confusing and controversial which makes epide-
miological studies difficult [7]. Intraspecies phenotypic
variability also makes phenotypic identification challenging
on the species level [8]. A variety of molecular genetic
methods have been employed for genetic classification of
Aeromonads including mol% G+C composition, DNA-
DNA relatedness studies, restriction fragment length po-
lymorphism, pulsed-field gel electrophoresis, plasmid
analysis, ribotyping, multilocus sequence typing, PCR
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and more [3,5]. Combination of 16S rDNA-RFLP ana-
lysis and sequencing of the gene rpoD was proposed as a
suitable approach for the correct assignment of
Aeromonas strains [9]. Moreover, analyzing strains by
matrix assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF) with an extraction
method revealed 100% genus-level accuracy and 91.4% ac-
curacy at species level [10]. However, this method was not
able to discriminate A. salmonicida at the subspecies level.
Currently, no molecular approach gives a clear geno-

typic distinction of strains among A. salmonicida spe-
cies. For this reason we elaborated a molecular genetic
technique to achieve an adequate subtyping of all
Aeromonas salmonicida subspecies. This method, named
High Copy Number IS-Element based Restriction Frag-
ment Length Polymorphism (HCN-IS-RFLP), has been
successfully applied in numerous epidemiological stu-
dies for other pathogenic bacteria [11-15].

Results
Optimization of HCN-IS630-RFLP conditions
IS630 was selected because it is the IS element with the
highest copy number in the genome of A. salmonicida
[16]. Primers internal to the highly conserved IS630 genes
[GenBank: ABO88357.1] were designed to generate a probe
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Figure 1 Southern blot of Xho-I digested DNAs from different A. salm
and 16, molecular size marker (sizes are indicated on the left in kilobase pa
JF3224, JF3996, JF3507, JF3121 [formerly identified as atypical]); lanes 6 to 8
JF3123 [formerly identified as atypical]); lane 9, A. salmonicida subsp. pectin
lanes 12, 14 and 15, A. salmonicida atypical (JF3122, JF3124, JF3125).
on an intact IS fragment from the A. salmonicida subsp.
salmonicida JF2267 genome. To obtain the most distinct
banding pattern, the digestion by several restriction enzymes
on a set of sequenced genomes (A. salmonicida subsp.
salmonicida A449, A. hydrophila ATCC7966 and A. veronii
B565) was predicted by computer analysis. XhoI that does
not cut within our probe for IS630 revealed a good reso-
lution with a clear banding pattern and was therefore
selected. A size window of 1375 bp to 21226 bp was defined
on all southern blots as some hybridizing patterns with very
large or small fragments were not sufficiently resolved
(Figure 1). The genomic DNA sequence of A. salmonicida
strain A449 [GenBank: CP000644.1] predicted that the
probe would hybridize with 35 copies of IS630 on XhoI
fragments ranging from 1277 bp to 17948 bp (Additional
file 1: Table S1).
We analyzed the IS630 RFLP-fingerprints of 87

Aeromonas sp. strains of various geographical origins,
which comprised 31 A. salmonicida subsp. salmonicida, 4
subsp. achromogenes, 4 subsp. smithia, 2 subsp. masoucida,
one subsp. pectinolytica, 12 A. salmonicida atypical strains,
8 A. popoffii, 5 A. sobria and A. bestiarum, 2 A. hydrophila,
one A. trota, A. enteropelogenes, A. simiae, A. eucrenophila,
A. ichthiosmia, A. jandaei, A. molluscorum, A. bivalvium,
A. allosaccharophila, A. media, A. veronii, A. caviae and A.
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onicida strains hybridized with an IS630-specific probe. Lanes 1
irs); lanes 2 to 5 and 11, A. salmonicida subsp. salmonicida (JF2267,
and 13, A. salmonicida subsp. achromogenes (JF3115, JF3116, JF2997,

olytica (JF3120); lane 10, A. salmonicida subsp. masoucida (JF3118);



Table 1 Aeromonas strains used in this study

JF N° Synonyme Species Subspecies Origin Identified virulence
characteristics

Pigment
production
(Day 6)

Ref

JF2996 Austin98 salmonicida salmonicida Sediment in Riccarton
Loch, Scotland

ascV-, ascU-, aexT+,
aopP+, aopO-, aopH+

+++ [17,18]

JF3507 ATCC 33658 T,
NCIMB 1102 T

salmonicida salmonicida Salmo salar, Scotland ascV-, aexT+, aopP+,
aopO+, aopH+, acrD-

