RESEARCH ARTICLE

Open Access

Clustering subspecies of *Aeromonas salmonicida* using IS630 typing

Nicole Studer[†], Joachim Frey^{*} and Philippe Vanden Bergh[†]

Abstract

Background: The insertion element IS630 found in *Aeromonas salmonicida* belongs to the IS630-Tc1-mariner superfamily of transposons. It is present in multiple copies and represents approximately half of the IS present in the genome of *A. salmonicida* subsp. *salmonicida* A449.

Results: By using High Copy Number IS630 Restriction Fragment Length Polymorphism (HCN-IS630-RFLP), strains of various subspecies of *Aeromonas salmonicida* showed conserved or clustering patterns, thus allowing their differentiation from each other. Fingerprints of *A. salmonicida* subsp. *salmonicida* showed the highest homogeneity while 'atypical' *A. salmonicida* strains were more heterogeneous. IS630 typing also differentiated *A. salmonicida* from other *Aeromonas* species. The copy number of IS630 in *Aeromonas salmonicida* ranges from 8 to 35 and is much lower in other *Aeromonas* species.

Conclusions: HCN-IS630-RFLP is a powerful tool for subtyping of *A. salmonicida*. The high stability of IS630 insertions in *A. salmonicida* subsp. *salmonicida* indicates that it might have played a role in pathoadaptation of *A. salmonicida* which has reached an optimal configuration in the highly virulent and specific fish pathogen *A. salmonicida* subsp. *salmonicida*.

Keywords: Aeromonas salmonicida, HCN-IS630-RFLP, IS element, Subtyping, Tc1 Mariner transposon, Salmonidae, Pathoadaptation

Background

Aeromonas salmonicida is one of the predominant bacterial species found in fish and water samples [1]. While some Aeromonas species are able to cause opportunistic disease in warm- and cold blooded vertebrates, A. salmonicida seems to be specific for fish. Aeromonas salmonicida subsp. salmonicida a specific primary pathogen of Salmonidae (salmon, trout and char) has been known for decades to cause furunculosis. This bacterial septicaemia has a significant economic impact on aquaculture operations as well as on the wild stock of salmonids and some other fish species [2]. Bergey's Manual of Systematic Bacteriology recognizes five subspecies of A. salmonicida: salmonicida, achromogenes, smithia, pectinolytica and masoucida [3]. Aeromonas salmonicida subsp. salmonicida is referred to as typical Aeromonas salmonicida by reason that these strains are

⁺Equal contributors

very homogeneous and considered to be clonal [4,5]. Clinical strains that cannot be assigned to any of the known subspecies are referred to as A. salmonicida 'atypical'. In recent years, it has been recognized that 'atypical' strains cause diseases in *salmonidae* and other fish species that differ from furunculosis. Therefore their importance is being increasingly recognized. The most common clinical manifestation observed, following infections with such strains, is chronic skin ulceration [6]. Due to a convoluted history of nomenclature and taxonomy of Aeromonas sp., clear assignment of strains using currently available methods remains sometimes confusing and controversial which makes epidemiological studies difficult [7]. Intraspecies phenotypic variability also makes phenotypic identification challenging on the species level [8]. A variety of molecular genetic methods have been employed for genetic classification of Aeromonads including mol% G+C composition, DNA-DNA relatedness studies, restriction fragment length polymorphism, pulsed-field gel electrophoresis, plasmid analysis, ribotyping, multilocus sequence typing, PCR

© 2013 Studer et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: joachim.frey@vetsuisse.unibe.ch

Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, Bern, Switzerland

and more [3,5]. Combination of 16S rDNA-RFLP analysis and sequencing of the gene *rpoD* was proposed as a suitable approach for the correct assignment of *Aeromonas* strains [9]. Moreover, analyzing strains by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) with an extraction method revealed 100% genus-level accuracy and 91.4% accuracy at species level [10]. However, this method was not able to discriminate *A. salmonicida* at the subspecies level.

Currently, no molecular approach gives a clear genotypic distinction of strains among *A. salmonicida* species. For this reason we elaborated a molecular genetic technique to achieve an adequate subtyping of all *Aeromonas salmonicida* subspecies. This method, named High Copy Number IS-Element based Restriction Fragment Length Polymorphism (HCN-IS-RFLP), has been successfully applied in numerous epidemiological studies for other pathogenic bacteria [11-15].

Results

Optimization of HCN-IS630-RFLP conditions

IS630 was selected because it is the IS element with the highest copy number in the genome of *A. salmonicida* [16]. Primers internal to the highly conserved IS630 genes [GenBank: ABO88357.1] were designed to generate a probe

on an intact IS fragment from the A. salmonicida subsp. salmonicida JF2267 genome. To obtain the most distinct banding pattern, the digestion by several restriction enzymes on a set of sequenced genomes (A. salmonicida subsp. salmonicida A449, A. hydrophila ATCC7966 and A. veronii B565) was predicted by computer analysis. XhoI that does not cut within our probe for IS630 revealed a good resolution with a clear banding pattern and was therefore selected. A size window of 1375 bp to 21226 bp was defined on all southern blots as some hybridizing patterns with very large or small fragments were not sufficiently resolved (Figure 1). The genomic DNA sequence of A. salmonicida strain A449 [GenBank: CP000644.1] predicted that the probe would hybridize with 35 copies of IS630 on XhoI fragments ranging from 1277 bp to 17948 bp (Additional file 1: Table S1).

We analyzed the IS630 RFLP-fingerprints of 87 Aeromonas sp. strains of various geographical origins, which comprised 31 A. salmonicida subsp. salmonicida, 4 subsp. achromogenes, 4 subsp. smithia, 2 subsp. masoucida, one subsp. pectinolytica, 12 A. salmonicida atypical strains, 8 A. popoffii, 5 A. sobria and A. bestiarum, 2 A. hydrophila, one A. trota, A. enteropelogenes, A. simiae, A. eucrenophila, A. ichthiosmia, A. jandaei, A. molluscorum, A. bivalvium, A. allosaccharophila, A. media, A. veronii, A. caviae and A.

