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Next generation sequencing shows high variation
of the intestinal microbial species composition in
Atlantic cod caught at a single location
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Abstract

Background: The observation that specific members of the microbial intestinal community can be shared among
vertebrate hosts has promoted the concept of a core microbiota whose composition is determined by host-specific
selection. Most studies investigating this concept in individual hosts have focused on mammals, yet the diversity of
fish lineages provides unique comparative opportunities from an evolutionary, immunological and environmental
perspective. Here we describe microbial intestinal communities of eleven individual Atlantic cod (Gadus morhua)
caught at a single location based on an extensively 454 sequenced 16S rRNA library of the V3 region.

Results: We obtained a total of 280447 sequences and identify 573 Operational Taxonomic Units (OTUs) at 97%
sequence similarity level, ranging from 40 to 228 OTUs per individual. We find that ten OTUs are shared, though the
number of reads of these OTUs is highly variable. This variation is further illustrated by community diversity
estimates that fluctuate several orders of magnitude among specimens. The shared OTUs belong to the orders of
Vibrionales, which quantitatively dominate the Atlantic cod intestinal microbiota, followed by variable numbers of
Bacteroidales, Erysipelotrichales, Clostridiales, Alteromonadales and Deferribacterales.

Conclusions: The microbial intestinal community composition varies significantly in individual Atlantic cod
specimens caught at a single location. This high variation among specimens suggests that a complex combination
of factors influence the species distribution of these intestinal communities.
Background
The intestinal microbial community provides a variety
of crucial functions for their vertebrate hosts e.g. [1],
though the factors that influence the colonization of
this habitat are less understood. Common patterns
among microbial communities of different hosts have
promoted the concept of a core set of species, which
provides a minimal functionality in the healthy gut and
which is determined by host-specific selection [2,3]. For
example, host transcriptional responses to microbial
colonization appear to be conserved among a wide
range of vertebrates, including fish [4]. Moreover, within
the intestinal community of humans, some species are
more prevalent [3,5,6] and functional gene profiles are
highly similar among individuals [7]. Nevertheless, the
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reproduction in any medium, provided the or
utility of the core microbiota concept at a fine taxonomic
level has recently been questioned due to limited evidence
of universally abundant species in humans [8,9].
Fish provide unique opportunities to investigate the

factors that influence the composition of the vertebrate
intestinal microbiota due to their high species diversity
[10], dietary variation or habitat preferences [11], and
divergent immune architecture. For instance, considering
the differences in immune systems as an example, Atlantic
cod lacks the antigen presenting major histocompatibility
complex (MHC) II system, which was thought to be
conserved among all jawed vertebrates [12]. This lack
of MHC II may affect the interactions of Atlantic cod
with its microbial community [13]. A extensive meta-
analysis -based on uncultured and cultured sampling
methods- indicates that the composition of the intestinal
communities in teleosts is influenced by both abiotic
and biotic factors [11]. Nevertheless, this meta-analysis
is predominantly based on pooled Sanger sequencing
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Figure 1 Wild-caught Atlantic cod have a variable microbial
intestinal community. (a) Rarefaction curve analysis showing the
number of detected OTUs per sample based on read number for 11
specimens. Sequences are clustered using a pairwise similarity cut-off
of 97%. (b) A limited number of highly abundant OTUs (based on read
number) are identified in all specimens by comparing rank abundance
plots of all OTUs (97% similarity, black) to OTUs that are shared (red).
Individual rank abundances (grey) show variation among specimens.
(c) The total number of detected OTUs (black) and the number of
OTUs shared (red) depends on sequencing similarity cut-off values.
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data, and studies investigating microbial communities
in fish using high-throughput sequencing are relatively
rare. Moreover, the studies that employed these methods
so far have focused on fresh water species held in
semi-controlled environments [14-16]. One exception
investigating natural populations of zebrafish, identified
a core intestinal microbiota based on shared Operational
Taxonomic Units (OTUs), despite substantial differences
in host provenance and domestication status [17]. This
study pooled 4, 6 and 20 individuals respectively, before
sequencing [17]. Therefore, to our knowledge, a charac-
terization of the microbial community using high-through
methodologies in wild-caught, individual fish is still
lacking. Here we investigate the intestinal microbial
communities of 11 wild-caught Atlantic cod collected
at a single location and quantify a core microbiota
based on shared membership in a 454 sequenced 16S
rRNA V3 region amplicon dataset.