+++ [18-20]

JF3327 F330/04 salmonicida salmonicida Arctic char, Switzerland,
2004

ascV+, aexT+, aopP+,
aopO+, aopH+

++++ [18]

JF3517 4757 salmonicida salmonicida Turbot, Norway ascV+, aexT+, aopP+,
aopO+, aopH+

++++ [18]

JF2267 Fi 94 G salmonicida salmonicida Arctic char, Switzerland,
1999

ascV+, ascU+, aexT+,
aopP+, aopO+, aopH+, acrD+

+++ [17,18,20]

JF2869 CCUG 47405 (A) salmonicida salmonicida Arctic char (Savelinus
alpinus)

aexT+, SacrD 30+ ++++ -

JF3223 Fi 210 salmonicida salmonicida White fish, Switzerland,
1997

ascV+, aexT+, aopP+,
aopO+, aopH+

++++ [18]

JF3224 R04/170 salmonicida salmonicida Brown trout, Switzerland,
2004

ascV+, ascU+, aexT+,
aopP+, aopO+, aopH+

++++ [17,18]

JF3518 4704 salmonicida salmonicida Turbot, Norway ascV+, aexT+, aopP+,
aopO+, aopH+

++++ [18]

JF2509 CC72 - D640 salmonicida salmonicida Atlantic salmon, Canada,
before 1960

ascV+, aexT+, aopP+,
aopO+, aopH+, acrD+

++++ [18,20]

JF3519 3294 salmonicida salmonicida Arctic char, Switzerland,
1986

ascV-, aexT+, aopP+,
aopO+, aopH-

++++ [18]

JF2506 CC 27–80/9-1 salmonicida salmonicida Atlantic salmon Norway ascV+, aexT+, aopP+,
aopO+, aopH+, acrD+

++++ [18,20]

JF2507 CC 29 - 74/2 salmonicida salmonicida Atlantic salmon, Scotland ascV+, aexT+, aopP+,
aopO+, aopH+, acrD+

++++ [18,20]

JF2508 CC 63- D-615 salmonicida salmonicida Atlantic salmon, Canada ascV+, aexT+, aopP+,
aopO+, aopH+, acrD+

++++ [18,20]

JF2510 CC 23/8019-5 salmonicida salmonicida Atlantic salmon Norway ascV+, aexT+, aopP+,
aopO+, aopH+, acrD+

++++ [18,20]

JF3521 2265 salmonicida salmonicida Wild atlantic salmon,
Norway 1991

ascV-, aexT+, aopP+,
aopO+, aopH-

++++ [18]

JF3496 F05/160 salmonicida salmonicida Wild brown trout,
Switzerland, 2005

ascV+, aexT+, aopP+,
aopO+, aopH+

+++ [18]

JF3844 F06/417 salmonicida salmonicida Arctic char, Switzerland,
2006

ascV+, aexT+, aopP+,
aopO+, aopH+

+++ [18]

JF2505 MT 44/SS 10 salmonicida - non virulent for trout,
Canada

A+, LPS+, acrD- +++ [20]

JF3791 F06/385 salmonicida - Arctic char Salvelinus
alpinus, Switzerland,
2006

ascV+, aexT+,
aopP-aopO+, aopH+

+++ [18]

JF4111 F07/357(NiA) salmonicida - Salvelinus, Switzerland,
2007

ND +++ -

JF4112 F07/357 (NiB) salmonicida - Salvelinus, Switzerland,
2007

ND +++ -

JF4113 F07/357 (NiC) salmonicida - Salvelinus, Switzerland,
2007

ND +++ -

JF3121 As209 salmonicida salmonicida
[formerly
atypical]

Wolf fish, UK ascV-, ascU- +++ [17]
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Table 1 Aeromonas strains used in this study (Continued)

JF4714 IMD1520 salmonicida - Thymallus thymallus
(skin), Switzerland, 2009

ND +++ -

JF4715 IMD 1521 salmonicida - Thymallus thymallus
(kidney), Switzerland,
2009

ND +++ -

JF4114 F07/357(LeA) salmonicida - Salvelinus (liver),
Switzerland, 2007

ND +++ -

JF4115 F07/357 (LeB) salmonicida - Salvelinus (liver),
Switzerland, 2007

ND +++ -

JF4116 F07/357 (LeC) salmonicida - Salvelinus (liver),
Switzerland, 2007

ND +++ -

JF4118 F07/(MiB) salmonicida - Salvelinus (kidney),
Switzerland, 2007

ND +++ -

JF4119 F07/357 (MiC) salmonicida - Salvelinus (kidney),
Switzerland, 2007

ND +++ -

JF4117 F07/357 (MiA) salmonicida salmonicida Salvelinus (spleen),
Switzerland, 2007