Figure 1 Southern blot of Xho-I digested DNAs from different A. salmonicida strains hybridized with an IS630-specific probe. Lanes I and 16, molecular size marker (sizes are indicated on the left in kilobase pairs); lanes 2 to 5 and 11, A. salmonicida subsp. salmonicida (JF2267, JF3224, JF3996, JF3507, JF3121 [formerly identified as atypical]); lanes 6 to 8 and 13, A. salmonicida subsp. achromogenes (JF3115, JF3116, JF2997, JF3123 [formerly identified as atypical]); lanes 9, A. salmonicida subsp. pectinolytica (JF3120); lane 10, A. salmonicida subsp. masoucida (JF3118); lanes 12, 14 and 15, A. salmonicida atypical (JF3122, JF3124, JF3125).

JF N°	Synonyme	Species	Subspecies	Origin	Identified virulence characteristics	Pigment production (Day 6)	Ref
JF2996	Austin98	salmonicida	salmonicida	Sediment in Riccarton Loch, Scotland	ascV-, ascU-, aexT+, aopP+, aopO-, aopH+	+++	[17,18]
JF3507	ATCC 33658 T, NCIMB 1102 T	salmonicida	salmonicida	Salmo salar, Scotland	ascV-, aexT+, aopP+, aopO+, aopH+, acrD-	+++	[18-20]
JF3327	F330/04	salmonicida	salmonicida	Arctic char, Switzerland, 2004	ascV+, aexT+, aopP+, aopO+, aopH+	++++	[18]
JF3517	4757	salmonicida	salmonicida	Turbot, Norway	ascV+, aexT+, aopP+, aopO+, aopH+	++++	[18]
JF2267	Fi 94 G	salmonicida	salmonicida	Arctic char, Switzerland, 1999	ascV+, ascU+, aexT+, aopP+, aopO+, aopH+, acrD+	+++	[17,18,20]
JF2869	CCUG 47405 (A)	salmonicida	salmonicida	Arctic char (<i>Savelinus</i> alpinus)	aexT+, SacrD 3'+	++++	-
JF3223	Fi 210	salmonicida	salmonicida	White fish, Switzerland, 1997	ascV+, aexT+, aopP+, aopO+, aopH+	++++	[18]
JF3224	R04/170	salmonicida	salmonicida	Brown trout, Switzerland, 2004	ascV+, ascU+, aexT+, aopP+, aopO+, aopH+	++++	[17,18]
JF3518	4704	salmonicida	salmonicida	Turbot, Norway	ascV+, aexT+, aopP+, aopO+, aopH+	++++	[18]
JF2509	CC72 - D640	salmonicida	salmonicida	Atlantic salmon, Canada, before 1960	ascV+, aexT+, aopP+, aopO+, aopH+, acrD+	++++	[18,20]
JF3519	3294	salmonicida	salmonicida	Arctic char, Switzerland, 1986	ascV-, aexT+, aopP+, aopO+, aopH-	++++	[18]
JF2506	CC 27-80/9-1	salmonicida	salmonicida	Atlantic salmon Norway	ascV+, aexT+, aopP+, aopO+, aopH+, acrD+	++++	[18,20]
JF2507	CC 29 - 74/2	salmonicida	salmonicida	Atlantic salmon, Scotland	ascV+, aexT+, aopP+, aopO+, aopH+, acrD+	++++	[18,20]
JF2508	CC 63- D-615	salmonicida	salmonicida	Atlantic salmon, Canada	ascV+, aexT+, aopP+, aopO+, aopH+, acrD+	++++	[18,20]
JF2510	CC 23/8019-5	salmonicida	salmonicida	Atlantic salmon Norway	ascV+, aexT+, aopP+, aopO+, aopH+, acrD+	++++	[18,20]
JF3521	2265	salmonicida	salmonicida	Wild atlantic salmon, Norway 1991	ascV-, aexT+, aopP+, aopO+, aopH-	++++	[18]
JF3496	F05/160	salmonicida	salmonicida	Wild brown trout, Switzerland, 2005	ascV+, aexT+, aopP+, aopO+, aopH+	+++	[18]
JF3844	F06/417	salmonicida	salmonicida	Arctic char, Switzerland, 2006	ascV+, aexT+, aopP+, aopO+, aopH+	+++	[18]
JF2505	MT 44/SS 10	salmonicida	-	non virulent for trout, Canada	A+, LPS+, acrD-	+++	[20]
JF3791	F06/385	salmonicida	-	Arctic char <i>Salvelinus</i> <i>alpinus</i> , Switzerland, 2006	ascV+, aexT+, aopP-aopO+, aopH+	+++	[18]
JF4111	F07/357(NiA)	salmonicida	-	<i>Salvelinus</i> , Switzerland, 2007	ND	+++	-
JF4112	F07/357 (NiB)	salmonicida	-	<i>Salvelinus</i> , Switzerland, 2007	ND	+++	-
JF4113	F07/357 (NiC)	salmonicida	-	<i>Salvelinus</i> , Switzerland, 2007	ND	+++	-
JF3121	As209	salmonicida	salmonicida [formerly atypical]	Wolf fish, UK	ascV-, ascU-	+++	[17]

Table 1 Aeromonas strains used in this study (Continued)