Results and discussion
We obtained 280447 sequences of approximately 200
basepair (bp) of the 16S rRNA V3 region and identified
573 OTUs at 97% sequence similarity. Rarefaction
curve analysis, depicting the relationship between the
number of detected OTUs and read number, shows
that the final number of OTUs per sample (ranging
from 40 to 228) is not caused by uneven sequencing
depth (Figure 1a). This variation among samples also
appears in estimates of community diversity (based on
Shannon and Inverse Simpson indices), which vary an
order of magnitude (Table 1). Analogous to the intestinal
community composition in zebrafish [17] or human e.g.
[9], the samples are typically dominated by a few abundant
OTUs, while the majority of OTUs is present at rare
frequency (e.g., 62% of the 573 OTUs occur once). At
97% sequence similarity, 10 OTUs are shared that are
highly abundant based on the number of reads (Figure 1b).
The number of reads assigned to these OTUs varies
substantially among individuals, and no more than five
OTUs are shared using a detection cut-off value of at
least five reads (reflecting a 99% detection probability
assuming a binominal distribution, Additional file 1:
Table S1). Moreover, for sequence similarity values
above 80% the number of shared OTUs is fairly constant,
indicating that this number is not a result of restrictive
cut-off values when clustering (Figure 1c). Overall, the
shared OTUs represent a fraction of the overall sequence
diversity for a wide range of cut-off values (Figure 1c).
At order level classification, the intestinal community

of Atlantic cod is dominated by Vibrionales followed
by variable numbers of Bacteroidales, Erysipelotrichales
and Clostridiales (Figure 2a). The high proportion
Vibrionales (50%) agrees with those proportions found
in a meta-analysis based on GenBank sequences of
other marine carnivores [11] and bacteria from this
order have also previously been isolated from the
Atlantic cod gut e.g. [18]. Nevertheless, the intestinal
community also contains a substantial proportion of
Bacteriodales (17%). Such abundance has previously



Table 1 Alpha diversity estimates of the Atlantic cod
intestinal microbial community

OTU Shannon index Inverse Simpsons index

Specimen μ σ μ σ μ σ

1 97 4.03 2.62 0.01 7.36 0.10

2 26 2.60 0.30 0.01 1.12 0.00

3 89 3.83 1.22 0.02 1.74 0.02

4 108 4.24 2.10 0.02 3.71 0.05

5 96 3.83 2.63 0.01 8.59 0.10

6 73 3.21 0.32 0.01 1.09 0.00

7 163 4.94 2.80 0.02 6.50 0.10

8 24 2.70 1.08 0.01 2.18 0.02

9 158 5.44 3.07 0.01 11.18 0.16

10 77 3.26 1.59 0.02 2.33 0.03

11 136 4.84 2.44 0.02 5.26 0.07

Normalized mean values (μ) and standard deviations (σ) for the number of
OTUs, Shannon index and Inverse Simpsons index. Normalized values were
obtained by random resampling according to the smallest sample size
(n = 11625, specimen 6) and standard errors were obtained by bootstrapping
(n = 1000). OTUs are clustered according to a 97% sequence similarity cut-off value.
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Figure 2 Taxonomical community composition of the intestinal
microbial community in Atlantic cod. (a) Individual sequence
read number per order, illustrated by circle surface area, show a
variable microbial community composition. Members from the order
Vibrionales are most abundant, followed by those from the orders
Bacteriodales, Erysipelotrichales and Clostridiales. The number of reads
beloning to particular taxonomic classifications can fluctuate several
orders of magnitude among specimens. Overall read number per order
for all specimens (% median read number) is given in front of the
order name. (b) The number of individual OTUs detected per order
(97% sequence similarity), illustrated by circle surface area, show that
the taxonomically most diverse orders are not necessarily the most
abundant based on the number of sequence reads. The presence of a
shared OTU (*) is indicated in front of the order name.
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been proposed to be a characteristic of the microbial
community of marine herbivores, and this finding suggests
that the distinction between herbivorous and carnivorous
fish may be more subtle [11]. Members of the most
abundant orders agree with those reported previously
in Atlantic cod using both culture-dependent and
culture-independent techniques [18-22]. In addition,
using high throughput sequencing, several more
orders are detected that are relatively rare. Shared
OTUs belong to the orders Vibrionales, Bacteroidales,
Erysipelotrichales, Clostridiales, Alteromonadales and
Deferribacterales (Figure 2b). Overall, taxonomical
diversity (based on number of OTUs per order) does not
necessarily correlate to the number of reads per order.
To our knowledge, our dataset provides the first

characterization using high throughput sequencing of
individual intestinal microbial community structure in
a natural population of marine fish. It is possible that
our sampling retrieved fish from different populations.
Nevertheless, tagging studies in the Norwegian Skagerrak
coastal region have shown that adult Atlantic cod have
confined home ranges [23] and genetic studies have
revealed fine scale geographical population structure
[24,25]. Considering our single sample location, far
from the fjord exit, and comparable size of individuals
(Additional file 1: Table S2), we assume that our indivi-
duals were retrieved from a local population experiencing
similar environmental conditions.
Among our samples, we find 10 shared OTUs, with

profound variation in the number of reads per individual.
This number of shared OTUs may be an overestimation
as the fish were kept in a single tank after capture and
thus experienced the same environmental conditions
before sampling. We presume such a similar environment
is more likely to homogenize microbial communities,
rather than promote individual differences. Nevertheless,
this shared number of OTUs appears relatively low
compared to the number of shared OTUs (21 OTUs, at
97% sequence identity cut-off ) among populations of
zebrafish from radically different environmental conditions,
coming either from natural populations in India or from
artificial environments in two separate laboratories in
the USA [17]. For now, this difference in shared OTUs
between our study and the study focusing on zebrafish
is difficult to interpret due to methodological variation
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e.g. pooled versus individual samples, V1-V2 versus V3
16S rRNA region, [17]. It will be interesting to investigate
if these differences in shared OTUs membership are
environmentally determined (e.g., a largely different food
preference and habitat) or are species specific (e.g., the
unusual Atlantic cod immune system which might affect
its host-microbe interactions [12,13]).
Community diversity estimates based on 454 amplicon