ND ++++ -

JF3122 As204 salmonicida atypical Wrasse UK ascV+, aexT+, aopP +
aopO-, aopH+

++ [18]

JF3500 aAs 4143 salmonicida atypical Atlantic cod, Norway ascV+, aexT+, aopP +
aopO+, aopH-

++ [18]

JF3666 F06/211 salmonicida atypical Bleak (Alburnus
alburnus), Switzerland,
2006

ascV+, aexT+, aopP- aopO-,
aopH+

- [18]

JF3124 As93 salmonicida atypical Plaice, Denmark ascV+, aexT+,
aopP + aopO+, aopH+

- [18]

JF3520 4818 salmonicida atypical Atlantic Halibut, Norway,
2003

ascV+, aexT-,
aopP + aopO-, aopH+

- [18]

JF3115 ATCC 19261,
NCIMB 1109

salmonicida achromogenes Salmo trutta ND + -

JF3116 NCIMB 1110 T salmonicida achromogenes Trout, Scotland ascV+, ascU+, aexT+,
aopP+, aopO+, aopH+

++ [17-19]

JF2997 F-265/87 salmonicida achromogenes Atlantic salmon, Iceland ascV+, ascU+, aexT+,
aopP+, aopO+, aopH+

++ [17,18]

JF3123 As183 salmonicida achromogenes
[formerly
atypical]

Arctic char, Iceland ascV+, ascU+, aexT+,
aopP+, aopO+, aopH+

++ [17,18]

JF3499 aAs4101 salmonicida achromogenes Atlantic Cod, Iceland ascV+, aexT+, aopP +
aopO+, aopH-

- [18]

JF3125 As 51 salmonicida atypical Rainbow trout, Norway ascV+, aexT+,
aopP- aopO+, aopH+

- [18]

JF4097 - salmonicida smithia Salvelinus alpinus
lepeschini, Austria

ascV+, aexT+, aopP+,
aopO-, aopH+

- [21]

JF4460 - salmonicida smithia Salvelinus alpinus
lepeschini, Austria

ascV-, aexT+, aopP+,
aopO-, aopH+

- [21]

JF4439 - salmonicida smithia Salvelinus alpinus
lepeschini, Austria

ascV+, aexT+, aopP+,
aopO-, aopH+

- [21]

JF3117 NCMB13210,
ATCC 49393

salmonicida smithia Roach, England ascV+, ascU+, aexT+,
aopP-, aopO+, aopH+

- [17-19]

JF3126 As 54 salmonicida atypical Rainbow trout, Norway ascV-, aexT+, aopP-,
aopO-, aopH-

++ [18]

JF3502 aAs 4067 salmonicida atypical Spotted wolffish, Norway ascV+, aexT+, aopP+,
aopO+, aopH+

+ [18]
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Table 1 Aeromonas strains used in this study (Continued)

JF3118 ATCC 27013 T salmonicida masoucida Salmon, Japan ascV+, ascU+, aexT+,
aopP-, aopO-, aopH+

- [17-19]

JF3119 NCMB 2020 salmonicida masoucida same as ATCC 27013
(salmon, Japan)

ND - -

JF2512 CC 30/8038 salmonicida atypical Atlantic salmon, Canada,
before 1960

ascV+, ascU+, aexT+, aopP+,
aopO+, aopH+, acrD+

- [17,18,20]

JF2513 CC 34/8030 salmonicida atypical Atlantic salmon, Canada,
before 1960

ascV+, ascU+, aexT+,
aopP+, aopO+, aopH+, acrD+

- [17,18,20]

JF3328 848 T molluscorum - Type strain ND - [22]

JF3071 ATCC 51106,
bg sobria HG8

veronii - ? ND - [19]

JF2635 429/01 # 1c;
official JF2635

sobria - Perca fluviatilis,
Switzerland, 2001

ascV+, ascU+, acrD+ - [17]

JF3326 - popoffii - Urinary tract infection,
France

ND - [23]

JF3120 DSM 12609 T salmonicida pectinolytica River water ascV-, aexT-, aopP-, aopO-,
aopH-

++++ [17,19]

JF3240 LMG 17542,
IK-B-r-15-1

popoffii - Drinking water
production plant,
Belgium

ND - [24]