			•				
JF4714	IMD1520	salmonicida	-	<i>Thymallus thymallus</i> (skin), Switzerland, 2009	ND	+++	-
JF4715	IMD 1521	salmonicida	-	<i>Thymallus thymallus</i> (kidney), Switzerland, 2009	ND	+++	-
JF4114	F07/357(LeA)	salmonicida	-	S <i>alvelinus</i> (liver), Switzerland, 2007	ND	+++	-
JF4115	F07/357 (LeB)	salmonicida	-	Salvelinus (liver), Switzerland, 2007	ND	+++	-
JF4116	F07/357 (LeC)	salmonicida	-	S <i>alvelinus</i> (liver), Switzerland, 2007	ND	+++	-
JF4118	F07/(MiB)	salmonicida	-	<i>Salvelinus</i> (kidney), Switzerland, 2007	ND	+++	-
JF4119	F07/357 (MiC)	salmonicida	-	S <i>alvelinus</i> (kidney), Switzerland, 2007	ND	+++	-
JF4117	F07/357 (MiA)	salmonicida	salmonicida	S <i>alvelinus</i> (spleen), Switzerland, 2007	ND	++++	-
JF3122	As204	salmonicida	atypical	Wrasse UK	ascV+, aexT+, aopP + aopO-, aopH+	++	[18]
JF3500	aAs 4143	salmonicida	atypical	Atlantic cod, Norway	ascV+, aexT+, aopP + aopO+, aopH-	++	[18]
JF3666	F06/211	salmonicida	atypical	Bleak (<i>Alburnus</i> <i>alburnus</i>), Switzerland, 2006	ascV+, aexT+, aopP- aopO-, aopH+	-	[18]
JF3124	As93	salmonicida	atypical	Plaice, Denmark	ascV+, aexT+, aopP + aopO+, aopH+	-	[18]
JF3520	4818	salmonicida	atypical	Atlantic Halibut, Norway, 2003	ascV+, aexT-, aopP + aopO-, aopH+	-	[18]
JF3115	ATCC 19261, NCIMB 1109	salmonicida	achromogenes	Salmo trutta	ND	+	-
JF3116	NCIMB 1110 T	salmonicida	achromogenes	Trout, Scotland	ascV+, ascU+, aexT+, aopP+, aopO+, aopH+	++	[17-19]
JF2997	F-265/87	salmonicida	achromogenes	Atlantic salmon, Iceland	ascV+, ascU+, aexT+, aopP+, aopO+, aopH+	++	[17,18]
JF3123	As183	salmonicida	<i>achromogenes</i> [formerly atypical]	Arctic char, Iceland	ascV+, ascU+, aexT+, aopP+, aopO+, aopH+	++	[17,18]
JF3499	aAs4101	salmonicida	achromogenes	Atlantic Cod, Iceland	ascV+, aexT+, aopP + aopO+, aopH-	-	[18]
JF3125	As 51	salmonicida	atypical	Rainbow trout, Norway	ascV+, aexT+, aopP- aopO+, aopH+	-	[18]
JF4097	-	salmonicida	smithia	Salvelinus alpinus Iepeschini, Austria	ascV+, aexT+, aopP+, aopO-, aopH+	-	[21]
JF4460	-	salmonicida	smithia	Salvelinus alpinus Iepeschini, Austria	ascV-, aexT+, aopP+, aopO-, aopH+	-	[21]
JF4439	-	salmonicida	smithia	Salvelinus alpinus Iepeschini, Austria	ascV+, aexT+, aopP+, aopO-, aopH+	-	[21]
JF3117	NCMB13210, ATCC 49393	salmonicida	smithia	Roach, England	ascV+, ascU+, aexT+, aopP-, aopO+, aopH+	-	[17-19]
JF3126	As 54	salmonicida	atypical	Rainbow trout, Norway	ascV-, aexT+, aopP-, aopO-, aopH-	++	[18]
JF3502	aAs 4067	salmonicida	atypical	Spotted wolffish, Norway	ascV+, aexT+, aopP+, aopO+, aopH+	+	[18]

Table 1 Aeromonas strains used in this study (Continued)

JF3118	ATCC 27013 T	salmonicida	masoucida	Salmon, Japan	ascV+, ascU+, aexT+, aopP-, aopO-, aopH+	-	[17-19]
JF3119	NCMB 2020	salmonicida	masoucida	same as ATCC 27013 (salmon, Japan)	ND	-	-
JF2512	CC 30/8038	salmonicida	atypical	Atlantic salmon, Canada, before 1960	ascV+, ascU+, aexT+, aopP+, aopO+, aopH+, acrD+	-	[17,18,20]
JF2513	CC 34/8030	salmonicida	atypical	Atlantic salmon, Canada, before 1960	ascV+, ascU+, aexT+, aopP+, aopO+, aopH+, acrD+	-	[17,18,20]
JF3328	848 T	molluscorum	-	Type strain	ND	-	[22]
JF3071	ATCC 51106, bg sobria HG8	veronii	-	?	ND	-	[19]
JF2635	429/01 # 1c; official JF2635	sobria	-	<i>Perca fluviatilis,</i> Switzerland, 2001	ascV+, ascU+, acrD+	-	[17]
JF3326	-	popoffii	-	Urinary tract infection, France	ND	-	[23]
JF3120	DSM 12609 T	salmonicida	pectinolytica	River water	ascV-, aexT-, aopP-, aopO-, aopH-	++++	[17,19]
JF3240	LMG 17542, IK-B-r-15-1	popoffii	-	Drinking water production plant, Belgium	ND	-	[24]
JF2796	CECT 4199	allosaccharophila	-	Type strain	ND	-	[19]
JF3242	LMG 17547, AG-9	popoffii	-	Drinking water treatment plant, Scotland	ND	-	[24]
JF2797	LMG 17541 ^T , IK-0-a-10-3	popoffii	-	Drinking water production plant, Belgium	ND	-	[19,24]
JF3241	LMG 17544, IK-E-a- 14- 1	popoffii	-	Drinking water production plant, Belgium	ND	-	[24]
JF2905	Fi 125	sobria	-	Perch	ascV+	-	[25]
JF2791	ATCC 33907	media	-	Type strain NENT Nr. 2346-98	ascV+, ascU+	-	[17,19]
JF2899	F86/03-2	sobria	-	Perch	ascV+	-	[25]
JF2806	F533E	popoffii	-	Tap water, Switzerland, 2003	ND	-	[19]
JF2808	F600C	popoffii	-	Tap water, Switzerland, 2003	ND	-	[19]
JF2807	F548B	popoffii	-	Tap water, Switzerland, 2003	ND	-	[19]
JF 3954	868ET	bivalvium	-	Bivalve molluscs; Type strain	ND	-	[26]
JF2637	Fi 303	hydrophila	-	Ornamental fish	ND	-	-
JF2794	ATCC 49657, NENT Nr.2360-98	trota (enteropelogenes)	-	Human feces, India	ND	-	[19]
JF2785	CDC 9533-76	bestiarum	-	Type strain NENT Nr: N2341-98	ND	-	[19]
JF 4032	A28)A28B/1-1	bestiarum	-	Wild perch (<i>Perca fluviatilis</i>), Switzerland, 2007	ND	-	-
JF 4608	A28) 28B/1-1	bestiarum	-	Wild perch, Switzerland, 2009	ascV+	-	[22]
JF2804	F 530 D	bestiarum	-	Tap water	ND	-	-