data are influenced by methodological factors such as
fragment length, PCR bias and choice of 16S rRNA
gene region. Specifically, shorter amplicon lengths
(e.g. < 400 bp) may result in relatively higher diversity
estimates compared to longer fragments [26] and arguably
provide a better assessment of community structure [27].
In contrast, species richness estimate based on analyses
of the 16 s rRNA V3 region appears to slightly under-
estimate diversity relative to the full-length gene [28].
Such methodological issues make it difficult to compare
community diversity across different studies [29], although
metrics that use both richness and relative abundance
(i.e. Shannon and Inverse Simpson indices) appear robust
[30], in particular considering our extensive sequencing
depth [31]. Interestingly, these metrics fluctuate several
orders of magnitude among our different specimens, and
show large individual variation in community composition
and diversity. The most diverse individuals appear to
have a comparable community complexity relative to those
found in humans [7,32].
A variety of properties, such as shared OTU membership,

shared phylogeny, persistence or connectivity can be
used to define microbial cores [33]. Here we investi-
gated a core microbiota based on shared membership.
Definitions for such a core have been proposed ranging
from a lineage present in more than half the population
[3] to an abundant lineage shared among all individuals
[8]. We argue that the utility of such concept depends
on the specificity with which it describes a biological
phenomenon and favor the idea that a lineage should
be reliably identified among all individuals in order to
belong to a core microbiota, hence with a detection
probability of at least 99%. According to such definition,
the presence of a core microbiota at 97% sequence
similarity consists of five OTUs in this population of
Atlantic cod. These OTUs belong to orders Vibrionales,
Bacteroidales, Erysipelotrichales, Clostridiales and
Alteromonadales.
It is possible that the observation of a shared OTU

membership can be explained by other factors other
than host-specific selection. For example, between teleost
fish, the colonization and community structure of the
microbial gut community appears better explained by
environmental factors such as food choice or habitat (i.e.
salinity) than by host phylogeny [11,34]. Considering
our single sample location, it is currently unclear if the
observed core microbiota in Atlantic cod is explained by
host-specific selection or driven by shared environmental
factors. Interestingly, human microbial gut communities
are functionally remarkably similar, despite extensive
variation in taxonomic composition [7-9]. This functional
redundancy may provide support for a ‘founder takes all’
process of colonization, in which a successful colonizer can
prevent the subsequent colonization by other, functionally
similar strains through high density blocking [35]. Such
a stochastic process could lead to the high variation in
community composition that we observe among our
different specimens.

Conclusions
Based on the extensive 454 sequencing of a 16S rRNA
V3 region amplicon library, we find that the OTU based
community diversity estimates of the intestinal microbial
community in wild-caught Atlantic cod vary significantly
among individuals collected at a single location. This
individual level variation suggests that a complex com-
bination of factors influences the microbial species dis-
tribution in these intestinal communities. Importantly,
such variation has gone unobserved in previous studies
of natural populations of teleosts whereby samples of
pooled individuals were analyzed [11,17], which may affect
estimates of the number of shared OTUs among hosts.

Methods
Live Atlantic cod were collected at a single location
(N59.871278, W10.587208) using a fish trap in the Oslo
fjord, Norway (Additional file 1) and transported to an
animal facility approved by the Norwegian Animal
Research Authority (NARA, http://oslovet.norecopa.no/
dokument.aspx?dokument=67, approval number 155/
2008). The specimens were kept in a common tank
(2000 l), at ambient water temperature and light conditions
(i.e., 6°C and L:D 8:16, respectively) without feed for
between seven and twelve days before sampling to help
reduce variation in community composition due to the
presence of food items [11]. The fish were humanely
sacrificed by a blow to the head (without any administra-
tion of other sedatives) before sampling. The experiments
were approved by NARA’s authorized representative at
the facility and were conducted in accordance with the
European Convention for the protection of vertebrate
animals (http://conventions.coe.int/treaty/en/treaties/html/
123.htm) used for experimental and other scientific
purposes.
Flushed contents from the intestinal tract, including

the rectal portion and excluding the stomach, were used for
DNA isolation (Additional file 1) and PCR amplification
after which individually barcoded amplicons were pooled
and sequenced using 454 technology [36]. Sequence
data was binned into the individual samples using the

http://oslovet.norecopa.no/dokument.aspx?dokument=67
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barcoded tags and subsequently cleaned from artifacts.
Diversity estimates were calculated using Mothur [37].
Representative OTU sequences were compared to the
SILVA SSU ref NR V108 database [38] (http://www.
arb-silva.de) using BlastN [39] and classified using the
LCA algorithm in Megan [40].

Additional file

Additional file 1: Supplementary section containing detailed
methods, analyses and supplementary tables.
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