JF2796 CECT 4199 allosaccharophila - Type strain ND - [19]

JF3242 LMG 17547,
AG-9

popoffii - Drinking water
treatment plant,
Scotland

ND - [24]

JF2797 LMG 17541T,
IK-0-a-10-3

popoffii - Drinking water
production plant,
Belgium

ND - [19,24]

JF3241 LMG 17544,
IK-E-a- 14- 1

popoffii - Drinking water
production plant,
Belgium

ND - [24]

JF2905 Fi 125 sobria - Perch ascV+ - [25]

JF2791 ATCC 33907 media - Type strain NENT Nr.
2346-98

ascV+, ascU+ - [17,19]

JF2899 F86/03-2 sobria - Perch ascV+ - [25]

JF2806 F533E popoffii - Tap water, Switzerland,
2003

ND - [19]

JF2808 F600C popoffii - Tap water, Switzerland,
2003

ND - [19]

JF2807 F548B popoffii - Tap water, Switzerland,
2003

ND - [19]

JF 3954 868ET bivalvium - Bivalve molluscs; Type
strain

ND - [26]

JF2637 Fi 303 hydrophila - Ornamental fish ND - -

JF2794 ATCC 49657,
NENT Nr.2360-98

trota
(enteropelogenes)

- Human feces, India ND - [19]

JF2785 CDC 9533-76 bestiarum - Type strain NENT Nr:
N2341-98

ND - [19]

JF 4032 A28)A28B/1-1 bestiarum - Wild perch (Perca
fluviatilis), Switzerland,
2007

ND - -

JF 4608 A28) 28B/1-1 bestiarum - Wild perch, Switzerland,
2009

ascV+ - [22]

JF2804 F 530 D bestiarum - Tap water ND - -
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JF3018 68 bestiarum - River water ND - -

JF3070 S 6874 T simiae - Type strain ND - [19]

JF2786 ATCC 15468 caviae - Type strain NENT Nr.
N2344-98

ND - [19]

JF2789 ATCC 7966 hydrophila - Type strain NENT Nr. :
N2339-98

ND - [19]

JF2793 CIP 7433;
ATCC 43979

sobria - Type strain NENT Nr.2352 ND - [19]

JF2929 Fi 179a sobria - Perch, Switzerland ascV + SacrD+ - [22]

JF2788 NCMB 74;
ATCC 23309

eucrenophila - Type strain NENT Nr.
N2348-98

ND - [19]

JF3069 ATCC 49904 T ichthiosmia - Type strain Antonella
Demarta

ND - -

JF2790 ATCC 49568 jandaei - Type strain NENT Nr.
2355-98

ND - [19]

JF3067 CIP 107763 T culicicola - Type strain ND - [19]

JF3068 ATCC 49803 T enteropelogenes - Type strain ND - -

ND: not determined.
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culicicola (Table 1). The fingerprints (Figure 1) of the
analyzed strains were subjected to similarity analysis and
are shown in Figure 2.

HCN-IS630-RFLP profiles and stability of IS630 insertions
A high degree of IS630 polymorphism, both in a numer-
ical and positional sense, was observed between the vari-
ous A. salmonicida subspecies (Figure 1). However, the
patterns revealed that IS630 copy numbers and positions
are well conserved within the given subspecies (Figure 1).
The dendogram in Figure 2 is a RFLP tree that reveals the
evolutionary relationship between strains analyzed. Strains
of the subspecies salmonicida, smithia, achromogenes and
masoucida each grouped together showing a similar
banding pattern. The number of IS630-positive bands var-
ied from 27 to 35 in A. salmonicida subsp. salmonicida,
23 to 33 in achromogenes and 19 to 21 in smithia. Within
a subspecies, several bands were conserved: 21 in
salmonicida, 20 in achromogenes and 13 in smithia sub-
species. About 15 distinct patterns were observed in A.
salmonicida subsp. salmonicida without showing geo-
graphical association. The IS630 pattern of A. salmonicida
subsp. salmonicida strain A449 as calculated from the
genome sequence data closely clusters with these 15
patterns. In contrast, each pattern in the achromogenes
cluster was different. In A. salmonicida subsp. masoucida
15 to 21 positive bands were detected and only 8 in the
subspecies pectinolytica. Even though the copy numbers
vary within the subspecies, the patterns form clusters for
each subspecies. The most remarkable tight clustering was
found for A. salmonicida subsp. salmonicida. This latter
presents IS630 patterns that only show minute differences
among strains that were isolated from various continents
and over a period of half a century. No pattern was spe-
cific of a given geographical region. The results showed
also that strains JF3121 and JF3123, formerly classified as
A. salmonicida atypical, clustered with A. salmonicida
subsp. salmonicida (JF3121) and subsp. achromogenes
(JF3123) (Figures 1 and 2) showing that they were misclas-
sified previously.
The IS630 pattern of A. salmonicida subsp. salmonicida

strain JF 2267 that was subcultured for 4 days at 18°C and
25°C (in stressing conditions) to reach approximately 20
generations remained unchanged (results not shown) indi-
cating a good stability of IS630 under experimental growth
conditions.