Table T Aeromonas strains used in this study (Continue	omonas strains used in this study (Continu	ed
--	--	----

JF3018	68	bestiarum	-	River water	ND	-	-
JF3070	S 6874 T	simiae	-	Type strain	ND	-	[19]
JF2786	ATCC 15468	caviae	-	Type strain NENT Nr. N2344-98	ND	-	[19]
JF2789	ATCC 7966	hydrophila	-	Type strain NENT Nr. : N2339-98	ND	-	[19]
JF2793	CIP 7433; ATCC 43979	sobria	-	Type strain NENT Nr.2352	ND	-	[19]
JF2929	Fi 179a	sobria	-	Perch, Switzerland	ascV + SacrD+	-	[22]
JF2788	NCMB 74; ATCC 23309	eucrenophila	-	Type strain NENT Nr. N2348-98	ND	-	[19]
JF3069	ATCC 49904 T	ichthiosmia	-	Type strain Antonella Demarta	ND	-	-
JF2790	ATCC 49568	jandaei	-	Type strain NENT Nr. 2355-98	ND	-	[19]
JF3067	CIP 107763 T	culicicola	-	Type strain	ND	-	[19]
JF3068	ATCC 49803 T	enteropelogenes	-	Type strain	ND	-	-

ND: not determined.

culicicola (Table 1). The fingerprints (Figure 1) of the analyzed strains were subjected to similarity analysis and are shown in Figure 2.

HCN-IS630-RFLP profiles and stability of IS630 insertions

A high degree of IS630 polymorphism, both in a numerical and positional sense, was observed between the various A. salmonicida subspecies (Figure 1). However, the patterns revealed that IS630 copy numbers and positions are well conserved within the given subspecies (Figure 1). The dendogram in Figure 2 is a RFLP tree that reveals the evolutionary relationship between strains analyzed. Strains of the subspecies salmonicida, smithia, achromogenes and masoucida each grouped together showing a similar banding pattern. The number of IS630-positive bands varied from 27 to 35 in A. salmonicida subsp. salmonicida, 23 to 33 in achromogenes and 19 to 21 in smithia. Within а subspecies, several bands were conserved: 21 in salmonicida, 20 in achromogenes and 13 in smithia subspecies. About 15 distinct patterns were observed in A. salmonicida subsp. salmonicida without showing geographical association. The IS630 pattern of A. salmonicida subsp. salmonicida strain A449 as calculated from the genome sequence data closely clusters with these 15 patterns. In contrast, each pattern in the achromogenes cluster was different. In A. salmonicida subsp. masoucida 15 to 21 positive bands were detected and only 8 in the subspecies pectinolytica. Even though the copy numbers vary within the subspecies, the patterns form clusters for each subspecies. The most remarkable tight clustering was found for A. salmonicida subsp. salmonicida. This latter presents IS630 patterns that only show minute differences among strains that were isolated from various continents and over a period of half a century. No pattern was specific of a given geographical region. The results showed also that strains JF3121 and JF3123, formerly classified as *A. salmonicida* atypical, clustered with *A. salmonicida* subsp. *salmonicida* (JF3121) and subsp. *achromogenes* (JF3123) (Figures 1 and 2) showing that they were misclassified previously.

The IS630 pattern of *A. salmonicida* subsp. *salmonicida* strain JF 2267 that was subcultured for 4 days at 18°C and 25°C (in stressing conditions) to reach approximately 20 generations remained unchanged (results not shown) indicating a good stability of IS630 under experimental growth conditions.

Copy number of the IS630 element and RFLP among other *Aeromonas* species

Other Aeromonas species revealed lower copy numbers of IS630: 5 in A. molluscorum, 5 to 8 in clinical A. sobria strains, 9 in A. veronii, 5 in A. allosaccharophila and A. media. Only one copy was found in A. bivalvium and a clinical strain of A. hydrophila. No signal for IS630 was obtained in A. caviae, A. trota, A. simiae, A. eucrenophila, A. ichthiosmia, A. jandaei, A. culicicola, A. enteropelogenes, A. bestiarum and the type strains of A. hydrophila and A. sobria. Among the 8 strains of A. popoffii we found 6 very distinct patterns.

Analysis of IS630 abundance, localization and impact on the genome of *Aeromonas* species

In order to study the origin of IS630 in *A. salmonicida*, we performed a profound analysis and comparison of published *Aeromonas* genomes (Additional file 2: Table S2). The genetic environment of IS630 copies in the *A*.

Studer *et al. BMC Microbiology* 2013, **13**:36 http://www.biomedcentral.com/1471-2180/13/36

Figure 2 Dendogram generated from the ISo30-RFLP patterns of the 87 Aeromonas strains used in this study. The tree was established by using the UPGMA clustering analysis with the BioNumerics software. In red (\star), the *A. salmonicida* subsp. *salmonicida* cluster; in green (\bullet), the *A. salmonicida* subsp. *achromogenes* cluster; in blue (II), the *A. salmonicida* subsp. *smithia* cluster; in pink (\rightarrow), the *A. salmonicida* subsp. *masoucida* cluster; and in brown (O), *A. popoffii* strains clustering together.

Figure 3 Number of transposases and IS family affiliation in *Aeron* and CP000646.1], *A. hydrophila* ATCC 7966 and SSU [GenBank: CP00046, *A. veronii* B565, AMC34, AMC35, AER39 and AER397 [GenBank: CP002607, AGWV00000000.1], and *A. aquarorium* AAK1 [GenBank: AP012343.1]. *salmonicida* subsp. *salmonicida* A449 genome is shown in detail in Additional file 1: Table S1. About 148 loci or DNA sequences forming 108 complete or partial IS units were found in the chromosome of *A. salmonicida* subsp. *salmonicida* A449 and on the plasmids pASA4/pASA5 [GenBank: CP000644.1, CP000645.1 and CP000646.1]. IS630 (referred to as ISAs4 in the Genbank genome annotation of *A. salmonicida* A449 and as ISAs7 in the corresponding manuscript [16]) was found to be present

were found in the chromosome of *A. salmonicida* subsp. *salmonicida* A449 and on the plasmids pASA4/pASA5 [GenBank: CP000644.1, CP000645.1 and CP000646.1]. IS630 (referred to as ISAs4 in the Genbank genome annotation of *A. salmonicida* A449 and as ISAs7 in the corresponding manuscript [16]) was found to be present in 38 copies and was the most abundant family representing 35% of transposons in *A. salmonicida* A449 (Figure 3, Additional file 3: Table S3). The different copies are well-conserved and show 98% nucleotide sequences identity. The other 70 IS elements are ISAs7 (13%), ISAs5 (11%), ISAs6 (6%), ISAs11 (6%), ISAs2 (5%), ISAs9 (4%), ISAs8 (4%), and unclassified ISAs (16%) (Figure 3). 90% of the IS630 copies reside in chromosomal regions that are specific to A. salmonicida subsp. salmonicida and were not found in other Aeromonas. Interestingly most of these loci correspond to known genes in bacterial genera other than Aeromonas. This is the case for instance for the hypothetical gene ASA_1385 (homology to VOA_002034 of Vibrio sp. RC586) that is directly linked to IS630 in A. salmonicida subsp. salmonicida and is not found in other Aeromonads (Additional file 2: Table S2). In ISAs families other than IS630, 34 (31%) are directly adjacent to IS630 showing that 66% of A. salmonicida A449 transposons are associated to genomic domains of variability. In comparison to other Aeromonas sp., A. salmonicida A449 contains 4 to 54 fold more transposases (Figure 3) which are not responsible for a genome-reductive evolution [27] because the total number of ORFs is stable in comparison to other Aeromonads (Figure 4). However they explain the high abundance of pseudogenes (170) in A. salmonicida subsp.

Studer et al. BMC Microbiology 2013, **13**:36 http://www.biomedcentral.com/1471-2180/13/36

salmonicida [16] in contrast to *A. hydrophila* ATCC 7966 which only contains 7 pseudogenes and 2 transposases.

Discussion

HCN-IS6110-RFLP has been applied as a standard method to subtype *Mycobacterium tuberculosis* strains for years [28]. Moreover, RFLP based on IS elements has been employed to type numerous other pathogenic bacteria [14,15,29-31]. The published genome of *A. salmonicida* subsp. *salmonicida* A449 shows numerous IS elements among which 38 belong to the IS630 family [GenBank: CP000644.1]. We therefore used HCN-IS630-RFLP as a new typing methodology for *Aeromonas* species.

IS630 was present in different copy numbers and integrated at various sites between the different *A. salmonicida* subspecies. On the other hand banding patterns were conserved within subspecies (Figure 1). HCN-IS630-RFLP revealed that IS630 is abundant in all subspecies of *A. salmonicida* allowing a good accuracy for genomic fingerprinting. Our results showed that RFLP profiles can be used to distinguish subspecies of *A.* salmonicida and to differentiate A. salmonicida from other Aeromonas species. They also indicate a high variability among strains of 'atypical' A. salmonicida. All strains of yet unclassified 'atypical' A. salmonicida consisted of a high number of IS630 copies and were effectively related to the A. salmonicida cluster. Our method demonstrates that such 'atypical' strains represent a heterogeneous group that does not fit into the classification of the five described A. salmonicida subspecies. These strains might represent various subtypes of A. salmonicida subsp. salmonicida or novel subspecies of A. salmonicida that have adapted to particular ecological niches or respective hosts. On the other hand, all A. salmonicida subsp. salmonicida isolated since the 1950s and originating from all over the world have very similar patterns, indicating that they form a single clone showing pathoadaptational stability. Altogether, our results confirm those of a previous study comparing genomic profiles of clinical isolates of Aeromonas salmonicida using DNA microarrays [32]. With the origin and intensification of fish farming, genetic

rearrangements occurring through IS transposition events could have been responsible for the selection and the emergence of this pathogenic fish specific clone. Such an adaptation process of a pathogenic bacterium towards its host was recently indicated in the *Mycoplasma mycoides* cluster for *Mycoplasma mycoides* subsp. *mycoides* [33]. Moreover, no unique pattern was associated to a specific geographical region of the world and we assume that this could be explained by the dissemination of *A. salmonicida* subsp. *salmonicida* strains between aquaculture countries via the intensification of the international trade in farmed salmon or by the natural migration of wild salmons.

Besides the epidemiologic and phylogenetic interests of IS630 fingerprinting to subtype A. salmonicida, we studied the characteristics of this predominant IS element to reveal information concerning the pathoadaptation towards its specific host. Mobile genetic elements can exert different effects on bacterial genomes [11,34-36]. Through such genomic effects, IS630 family has had an impact on the modulation of virulence genes in other bacteria [37-43]. In A. salmonicida 90% of the IS630 copies reside in genomic regions that are variable between Aeromonas sp. (Additional file 1: Table S1) and 80% of these sites contain genes that are specific to A. salmonicida and are not encountered in other Aeromonas sp. suggesting that they constitute genomic islands. A part of these coding sequences are phages or hypothetical genes with homologues of characterized sequences in other environmental bacteria: i.e. the 'Vibrio Seventh Pandemic cluster I' (VSP-I), genes for the synthesis of polysaccharide capsule, lipopolysaccharide, S-layer, chitinase, cytolytic insecticidal delta-endotoxin, and some effectors (AopO and ApoH) of the type-three secretion system, the major virulence system of the bacterium. Based on these findings we assume that IS630 elements could be used by environmental bacteria to exchange DNA fragments between each other by horizontal transfer. In the genomic islands where IS630 is present, supplementary IS elements can be found, which might serve as hot spots for further insertions. This would allow the transposon and the genomic island to evolve with acquisition of new genes without disruption of existing loci. These observations could explain why the IS630 elements remained stable within the A. salmonicida subsp. salmonicida genome.