Copy number of the IS630 element and RFLP among
other Aeromonas species
Other Aeromonas species revealed lower copy numbers
of IS630: 5 in A. molluscorum, 5 to 8 in clinical A. sobria
strains, 9 in A. veronii, 5 in A. allosaccharophila and A.
media. Only one copy was found in A. bivalvium and a clin-
ical strain of A. hydrophila. No signal for IS630 was
obtained in A. caviae, A. trota, A. simiae, A. eucrenophila,
A. ichthiosmia, A. jandaei, A. culicicola, A. enteropelogenes,
A. bestiarum and the type strains of A. hydrophila and A.
sobria. Among the 8 strains of A. popoffii we found 6 very
distinct patterns.

Analysis of IS630 abundance, localization and impact on
the genome of Aeromonas species
In order to study the origin of IS630 in A. salmonicida, we
performed a profound analysis and comparison of
published Aeromonas genomes (Additional file 2: Table
S2). The genetic environment of IS630 copies in the A.
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Aeromonas salmonicida JF4715

Aeromonas salmonicida JF4114
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Aeromonas salmonicida JF4118
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Aeromonas salmonicida atypical JF3124

Aeromonas salmonicida atypical JF3520

Aeromonas salmonicida subsp. achromogenes JF3115

Aeromonas salmonicida subsp. achromogenes JF3116

Aeromonas salmonicida subsp. achromogenes JF2997

Aeromonas salmonicida atypical JF3123

Aeromonas salmonicida subsp. achromogenes JF3499

Aeromonas salmonicida atypical JF3125

Aeromonas salmonicida subsp. smithia JF4097 

Aeromonas salmonicida subsp. smithia JF4460

Aeromonas salmonicida subsp. smithia JF4439

Aeromonas salmonicida subsp. smithia JF3117

Aeromonas salmonicida atypical JF3126

Aeromonas salmonicida atypical JF3502

Aeromonas salmonicida subsp. masoucida JF3118

Aeromonas salmonicida subsp. masoucida JF3119

Aeromonas salmonicida atypical JF2512

Aeromonas salmonicida atypical JF2513

Aeromonas molluscorum JF3328

Aeromonas veronii JF3071

Aeromonas sobria JF2635

Aeromonas popoffii JF3326

Aeromonas salmonicida subsp. pectinolytica JF3120

Aeromonas popoffii JF3240

Aeromonas allosaccharophila JF2796

Aeromonas popoffii JF3242

Aeromonas popoffii JF2797

Aeromonas popoffii JF3241

Aeromonas sobria JF2905

Aeromonas media JF2791

Aeromonas sobria JF2899

Aeromonas popoffii JF2806

Aeromonas popoffii JF2808

Aeromonas popoffii JF2807

Aeromonas bivalvium JF3954

Aeromonas hydrophila JF2637

Figure 2 Dendogram generated from the IS630-RFLP patterns of the 87 Aeromonas strains used in this study. The tree was established
by using the UPGMA clustering analysis with the BioNumerics software. In red (⋆), the A. salmonicida subsp. salmonicida cluster; in green (●), the
A. salmonicida subsp. achromogenes cluster; in blue (♊), the A. salmonicida subsp. smithia cluster; in pink (➜), the A. salmonicida subsp. masoucida
cluster; and in brown (✪), A. popoffii strains clustering together.
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salmonicida subsp. salmonicida A449 genome is shown in
detail in Additional file 1: Table S1. About 148 loci or
DNA sequences forming 108 complete or partial IS units
were found in the chromosome of A. salmonicida subsp.
salmonicida A449 and on the plasmids pASA4/pASA5
[GenBank: CP000644.1, CP000645.1 and CP000646.1].
IS630 (referred to as ISAs4 in the Genbank genome anno-
tation of A. salmonicida A449 and as ISAs7 in the
corresponding manuscript [16]) was found to be present
in 38 copies and was the most abundant family
representing 35% of transposons in A. salmonicida A449
(Figure 3, Additional file 3: Table S3). The different copies
are well-conserved and show 98% nucleotide sequences
identity. The other 70 IS elements are ISAs7 (13%), ISAs5
(11%), ISAs6 (6%), ISAs11 (6%), ISAs2 (5%), ISAs9 (4%),
ISAs8 (4%), and unclassified ISAs (16%) (Figure 3). 90% of
the IS630 copies reside in chromosomal regions that are
specific to A. salmonicida subsp. salmonicida and were
not found in other Aeromonas. Interestingly most of these
loci correspond to known genes in bacterial genera other
than Aeromonas. This is the case for instance for the
hypothetical gene ASA_1385 (homology to VOA_002034
of Vibrio sp. RC586) that is directly linked to IS630 in A.
salmonicida subsp. salmonicida and is not found in other
Aeromonads (Additional file 2: Table S2). In ISAs families
other than IS630, 34 (31%) are directly adjacent to IS630
showing that 66% of A. salmonicida A449 transposons are
associated to genomic domains of variability. In compari-
son to other Aeromonas sp., A. salmonicida A449 contains
4 to 54 fold more transposases (Figure 3) which are not
responsible for a genome-reductive evolution [27] because
the total number of ORFs is stable in comparison to other
Aeromonads (Figure 4). However they explain the high
abundance of pseudogenes (170) in A. salmonicida subsp.



Strain
Total 
ORFs

Common 
ORFs

%
Specific 
ORFs

%
Shared 
ORFs

%

A. salmonicida A449 4472 2894 65 470 11 1108 25
01-B526 4460 2894 65 502 11 1064 24

A. hydrophila ATCC 7966 4175 2894 69 180 4 1101 26
SSU 4390 2894 66 249 6 1247 28

A. caviae Ae38 4148 2894 70 440 11 814 20
A. veronii B565 4082 2894 71 355 9 833 20

AMC34 4079 2894 71 433 11 752 18
AMC35 4012 2894 72 437 11 681 17
AER39 3909 2894 74 278 7 737 19
AER397 3957 2894 73 337 9 726 18

A. aquarorium AAK 4345 2894 67 294 7 1157 27

Figure 4 Numerical comparison of common, shared and specific ORFs between several Aeromonas species. The number of ORFs was
calculated from Additional file 2: Table S2 without taking into account IS elements, tRNA and rRNA. In dark grey, the number of ORFs that are
common among Aeromonas sp. In white, ORFs that are shared with at least one other Aeromonas species. In light grey, ORFs that are unique to
the species. A. salmonicida subsp. salmonicida A449 and 01-B526, A. hydrophila ATCC 7966 and SSU, A. caviae Ae398, A. veronii B565, AMC34,
AMC35, AER39 and AER397, and A. aquarorium AAK are illustrated in the graph.
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salmonicida [16] in contrast to A. hydrophila ATCC 7966
which only contains 7 pseudogenes and 2 transposases.

Discussion
HCN-IS6110-RFLP has been applied as a standard
method to subtype Mycobacterium tuberculosis strains for
years [28]. Moreover, RFLP based on IS elements has been
employed to type numerous other pathogenic bacteria
[14,15,29-31]. The published genome of A. salmonicida
subsp. salmonicida A449 shows numerous IS elements
among which 38 belong to the IS630 family [GenBank:
CP000644.1]. We therefore used HCN-IS630-RFLP as a
new typing methodology for Aeromonas species.
IS630 was present in different copy numbers and

integrated at various sites between the different A.
salmonicida subspecies. On the other hand banding
patterns were conserved within subspecies (Figure 1).
HCN-IS630-RFLP revealed that IS630 is abundant in all
subspecies of A. salmonicida allowing a good accuracy
for genomic fingerprinting. Our results showed that
RFLP profiles can be used to distinguish subspecies of A.
salmonicida and to differentiate A. salmonicida from
other Aeromonas species. They also indicate a high vari-
ability among strains of ‘atypical’ A. salmonicida. All
strains of yet unclassified ‘atypical’ A. salmonicida
consisted of a high number of IS630 copies and were ef-
fectively related to the A. salmonicida cluster. Our
method demonstrates that such ‘atypical’ strains repre-
sent a heterogeneous group that does not fit into the
classification of the five described A. salmonicida sub-
species. These strains might represent various subtypes
of A. salmonicida subsp. salmonicida or novel subspe-
cies of A. salmonicida that have adapted to particular
ecological niches or respective hosts. On the other hand,
all A. salmonicida subsp. salmonicida isolated since the
1950s and originating from all over the world have very
similar patterns, indicating that they form a single clone
showing pathoadaptational stability. Altogether, our
results confirm those of a previous study comparing
genomic profiles of clinical isolates of Aeromonas
salmonicida using DNA microarrays [32]. With the
origin and intensification of fish farming, genetic



Studer et al. BMC Microbiology 2013, 13:36 Page 10 of 12
http://www.biomedcentral.com/1471-2180/13/36
rearrangements occurring through IS transposition
events could have been responsible for the selection and
the emergence of this pathogenic fish specific clone.
Such an adaptation process of a pathogenic bacterium
towards its host was recently indicated in the Myco-
plasma mycoides cluster for Mycoplasma mycoides
subsp. mycoides [33]. Moreover, no unique pattern was
associated to a specific geographical region of the world
and we assume that this could be explained by the dis-
semination of A. salmonicida subsp. salmonicida strains
between aquaculture countries via the intensification of
the international trade in farmed salmon or by the nat-
ural migration of wild salmons.
Besides the epidemiologic and phylogenetic interests of

IS630 fingerprinting to subtype A. salmonicida, we stud-
ied the characteristics of this predominant IS element to
reveal information concerning the pathoadaptation to-
wards its specific host. Mobile genetic elements can exert
different effects on bacterial genomes [11,34-36].
Through such genomic effects, IS630 family has had an
impact on the modulation of virulence genes in other
bacteria [37-43]. In A. salmonicida 90% of the IS630 cop-
ies reside in genomic regions that are variable between
Aeromonas sp. (Additional file 1: Table S1) and 80% of
these sites contain genes that are specific to A.
salmonicida and are not encountered in other Aeromonas
sp. suggesting that they constitute genomic islands. A part
of these coding sequences are phages or hypothetical
genes with homologues of characterized sequences in
other environmental bacteria: i.e. the ‘Vibrio Seventh Pan-
demic cluster I’ (VSP-I), genes for the synthesis of polysac-
charide capsule, lipopolysaccharide, S-layer, chitinase,
cytolytic insecticidal delta-endotoxin, and some effectors
(AopO and ApoH) of the type-three secretion system, the
major virulence system of the bacterium. Based on
these findings we assume that IS630 elements could be
used by environmental bacteria to exchange DNA
fragments between each other by horizontal transfer. In
the genomic islands where IS630 is present, supplemen-
tary IS elements can be found, which might serve as
hot spots for further insertions. This would allow the
transposon and the genomic island to evolve with ac-
quisition of new genes without disruption of existing
loci. These observations could explain why the IS630
elements remained stable within the A. salmonicida
subsp. salmonicida genome.
Other interesting characteristics of IS elements hom-

ologous to IS630 in A. salmonicida suggest that they
could play a role in the co-adaptation of the bacterium
with its host by trans-kingdom horizontal gene transfers
through the bacterial T3SS: (i) such IS630 elements are
mostly present in Gram-negative bacteria that use a
T3SS, (ii) their expression can be specifically induced or
increased when bacteria are in direct contact with host
cells [44] and (iii) several IS630 are predicted to be T3SS
effectors [45]. The ModlabW T3SS effector prediction soft-
ware gives for A. salmonicida IS630 a positive output at
0.69 which means, that the IS630 itself is a potential T3SS
effector. Hence, when the bacteria colonize the host, the
IS630 expression could be induced and they could begin
to exert their transposase activity by excising the trans-
poson (composite if associated to adjacent additional DNA
fragments) from the bacterial genome. Subsequently, the
transposase linked to its transposon could be translocated
into the host cell by the T3SS, reach the host genome in
the nucleus, and finally perform its transposition.
Bacterial IS630 elements constitute with the Tc1/mariner

eukaryotic DNA transposon family, a superfamily [46]. It
was demonstrated in vitro that eukaryotic members of this
family are able to transpose into prokaryotic genomes [46].
We suppose that the opposite could also be possible as
IS630 itself could be translocated via type three secretion
system from the pathogen to its host. In this perspective,
our assumption could explain how the adaptive horizontal
transfer of a bacterial mannanase gene (HhMAN1) into
the genome of an invasive insect pest of coffee
(Hypothenemus hampei) occurred in the immediate gen-
etic vicinity of a Tc1/mariner transposon [47].

Conclusions
In this study we describe HCN-IS630-RFLP as an adequate
method for subtyping A. salmonicida strains and to differ-
entiate A. salmonicida from other Aeromonas species. The
high degree of conservation of HCN-IS630-RFLP profiles
among strains of A. salmonicida subsp. salmonicida
isolated from geographically most distant areas and over
the period of half a century shows that practically all copies
of IS630 are stably integrated in this pathogen that has a
well-defined host range. We therefore conclude that IS630
might have contributed to the pathoadaptation of A.
salmonicida to salmonidae and to the emergence of the
subtype A. salmonicida subsp. salmonicida.

Methods
Bacterial strains and growth conditions
Aeromonas strains used in this study are listed in Table 1.
Bacteria were grown on trypticase soy agar plates at
18°C for 3 to 6 days until sufficient bacteria were avail-
able for DNA extraction.

Southern blot analysis with A. salmonicida subsp.
salmonicida IS630 probe
Total DNA extraction from each strain was performed
with the Peqgold Bacterial DNA extraction Kit (Peqlab
Biotechnologie, Erlangen, Germany). One microgram of
DNA from each sample was digested overnight with
XhoI restriction enzyme (Roche Diagnostics, Mannheim,
Germany), loaded on a 0.7% agarose gel and subjected
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to electrophoresis for 4 to 5 hours. On each gel a DIG-
labeled DNA Marker (Roche Diagnostics, Mannheim,
Germany) and XhoI digested DNA from A. salmonicida
subsp. salmonicida JF2267 were loaded for normalization.
DNA bands were stained with ethidium bromide for con-
trol and transferred onto a nylon membrane (Roche Diag-
nostics, Mannheim, Germany) with a VacuGene apparatus
(GE Healthcare Bio-Sciences). The IS630 probe was
prepared by PCR using primers Clust_asa1052_S6
(50- AGGCAGAACTTGGGGTTCTT-30) and Clust_asa-
1052_R4 (50- ACAAAAGCGGGTTGTCACTC-30) and
DNA of A. salmonicida subsp. salmonicida JF2267 as a
template. PCR was performed in 30 μL which contained
0.5 μL of Taq DNA polymerase (5 units/μL) (Roche Diag-
nostics, Mannheim, Germany), 300 nM of each primer,
1.75 mM MgCl2, 200 μM concentrations of each dNTP
and 1 μl of the Digoxigenin-11-dUTP (1 nmol/μL) (Roche
Diagnostics, Mannheim, Germany). Each reaction involved
a denaturing step at 94°C for 5 min followed by 30 cycles
of 10 sec at 94°C, 30 sec at 54°C and 60 sec at 72°C and a
final extension step of 7 min at 72°C.
Bioinformatic analysis
The hybridization patterns were scanned and the data were
analyzed using the BioNumerics software version 6.6 (Ap-
plied Maths, Kortrijk, Belgium). Bands automatically
assigned by the computer were checked visually and
corrected manually. Cluster analysis of the IS-RFLP
patterns was done by the unweighted pair group method
with average linkages (UPGMA) using the Dice coefficient
and the following parameters: 0.5% Optimization, 0% Band
filtering, 0.5% Tolerance and ignore uncertain bands.
Prediction of T3SS effectors was performed with the

ModlabW online software (http://gecco.org.chemie.uni-
frankfurt.de/T3SS_prediction/T3SS_prediction.html) [45].
Stability of IS630 in cultured A. salmonicida subsp.
salmonicida
The stability of IS630 under growth conditions in TSB
medium was assessed by daily 100x dilution of a culture
of strain JF2267 at 18°C and at 25°C during 4 days to
reach 20 generations. Every day DNA was extracted
from 109 bacteria, digested with XhoI and submitted to
southern blot hybridization.
Additional files

Additional file 1: Table S1. Table showing for each A. salmonicida
A449 IS630 copy, the size of the XhoI-digested DNA fragment containing
the IS, the inter- or intragenic localization, the characteristics of the
adjacent genes, and the association to a region of variability or to other
IS elements.
Additional file 2: Table S2. Profound analysis and comparison of
published Aeromonas genomes used for Figures 3 and 4. Grey: conserved
ORFs; light green: ORFs specific of the species; yellow: IS630; pink: other IS
elements; red: putative or characterized virulence factors; mauve: ORFs for
resistance to antibiotic or heavy metal; dark green: ORFs associated to
pili, fimbriae or flagella; blue: ORFs associated to phage; cyan: tRNA and
rRNA; orange: ORFs with homology to eukaryotic genes.

Additional file 3: Table S3. Detail of loci corresponding to transposons
in Aeromonas sp.
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