Other interesting characteristics of IS elements homologous to IS630 in *A. salmonicida* suggest that they could play a role in the co-adaptation of the bacterium with its host by trans-kingdom horizontal gene transfers through the bacterial T3SS: (i) such IS630 elements are mostly present in Gram-negative bacteria that use a T3SS, (ii) their expression can be specifically induced or increased when bacteria are in direct contact with host cells [44] and (iii) several IS630 are predicted to be T3SS effectors [45]. The Modlab[®] T3SS effector prediction software gives for *A. salmonicida* IS630 a positive output at 0.69 which means, that the IS630 itself is a potential T3SS effector. Hence, when the bacteria colonize the host, the IS630 expression could be induced and they could begin to exert their transposase activity by excising the transposon (composite if associated to adjacent additional DNA fragments) from the bacterial genome. Subsequently, the transposase linked to its transposon could be translocated into the host cell by the T3SS, reach the host genome in the nucleus, and finally perform its transposition.

Bacterial IS630 elements constitute with the Tc1/mariner eukaryotic DNA transposon family, a superfamily [46]. It was demonstrated *in vitro* that eukaryotic members of this family are able to transpose into prokaryotic genomes [46]. We suppose that the opposite could also be possible as IS630 itself could be translocated via type three secretion system from the pathogen to its host. In this perspective, our assumption could explain how the adaptive horizontal transfer of a bacterial mannanase gene (HhMAN1) into the genome of an invasive insect pest of coffee (*Hypothenemus hampei*) occurred in the immediate genetic vicinity of a Tc1/mariner transposon [47].

Conclusions

In this study we describe HCN-IS630-RFLP as an adequate method for subtyping *A. salmonicida* strains and to differentiate *A. salmonicida* from other *Aeromonas* species. The high degree of conservation of HCN-IS630-RFLP profiles among strains of *A. salmonicida* subsp. *salmonicida* isolated from geographically most distant areas and over the period of half a century shows that practically all copies of IS630 are stably integrated in this pathogen that has a well-defined host range. We therefore conclude that IS630 might have contributed to the pathoadaptation of *A. salmonicida* to salmonidae and to the emergence of the subtype *A. salmonicida* subsp. *salmonicida*.

Methods

Bacterial strains and growth conditions

Aeromonas strains used in this study are listed in Table 1. Bacteria were grown on trypticase soy agar plates at 18°C for 3 to 6 days until sufficient bacteria were available for DNA extraction.

Southern blot analysis with *A. salmonicida* subsp. *salmonicida* IS630 probe

Total DNA extraction from each strain was performed with the Peqgold Bacterial DNA extraction Kit (Peqlab Biotechnologie, Erlangen, Germany). One microgram of DNA from each sample was digested overnight with XhoI restriction enzyme (Roche Diagnostics, Mannheim, Germany), loaded on a 0.7% agarose gel and subjected to electrophoresis for 4 to 5 hours. On each gel a DIGlabeled DNA Marker (Roche Diagnostics, Mannheim, Germany) and XhoI digested DNA from A. salmonicida subsp. salmonicida JF2267 were loaded for normalization. DNA bands were stained with ethidium bromide for control and transferred onto a nylon membrane (Roche Diagnostics, Mannheim, Germany) with a VacuGene apparatus (GE Healthcare Bio-Sciences). The IS630 probe was prepared by PCR using primers Clust_asa1052_S6 (5'- AGGCAGAACTTGGGGGTTCTT-3') and Clust_asa-1052_R4 (5'- ACAAAAGCGGGTTGTCACTC-3') and DNA of A. salmonicida subsp. salmonicida JF2267 as a template. PCR was performed in 30 µL which contained 0.5 µL of Taq DNA polymerase (5 units/µL) (Roche Diagnostics, Mannheim, Germany), 300 nM of each primer, 1.75 mM MgCl₂, 200 µM concentrations of each dNTP and 1 µl of the Digoxigenin-11-dUTP (1 nmol/µL) (Roche Diagnostics, Mannheim, Germany). Each reaction involved a denaturing step at 94°C for 5 min followed by 30 cycles of 10 sec at 94°C, 30 sec at 54°C and 60 sec at 72°C and a final extension step of 7 min at 72°C.

Bioinformatic analysis

The hybridization patterns were scanned and the data were analyzed using the BioNumerics software version 6.6 (Applied Maths, Kortrijk, Belgium). Bands automatically assigned by the computer were checked visually and corrected manually. Cluster analysis of the IS-RFLP patterns was done by the unweighted pair group method with average linkages (UPGMA) using the Dice coefficient and the following parameters: 0.5% Optimization, 0% Band filtering, 0.5% Tolerance and ignore uncertain bands.

Prediction of T3SS effectors was performed with the Modlab[®] online software (http://gecco.org.chemie.uni-frankfurt.de/T3SS_prediction/T3SS_prediction.html) [45].

Stability of IS630 in cultured *A. salmonicida* subsp. *salmonicida*

The stability of IS630 under growth conditions in TSB medium was assessed by daily 100x dilution of a culture of strain JF2267 at 18°C and at 25°C during 4 days to reach 20 generations. Every day DNA was extracted from 10^9 bacteria, digested with XhoI and submitted to southern blot hybridization.

Additional files

Additional file 1: Table S1. Table showing for each *A. salmonicida* A449 IS630 copy, the size of the Xhol-digested DNA fragment containing the IS, the inter- or intragenic localization, the characteristics of the adjacent genes, and the association to a region of variability or to other IS elements.

Additional file 2: Table S2. Profound analysis and comparison of published *Aeromonas* genomes used for Figures 3 and 4. Grey: conserved ORFs; light green: ORFs specific of the species; yellow: IS630; pink: other IS elements; red: putative or characterized virulence factors; mauve: ORFs for resistance to antibiotic or heavy metal; dark green: ORFs associated to pili, fimbriae or flagella; blue: ORFs associated to phage; cyan: tRNA and rRNA; orange: ORFs with homology to eukaryotic genes.

Additional file 3: Table S3. Detail of loci corresponding to transposons in *Aeromonas* sp.

Abbreviations

HCN-IS-RFLP: High copy number insertion element restriction fragment length polymorphism; T3SS: Type-three secretion system; UPGMA: Unweighted pair group method with arithmetic mean.

Competing interests

The authors have declared that no competing interests exist.

Authors' contributions

NS carried out the experiments, performed BioNumerics analysis and drafted the manuscript. JF participated in the coordination of the study and helped to draft the manuscript. PVB conceived of the study, participated in its design and coordination, carried out experiments, performed bioinformatic analysis and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This research was funded by the Swiss National Science Foundation grant no. 31003A-135808.

Received: 19 November 2012 Accepted: 5 February 2013 Published: 13 February 2013

References

- Janda JM, Abbott SL: The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 2010, 23:35–73.
- Hiney M, Olivier G: Furunculosis (Aeromonas salmonicidas). In Fish diseases and disorders, viral, bacterial and fungal infections, Volume 3. Edited by Woo PTK, Bruno DW. Walkingford, Oxfordshire, UK: CAB International; 1999:425–425.
- Martin-Carnahan A, Joseph SW: Family I. Aeromonadaceae Colwell, MacDonell and De Ley 1986, 474^{VP}. In Bergey's Manual of systematic bacteriology, second edition, vol. 2 (The Proteobacteria), part B (The gammaproteobacteria). Edited by Brenner DJ, Krieg NR, Staley JT, Garrity GM. New York, NY: Springer; 2005:556–580.
- Wiklund T, Dalsgaard I: Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species: a review. Dis Aquat Organ 1998, 32:49–69.
- Garcia JA, Larsen JL, Dalsgaard I, Pedersen K: Pulsed-field gel electrophoriesis analyis of Aeromonas salmonicida ssp. salmonicida. FEMS Microbiol Lett 2000, 190:163–166.
- Nilsson WB, Gudkovs N, Strom MS: Atypical strains of Aeromonas salmonicida contain multiple copies of insertion element ISAsa4 useful as a genetic marker and a target for PCR assay. Dis Aquat Organ 2006, 70:209–217.
- Demarta A, Tonolla M, Caminada A, Beretta M, Peduzzi R: Epidemiological relationships between *Aeromonas* strains isolated from symptomatic children and household environments as determined by ribotyping. *Eur J Epidemiol* 2000, 16:447–453.
- Abbott SL, Cheung WK, Janda JM: The genus Aeromonas: biochemical characteristics, atypical reactions, and phenotypic identification schemes. J Clin Microbiol 2003, 41:2348–2357.
- Beaz-Hidalgo R, Alperi A, Bujan N, Romalde JL, Figueras MJ: Comparison of phenotypical and genetic identification of *Aeromonas* strains isolated from diseased fish. *Syst Appl Microbiol* 2010, 33:149–153.
- Lamy B, Kodjo A, Laurent F: Identification of Aeromonas isolates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 2011, 71:1–5.
- McEvoy CR, Falmer AA, Gey van Pittius NC, Victor TC, van Helden PD, Warren RM: The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2007, 87:393–404.

- Thorne N, Borrell S, Evans J, Magee J, Garcia de Viedma D, Bishop C, Gonzalez-Martin J, Gharbia S, Arnold C: IS6110-based global phylogeny of Mycobacterium tuberculosis. Infect Genet Evol 2011, 11:132–138.
- Bricker BJ, Ewalt DR, MacMillan AP, Foster G, Brew S: Molecular characterization of *Brucella* strains isolated from marine mammals. *J Clin Microbiol* 2000, 38:1258–1262.
- Torrea G, Chenal-Francisque V, Leclercq A, Carniel E: Efficient tracing of global isolates of *Yersinia pestis* by restriction fragment length polymorphism analysis using three insertion sequences as probes. *J Clin Microbiol* 2006, 44:2084–2092.
- Cheng X, Nicolet J, Poumarat F, Regalla J, Thiaucourt F, Frey J: Insertion element IS1296 in *Mycoplasma mycoides* subsp. *mycoides* small colony identifies a European clonal line distinct from African and Australian strains. *Microbiology* 1995, 141:3221–3228.
- Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J, Munholland J, Murphy C, Sarty D, Williams J, et al: The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 2008, 9:427.
- 17. Burr SE, Pugovkin D, Wahli T, Segner H, Frey J: Attenuated virulence of an *Aeromonas salmonicida* subsp. *salmonicida* type III secretion mutant in a rainbow trout model. *Microbiology* 2005, **151**:2111–2118.
- 18. Burr SE, Frey J: Analysis of type III effector genes in typical and atypical *Aeromonas salmonicida*. *J Fish Dis* 2007, **30**:711–714.
- Küpfer M, Kuhnert P, Korczak BM, Peduzzi R, Demarta A: Genetic relationships of *Aeromonas* strains inferred from 16S rRNA, *gyrB* and *rpoB* gene sequences. *Int J Syst Evol Microbiol* 2006, 56:2743–2751.
- Olivier G, Moore AR, Fildes J: Toxicity of Aeromonas salmonicida cells to Atlantic salmon Salmo salar peritoneal macrophages. Dev Comp Immunol 1992, 16:49–61.
- Goldschmidt-Clermont E, Hochwartner O, Demarta A, Caminada AP, Frey J: Outbreaks of an ulcerative and haemorrhagic disease in Arctic char Salvelinus alpinus caused by Aeromonas salmonicida subsp. smithia. Dis Aquat Org 2009, 86:81–86.
- Minana-Galbis D, Farfan M, Fuste MC, Loren JG: Aeromonas molluscorum sp. nov., isolated from bivalve molluscs. Int J Syst Evol Microbiol 2004, 54:2073–2078.
- 23. Hua HT, Bollet C, Tercian S, Drancourt M, Raoult D: *Aeromonas popoffii* urinary tract infection. J Clin Microbiol 2004, **42**:5427–5428.
- Huys G, Kampfer P, Altwegg M, Kersters I, Lamb A, Coopman R, Luthy-Hottenstein J, Vancanneyt M, Janssen P, Kersters K: *Aeromonas popoffii* sp. nov., a mesophilic bacterium isolated from drinking water production plants and reservoirs. *Int J Syst Bacteriol* 1997, 47:1165–1171.
- 25. Burr SE, Goldschmidt-Clermont E, Kuhnert P, Frey J: Heterogeneity of *Aeromonas* populations in wild and farmed perch, *Perca fluviatilis* L. *J Fish Dis* 2012, **35**:607–613.
- Minana-Galbis D, Farfan M, Fuste MC, Loren JG: Aeromonas bivalvium sp. nov., isolated from bivalve molluscs. Int J Syst Evol Microbiol 2007, 57:582–587.
- Song H, Hwang J, Yi H, Ulrich RL, Yu Y, Nierman WC, Kim HS: The early stage of bacterial genome-reductive evolution in the host. *PLoS Pathog* 2010, 6:e1000922.
- Alexander DC, Guthrie JL, Pyskir D, Maki A, Kurepina N, Kreiswirth BN, Chedore P, Drews SJ, Jamieson F: *Mycobacterium tuberculosis* in Ontario, Canada: insights from IS6110 restriction fragment length polymorphism and mycobacterial interspersed repetitive-unit-variable-number tandemrepeat genotyping. J Clin Microbiol 2009, 47:2651–2654.
- Vergnes M, Ginevra C, Kay E, Normand P, Thioulouse J, Jarraud S, Maurin M, Schneider D: Insertion sequences as highly resolutive genomic markers for sequence type 1 *Legionella pneumophila* Paris. J Clin Microbiol 2011, 49:315–324.
- Thomas R, Johansson A, Neeson B, Isherwood K, Sjostedt A, Ellis J, Titball RW: Discrimination of human pathogenic subspecies of *Francisella tularensis* by using restriction fragment length polymorphism. J Clin Microbiol 2003, 41:50–57.
- Aebi M, Bodmer M, Frey J, Pilo P: Herd-specific strains of *Mycoplasma* bovis in outbreaks of mycoplasmal mastitis and pneumonia. *Vet Microbiol* 2012, 157:363–368.
- Nash JH, Findlay WA, Luebbert CC, Mykytczuk OL, Foote SJ, Taboada EN, Carrillo CD, Boyd JM, Colquhoun DJ, Reith ME, *et al*: Comparative genomics profiling of clinical isolates of *Aeromonas salmonicida* using DNA microarrays. *BMC Genomics* 2006, 7:43.

- Fischer A, Shapiro B, Muriuki C, Heller M, Schnee C, Bongcam-Rudloff E, Vilei EM, Frey J, Jores J: The origin of the 'Mycoplasma mycoides cluster' coincides with domestication of ruminants. PLoS One 2012. 7:e36150.
- Mahillon J, Chandler M: Insertion sequences. Microbiol Mol Biol Rev 1998, 62:725–774.
- 35. Tanaka KH, Dallaire-Dufresne S, Daher RK, Frenette M, Charette SJ: An insertion sequence-dependent plasmid rearrangement in *Aeromonas* salmonicida causes the loss of the type three secretion system. *PLoS One* 2012, **7**:e33725.
- 36. Muñoz-López M, García-Pérez JL: DNA transposons: nature and applications in genomics. *Curr Genomics* 2010, 11:115–128.
- Houng HH, Venkatesan MM: Genetic analysis of Shigella sonnei form I antigen: identification of a novel IS630 as an essential element for the form I antigen expression. *Microb Pathog* 1998, 25:165–173.
- Larsson P, Öyston PC, Chain P, Chu MC, Duffield M, Fuxelius HH, Garcia E, Halltorp G, Johansson D, Isherwood KE, *et al*: The complete genome sequence of *Francisella tularensis*, the causative agent of tularemia. *Nat Genet* 2005, 37:153–159.
- Sergeant M, Baxter L, Jarrett P, Shaw E, Ousley M, Winstanley C, Morgan JA: Identification, typing, and insecticidal activity of *Xenorhabdus* isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the *xpt* toxin loci. *Appl Environ Microbiol* 2006, **72**:5895–5907.
- Han HJ, Kuwae A, Abe A, Arakawa Y, Kamachi K: Differential expression of type III effector BteA protein due to IS481 insertion in Bordetella pertussis. PLoS One 2011, 6:e17797.
- Haneda T, Okada N, Nakazawa N, Kawakami T, Danbara H: Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of Salmonella enterica serovar Choleraesuis. Infect Immun 2001, 69:2612–2620.
- 42. Guiney DG, Fierer J: The role of the *spv* genes in *Salmonella pathogenesis*. *Front Microbiol* 2011, **2**:129.
- Stavrinides J, Kirzinger MW, Beasley FC, Guttman DS: E622, a miniature, virulence-associated mobile element. J Bacteriol 2012, 194:509–517.
- 44. Münch A, Stingl L, Jung K, Heermann R: *Photorhabdus luminescens* genes induced upon insect infection. *BMC Genomics* 2008, 9:229.
- 45. Lower M, Schneider G: Prediction of type III secretion signals in genomes of gram-negative bacteria. *PLoS One* 2009, 4:e5917.
- Plasterk RH, Izsvák Z, Ivics Z: Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 1999, 15:326–332.
- Acuna P, Padilla BE, Flórez-Ramos CP, Rubio JD, Herrera JC, Benavides P, Lee SJ, Yeats TH, Egan AN, Doyle JJ, *et al*: Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. *Proc Natl Acad Sci USA* 2012, 109:4197–4202.

doi:10.1186/1471-2180-13-36

Cite this article as: Studer *et al*.: Clustering subspecies of Aeromonas salmonicida using IS630 typing. *BMC Microbiology* 2013 13:36.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit