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rods: integration of both conventional phenotypic
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Abstract

Background: Accurate identification of fastidious Gram-negative rods (GNR) by conventional phenotypic
characteristics is a challenge for diagnostic microbiology. The aim of this study was to evaluate the use of
molecular methods, e.g., 16S rRNA gene sequence analysis for identification of fastidious GNR in the clinical
microbiology laboratory.

Results: A total of 158 clinical isolates covering 20 genera and 50 species isolated from 1993 to 2010 were analyzed
by comparing biochemical and 16S rRNA gene sequence analysis based identification. 16S rRNA gene homology
analysis identified 148/158 (94%) of the isolates to species level, 9/158 (5%) to genus and 1/158 (1%) to family level.
Compared to 16S rRNA gene sequencing as reference method, phenotypic identification correctly identified 64/158
(40%) isolates to species level, mainly Aggregatibacter aphrophilus, Cardiobacterium hominis, Eikenella corrodens,
Pasteurella multocida, and 21/158 (13%) isolates correctly to genus level, notably Capnocytophaga sp.; 73/158 (47%)
of the isolates were not identified or misidentified.

Conclusions: We herein propose an efficient strategy for accurate identification of fastidious GNR in the clinical
microbiology laboratory by integrating both conventional phenotypic methods and 16S rRNA gene sequence
analysis. We conclude that 16S rRNA gene sequencing is an effective means for identification of fastidious GNR,
which are not readily identified by conventional phenotypic methods.
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Background
Accurate identification of fastidious Gram-negative rods
(GNR) is a challenge for clinical microbiology laboratories.
Fastidious GNR are slow-growing organisms, which gener-
ally require supplemented media or CO2 enriched atmos-
phere and fail to grow on enteric media such as MacConkey
agar [1]. They are isolated infrequently and consist of
different taxa including Actinobacillus, Capnocytophaga,
Cardiobacterium, Eikenella, Kingella, Moraxella, Neisseria,
and Pasteurella. Most of them are colonizers of the human
oral cavity but they have been demonstrated to cause severe
systemic infections like endocarditis, septicemia and ab-
scesses, particularly in immunocompromised patients [1,2].
Accurate identification of fastidious GNR is of concern
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when isolated from normally sterile body sites regarding
guidance of appropriate antimicrobial therapy and patient
management [1].
Identification of fastidious GNR by conventional

methods is difficult and time-consuming because pheno-
typic characteristics such as growth factor requirements,
fermentation and assimilation of carbohydrates, morph-
ology, and staining behaviour are subject to variation
and dependent on individual interpretation and expertise
[1,3]. Commercially available identification systems such
as VITEK 2 NH (bioMérieux, Marcy L’Etoile, France)
only partially allow for accurate identification of this
group of microorganisms, e.g., Eikenella corrodens,
Kingella kingae and Cardiobacterium hominis [4-6].
Most studies relied only on a subset of taxa of fastidious
GNR or did not include clinical isolates under routine
conditions [4-6]. The application of newer identification
methods like matrix-assisted laser desorption ionization-
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time of flight mass spectrometry (MALDI-TOF MS)
shows promising results regarding the identification of
HACEK group members (Haemophilus parainfluenzae,
Aggregatibacter spp., Cardiobacterium spp., E. corrodens,
and Kingella spp.), however, only a small set of isolates
and species were investigated [7-9]. Other potentially
pathogenic fastidious GNR such as Capnocytophaga spp.
or Pasteurella spp., which are known agents of wound
infections and septicemia after animal bites [1] fre-
quently are not included in comparative analyses. In
addition, implementation of MALDI-TOF identification
also depends on the number of correctly identified refer-
ence strains in the database.
16S rRNA gene sequence analysis is generally considered

as the “gold standard” for bacterial identification [3,10,11].
We analysed a substantial data set of 158 clinical fastidious
GNR isolates covering various difficult-to-identify taxa,
which were collected during a 17-year period. We propose
a feasible strategy for accurate identification of fastidious
GNR in a routine diagnostic laboratory using both conven-
tional phenotypic and molecular methods, e.g., 16S rRNA
gene analysis.

Methods
Clinical isolates
The 158 isolates of fastidious GNR included in this
study derived from clinical human specimens taken as
part of standard patient care and were collected from
1993 to 2010 at the Institute of Medical Microbiology,
University of Zurich, Switzerland. All isolates were
identified both by conventional biochemical methods
and 16S rRNA gene sequence analysis. The isolates
were cultured on Columbia sheep blood or chocolate
agar (Becton, Dickinson & Company, Franklin Lakes, NJ
(BD)) and incubated at 37°C with 5% CO2 for 24 to 48 h.
The isolates were stored at −80°C as pure cultures.

Biochemical identification
The isolates were identified using in-house biochemical
reactions as described for coryneform bacteria, for un-
usual Gram-negative aerobic bacteria and for facultative
anaerobic bacteria [12,13]. In addition to the Gram stain,
the following biochemical reactions were investigated:
catalase, oxidase, nitrate reduction, urease, indole pro-
duction, ornithine decarboxylase, hydrolysis of esculin;
acid production from glucose, sucrose, maltose, manni-
tol and xylose was tested in semisolid cystine-trypticase
agar medium (BD) supplemented with rabbit serum;
tests for fermentative/nonfermentative carbohydrate me-
tabolism were done on triple sugar iron agar. Identifica-
tion by biochemical methods was scored as correct or
incorrect taxonomic level compared to the 16S rRNA
gene analysis as reference method. An incorrect assign-
ment to species level was scored as incorrect species
even if the genus was correct. If biochemical identifica-
tion methods did not assign an isolate to at least genus
level, the strain was scored as not identified.
16S rRNA gene sequence analysis
Sequencing of the partial 16S rRNA gene was performed
as described previously [14]. In brief, a loopful of bacter-
ial cells was used for extraction of DNA by lysozyme di-
gestion and alkaline hydrolysis. Nucleic acids were
purified using the QIAamp DNA blood kit (Qiagen AG,
Basel, Switzerland). The 5’-part of the 16S rRNA gene
(corresponding to Escherichia coli positions 10 to 806)
was amplified using primers BAK11w [5´-AGTTTGATC
(A/C)TGGCTCAG] and BAK2 [5´-GGACTAC(C/T/A)
AGGGTATCTAAT]. Amplicons were purified and se-
quenced with forward primer BAK11w using an auto-
matic DNA sequencer (ABI Prism 310 Genetic Analyzer;
Applied Biosystems, Rotkreuz, Switzerland).
BLAST search of partial 16S rRNA gene sequences was

performed by using Smartgene database (SmartGene™,
Zug, Switzerland) on March 2013. The SmartGene data-
base is updated with the newest 16S rRNA gene sequences
from NCBI GenBank through an automated process every
day. Non-validated taxa or non published sequences were
not taken into consideration. The following criteria were
used for 16S rRNA gene based identification [14-17]: (i)
when the comparison of the sequence determined with a
sequence in the database of a classified species yielded a
similarity score of ≥ 99%, the isolate was assigned to that
species; (ii) when the score was <99% and ≥ 95%, the iso-
late was assigned to the corresponding genus; (iii) when
the score was < 95%, the isolate was assigned to a family.
If the unknown isolate was assigned to a species and the
second classified species in the scoring list showed less
than 0.5% additional sequence divergence, the isolate
was categorized as identified to the species level but
with low demarcation. The sequence analysis was con-
sidered as the reference method but in cases with low
demarcation results of supplemental conventional tests
were taken into consideration for the final identifica-
tion. Partial 16S rRNA gene sequences of all 158 clin-
ical isolates were deposited in NCBI GenBank under
GenBank accession numbers KC866143-KC866299 and
GU797849, respectively.
VITEK 2 NH card identification
A subset of 80 of the total of 158 isolates was tested by
the colorimetric VITEK 2 NH card (bioMérieux)
according to the instructions of the manufacturer. The
colorimetric VITEK 2 NH card contains 30 tests and the
corresponding database covers 26 taxa. Identification by
VITEK 2 NH was compared to the 16S rRNA gene ana-
lysis as reference method.



Table 1 Identification of clinical isolates (n=158) by conventional methods compared to 16S rRNA gene sequence analysis

Conventional phenotyic methods 16S rRNA gene sequence
analysis

Final identification (supplemental
conventional tests if required)

Identification (number of isolates) Level of
identification
and correctness
of result

Best reference species
sequence

% difference to
reference species
sequence

GenBank accession
numbers

Actinobacillus ureae (1) S 1; SI 2 Actinobacillus hominis
Actinobacillus suis (low
demarcation)

0.0, 0.4 KC866152 A. hominis (acidification of mannitol:
A. hominis (positive), A. suis
(negative) [1])

Aggregatibacter
actinomycetemcomitans (2)

S; SC Aggregatibacter
actinomycetemcomitans

0.0, 0.3 KC866227; KC866228 A. actinomycetemcomitans

Aggregatibacter
actinomycetemcomitans (1)

S; SI Pasteurella bettyae 0.0 KC866143 P. bettyae

Aggregatibacter aphrophilus (11) S; SC Aggregatibacter aphrophilus 0.0-0.8 KC866144; KC866145;
KC866146; KC866147;
KC866148; KC866149;
KC866150; KC866229;
KC866230; KC866231;
KC866272

A. aphrophilus

Aggregatibacter aphrophilus (2) S; SI Aggregatibacter aphrophilus 3.8, 2.9 KC866151; KC866153 Aggregatibacter sp.

Aggregatibacter aphrophilus (1) S; SI Neisseria sicca 0.8 KC866154 N. sicca (nitrate reduction: positive
(N. mucosa), negative (N. sicca, N.
subflava bv. flava); sucrose
acidification: positive (N. sicca, N.
mucosa), negative (N. subflava bv.
flava) [18])

Neisseria subflava bv. flava 1.0

Neisseria mucosa (low
demarcation)

1.1

Aggregatibacter sp. (1) G; GC Aggregatibacter aphrophilus 2.3 KC866155 Aggregatibacter sp.

Bergeyella zoohelcum (1) S; SI Myroides odoratimimus 5.9 KC866156 Flavobacteriaceae

Bergeyella zoohelcum (1) S; SI Neisseria zoodegmatis 0.3 KC866157 N. zoodegmatis

Capnocytophaga canimorsus (2) S; SC Capnocytophaga canimorsus 0.5, 0.4 KC866158; KC866159 C. canimorsus

Capnocytophaga ochracea (1) S; SI Capnocytophaga gingivalis 0.6 KC866160 C. gingivalis

Capnocytophaga ochracea (1) S; SI Capnocytophaga ochracea 2.5 KC866161 Capnocytophaga sp.

Capnocytophaga ochracea (5) S; SI Capnocytophaga sputigena 0.0-0.3 KC866162; KC866163;
KC866164; KC866273;
KC866274

C. sputigena 3

Capnocytophaga ochracea (1) S; SI Dysgonomonas mossii 0.6 KC866165 D. mossii

Capnocytophaga ochracea (1) S; SI Leptotrichia trevisanii 0.2 KC866166 L. trevisanii

Capnocytophaga sp. (2) G; GC Capnocytophaga sputigena 0.0, 0.6 KC866167; KC866232 C. sputigena

Cardiobacterium hominis (4) S; SC Cardiobacterium hominis 0.0-0.5 KC866168; KC866233;
KC866275; KC866299

C. hominis
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Table 1 Identification of clinical isolates (n=158) by conventional methods compared to 16S rRNA gene sequence analysis (Continued)

CDC Group IIe (1) S; SI Chryseobacterium anthropi 0.2 KC866169 C. anthropi (acidification of fructose
and sucrose: positive (C. haifense),
negative (C. anthropi) [19])Chryseobacterium haifense (low

demarcation)
0.6

Comamonas sp. (1) G; GI Oligella urethralis 0.0 KC866170 O. urethralis

Dysgonomonas capnocytophagoides (1) S; SC Dysgonomonas
capnocytophagoides

0.2 KC866171 D. capnocytophagoides

Eikenella corrodens (10) S; SC Eikenella corrodens 0.0-0.8 KC866172; KC866173;
KC866174; KC866175;
KC866176; KC866177;
KC866178; KC866234;
KC866235; KC866236

E. corrodens

Flavobacterium sp. (1) G; GC Flavobacterium lindanitolerans 0.4 KC866179 F. lindanitolerans

Gram-negative rods (1) N Actinobacillus hominis 0.3 KC866238 A. hominis

Gram-negative rods (1) N Actinobacillus hominis 0.0 KC866237 A. hominis (esculin hydrolysis:
positive (A. suis), variable (A. hominis),
negative (A. equuli); mannitol
acidification: positive (A. equuli, A.
hominis), negative (A. suis) [1])

Actinobacillus suis 0.0

Actinobacillus equuli (low
demarcation)

0.5

Gram-negative rods (1) N Aggregatibacter
actinomycetemcomitans

0.2 KC866239 A. actinomycetemcomitans

Gram-negative rods (2) N Aggregatibacter aphrophilus 0.3, 0.8 KC866240; KC866241 A. aphrophilus

Gram-negative rods (1) N Azospira oryzae 0.0 KC866276 A. oryzae

Gram-negative rods (1) N Brevundimonas terrae 0.6 KC866180 B. terrae

Gram-negative rods (3) N Capnocytophaga canimorsus 0.0-0.2 KC866277; KC866278;
KC866279

C. canimorsus

Gram-negative rods (1) N Capnocytophaga sputigena 0.0 KC866280 C. sputigena

Gram-negative rods (2) N Cardiobacterium hominis 0.5, 0.6 KC866281; KC866282 C. hominis

Gram-negative rods (1) N Chryseobacterium haifense 0.2 KC866181 C. anthropi (acidification of fructose
and sucrose: positive (C. haifense),
negative (C. anthropi) [19])Chryseobacterium anthropi (low

demarcation)
0.5

Gram-negative rods (1) N Kingella denitrificans 0.0 KC866182 K. denitrificans

Gram-negative rods (1) N Moraxella atlantae 0.2 KC866242 M. atlantae

Gram-negative rods (2) N Moraxella lacunata 0.0 KC866283; KC866284 M. lacunata

Gram-negative rods (1) N Moraxella lincolnii 0.3 KC866243 M. lincolnii

Gram-negative rods (3) N Moraxella nonliquefaciens 0.0-0.7 KC866285; KC866286;
KC866287

M. nonliquefaciens

Gram-negative rods (2) N Moraxella osloensis 0.0, 0.2 KC866288; KC866289 M. osloensis

Gram-negative rods (1) N Neisseria bacilliformis 0.0 KC866244 N. bacilliformis
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Table 1 Identification of clinical isolates (n=158) by conventional methods compared to 16S rRNA gene sequence analysis (Continued)

Gram-negative rods (1) N Neisseria zoodegmatis 2.0 KC866245 Neisseria sp.

Gram-negative rods (4) N Neisseria elongata 0.0-0.3 KC866246; KC866247;
KC866290; KC866291

N. elongata

Gram-negative rods (1) N Neisseria flavescens 0.5 KC866248 N. subflava (acidification of glucose
and maltose: positive (N. subflava),
negative (N. flavescens) [18])Neisseria subflava (low

demarcation)
0.7

Gram-negative rods (2) N Neisseria flavescens 0.3 KC866249; KC866250 N. subflava (acidification of glucose
and maltose: positive (N. subflava),
negative (N. flavescens) [18])Neisseria subflava (low

demarcation)
0.4

Gram-negative rods (4) N Neisseria weaveri 0.0-0.3 KC866251; KC866252;
KC866253; KC866254

N. weaveri

Gram-negative rods (1) N Pasteurella bettyae 0.0 KC866292 P. bettyae

Gram-negative rods (1) N Pasteurella dagmatis 0.4 KC866255 P. stomatis (urease reaction: positive
(P. dagmatis), negative (P. stomatis);
acidification of maltose: positive (P.
dagmatis), negative (P. stomatis) [1])

Pasteurella stomatis (low
demarcation)

0.4

Kingella denitrificans (1) S; SC Kingella denitrificans 0.6 KC866183 K. denitrificans

Kingella denitrificans (1) S; SI Neisseria elongata 0.0 KC866184 N. elongata

Leptotrichia buccalis (1) S; SI Leptotrichia trevisanii 0.3 KC866293 L. trevisanii

Moraxella lacunata (1) S; SC Moraxella lacunata 0.5 KC866185 M. lacunata (gelatinase reaction:
positive (M. lacunata), negative (M.
nonliquefaciens) [20])Moraxella nonliquefaciens (low

demarcation)
0.7

Moraxella osloensis (1) S; SC Moraxella osloensis 0.0 KC866186 M. osloensis

Moraxella osloensis (1) S; SI Psychrobacter faecalis 0.0 KC866187 P. pulmonis (acidification of glucose
and xylose: positive (P. faecalis),
negative (P. pulmonis) [20])Psychrobacter pulmonis (low

demarcation)
0.2

Moraxella sp. (1) G; GC Moraxella canis 0.2 KC866188 M. canis

Neisseria sp. (1) G; GI Neisseria elongata 0.3 KC866256 N. elongata

Moraxella sp. (4) G; GC Moraxella nonliquefaciens 0.0-0.3 KC866189; KC866190;
KC866257; KC866258

M. nonliquefaciens

Moraxella sp. (8) G; GC Moraxella osloensis 0.0-0.2 KC866191; KC866192;
KC866193; KC866194;
KC866259; KC866260;
KC866261; KC866294

M. osloensis

Neisseria animaloris (EF4a) (1) S; SC Neisseria animaloris 0.0 KC866195 N. animaloris

Neisseria animaloris (EF4a) (1) S; SI Neisseria zoodegmatis 0.0 GU797849 N. zoodegmatis

Neisseria cinerea (2) S; SC Neisseria cinerea 0.0 KC866196; KC866197 N. cinerea (acidification of glucose
and maltose: positive (N.
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Table 1 Identification of clinical isolates (n=158) by conventional methods compared to 16S rRNA gene sequence analysis (Continued)

meningitidis), negative (N. cinerea)
[18])

Neisseria meningitidis (low
demarcation)

0.3

Neisseria elongata (1) S; SI Aggregatibacter aphrophilus 2.4 KC866198 Aggregatibacter sp.

Neisseria elongata (3) S; SC Neisseria elongata 0.0-0.3 KC866203; KC866204;
KC866205

N. elongata

Neisseria elongata (2) S; SI Neisseria bacilliformis 0.1, 0.4 KC866201; KC866202 N. bacilliformis

Neisseria elongata (1) S; SI Neisseria zoodegmatis 0.6 KC866206 N. zoodegmatis

Neisseria elongata (2) S; SI Eikenella corrodens 0.0 KC866199; KC866200 E. corrodens

Neisseria sp. (1) G; GC Neisseria shayeganii 0.3 KC866207 N. shayeganii

Neisseria sp. (1) G; GC Neisseria elongata 0.2 KC866270 N. elongata

Neisseria sp. (1) G; GC Neisseria oralis 0.0 KC866208 N. oralis

Neisseria weaveri (1) S; SC Neisseria weaveri 0.0 KC866211 N. weaveri

Neisseria weaveri (1) S; SC Neisseria shayeganii 0.2 KC866210 N. shayeganii

Neisseria weaveri (1) S; SI Azospira oryzae 0.0 KC866209 A. oryzae

Neisseria zoodegmatis (EF4b) (3) S; SC Neisseria zoodegmatis 0.0-0.5 KC866212; KC866213;
KC866295

N. zoodegmatis

Oligella urethralis (2) S; SC Oligella urethralis 0.0 KC866214; KC866215 O. urethralis

Pasteurella aerogenes (1) S; SI Pasteurella aerogenes 2.7 KC866226 Pasteurella sp.

Pasteurella bettyae (2) S; SC Pasteurella bettyae 0.0 KC866216; KC866262 P. bettyae

Pasteurella canis (1) S; SC Pasteurella canis 0.0 KC866217 P. canis

Pasteurella canis (1) S; SI Pasteurella stomatis 1.6 KC866218 Pasteurella sp.

Pasteurella dagmatis (1) S; SC Pasteurella dagmatis 0.2 KC866271 P. dagmatis

Pasteurella multocida (14) S; SC Pasteurella multocida 0.0-0.2 KC866219; KC866220;
KC866221; KC866222;
KC866223; KC866263;
KC866264; KC866265;
KC866266; KC866267;
KC866268; KC866296;
KC866297; KC866298

P. multocida

Pasteurella pneumotropica (1) S; SI Bisgaard Taxon 22 1.7 KC866224 Pasteurella sp.

Pasteurella sp. (1) G; GI Necropsobacter rosorum 0.0 KC866269 N. rosorum

Roseomonas sp. (1) G; GC Roseomonas mucosa 0.0 KC866225 R. mucosa
1Assignment to taxonomic level: S = species, G = genus, N = not identified.
2Correctness of assignment: SC = correct at species level, SI = incorrect at species level, GC = correct at genus level, GI = incorrect at genus level, N = not identified.
3 Difficult differentiation of species in question by conventional tests.
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Table 2 Summary of identification of fastidious GNR isolates (n=158)

Identification procedure % correct identification at taxonomic level % incorrect assignment at taxonomic level or no identification

Species Genus Species Genus No identification

16S rRNA gene sequence
analysis

94% (n=148) 5% (n=9) - - 1% (n=1)

Conventional phenotypic
methods

40% (n=64) 13% (n=21) 20% (n=31) 2% (n=3) 25% (n=39)

de Melo Oliveira et al. BMC Microbiology 2013, 13:162 Page 7 of 10
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Results
One hundred fifty-eight clinically relevant human iso-
lates of fastidious GNR (including rod forms of the
genus Neisseria) were collected in our diagnostic la-
boratory during a 17-year period. Most of the 158 fas-
tidious GNR isolates belonged to the following genera:
Neisseria (n=35), Pasteurella (n=25), Moraxella (n=24),
Aggregatibacter (n=20), Capnocytophaga (n=15), Eikenella
(n=12), Cardiobacterium (n=6), Actinobacillus (n=3),
Oligella (n=3), and Kingella (n=2) (Table 1). 16S rRNA
gene analysis identified 94% of the 158 isolates to species
level and 5% to genus level; one isolate could only be
assigned to family level (Tables 1 and 2). Thirteen isolates
were assigned to species level with low demarcation to the
next species but supplemental conventional tests revealed
a final identification to species level (Table 1). Conven-
tional methods assigned 60% of the isolates to species level
and 15% to genus level (Tables 1 and 2). However, only
40% were correctly assigned to species level and 13% cor-
rect to genus level considering the 16S rRNA gene se-
quencing as reference method. 47% of the isolates were
misidentified or not identified by conventional methods;
nevertheless, 18 of the 31 isolates incorrectly assigned to
species level were identified to the correct genus (Table 2).
Table 3 Taxa with mostly reliable identification of
fastidious GNR by conventional phenotypic methods

Conventional phenotypic methods
(number of isolates)

Final identification 1

Aggregatibacter aphrophilus (14) A. aphrophilus (11)

Aggregatibacter sp. (2)

Neisseria sicca (1)

Capnocytophaga canimorsus (2) C. canimorsus (2)

Capnocytophaga sp. (11) C. sputigena (7)

C. gingivalis (1)

Capnocytophaga sp. (1)

Dysgonomonas mossii (1)

Leptotrichia trevisanii (1)

Cardiobacterium hominis (4) C. hominis (4)

Eikenella corrodens (10) E. corrodens (10)

Pasteurella multocida (14) P. multocida (14)
1 Final identification was assigned using 16S rRNA gene identification as the
reference method and if required with supplemental conventional tests.
Conventional methods mostly misidentified Moraxella
spp. and Neisseria spp.; only 2 out of 24 Moraxella spp.,
3 out of 10 Neisseria elongata and 1 out of 5 Neisseria
weaveri, respectively, were correctly identified to species
level. In contrast, results of phenotypic identification of
Aggregatibacter aphrophilus, Cardiobacterium hominis,
E. corrodens, Pasteurella multocida and Capnocytophaga
sp. other than Capnocytophaga canimorsus were largely
congruent with 16S rRNA gene sequence analysis
(Table 3). These bacteria display biochemical key reac-
tions that differentiate them from other fastidious GNR;
e.g., a positive ornithine decarboxylase reaction and
missing sugar acidification in the cystine-trypticase agar
medium is typical for E. corrodens; a blood culture iso-
late with a positive indole reaction and a negative cata-
lase is diagnostic for C. hominis; P. multocida has a
typical pattern of acidification of sugars and a positive
indole reaction and together with a history of cat bite
the diagnosis is feasible [1]. C. canimorsus differs from
Capnocytophaga gingivalis, Capnocytophaga ochracea,
Capnocytophaga sputigena by the positive catalase and
oxidase – together with the typical morphology of
spindle-shaped cells in the Gram stain and the anamnes-
tic history of a dog bite, the identification is possible
with conventional methods; the other Capnocytophaga
spp. with a negative catalase and oxidase are difficult to
differentiate by conventional methods but identification
to the genus level is feasible [21].
The 80 out of 158 isolates analysed by the VITEK 2 NH

card belonged to the following genera: Neisseria (n=21),
Moraxella (n=13), Eikenella (n=12), Aggregatibacter (n=11),
Pasteurella (n=9), Capnocytophaga (n=6), Actinobacillus
(n=2),Cardiobacterium (n=2), Kingella (n=2), Dysgonomonas
(n=1) and Leptotrichia (n=1) (Table 4). The VITEK 2 NH
card identified 25 (31%) and 7 (9%) isolates to correct
species and genus level, respectively; 4 isolates were
assigned to incorrect genus and 21 isolates were not
identified; 12 of the further 23 isolates incorrectly assigned
to species level were identified to correct genus (Table 4).
However, the VITEK 2 NH database includes taxa of only
43 of the 80 isolates studied. Regarding only taxa included
in the VITEK 2 NH database, 25 (58%) and 7 (16%) out of
43 isolates were identified to correct species and genus
level, respectively. The VITEK 2 NH card supports the
identification of A. aphrophilus, C. hominis, E. corrodens,
Capnocytophaga sp. and Kingella sp.



Table 4 Clinical isolates tested by the colorimetric VITEK 2 NH card (n=80)

VITEK 2 NH card (number of isolates) Level of identification and correctness of result Final identification 1

Actinobacillus ureae (1) S 2; SI 3 A. hominis

Aggregatibacter aphrophilus (5) S; SC A. aphrophilus 4

Aggregatibacter aphrophilus/Haemophilus parainfluenzae 5 (3) G; GC A. aphrophilus 4

Campylobacter fetus/coli (2) G; GI Moraxella osloensis

Capnocytophaga sp. (4) G; GC C. sputigena 4

Capnocytophaga sp. (1) G; GI Dysgonomonas mossii

Capnocytophaga sp. (1) G; GI Leptotrichia trevisanii

Cardiobacterium hominis (2) S; SC C. hominis 4

Eikenella corrodens (11) S; SC E. corrodens 4

Eikenella corrodens (1) S; SI Neisseria elongata 4

Haemophilus parainfluenzae (1) S; SI Actinobacillus hominis

Haemophilus parainfluenzae 5 (1) S; SI Aggregatibacter aphrophilus 4

Haemophilus parainfluenzae (1) S; SI Pasteurella multocida 6

Kingella denitrificans (2) S; SC K. denitrificans 4

Kingella denitrificans (2) S; SI Neisseria bacilliformis

Moraxella catarrhalis (1) S; SI M. nonliquefaciens

Moraxella catarrhalis (2) S; SI M. osloensis

Moraxella catarrhalis (1) S; SI Neisseria elongata 4

Neisseria cinerea (1) S; SC N. cinerea 4

Neisseria elongata (1) S; SI Capnocytophaga canimorsus 4

Neisseria elongata (1) S; SI Capnocytophaga gingivalis 4

Neisseria elongata (1) S; SI Eikenella corrodens 4

Neisseria elongata (3) S; SC N. elongata 4

Neisseria elongata (4) S; SI N. weaveri

Neisseria gonorrhoeae (1) S; SI Moraxella lacunata

Neisseria sicca (1) S; SC N. sicca 4

Neisseria sicca (2) S; SI N. subflava

Neisseria elongata (1) S; SI N. zoodegmatis

Suttonella indologenes (1) S; SI Aggregatibacter
actinomycetemcomitans4

Not identified (1) N Aggregatibacter aphrophilus 4

Not identified (1) N Moraxella atlantae

Not identified (1) N Moraxella canis

Not identified (3) N Moraxella nonliquefaciens

Not identified (2) N Moraxella osloensis

Not identified (1) N Neisseria animaloris

Not identified (3) N Neisseria elongata 4

Not identified (1) N Neisseria zoodegmatis

Not identified (2) N Pasteurella bettyae

Not identified (5) N Pasteurella multocida 6

Not identified (1) N Pasteurella stomatis
1 Final identification was assigned using 16S rRNA gene identification as the reference method and if required with supplemental conventional tests.
2 Assignment to taxonomic level: S = species, G = genus, N = not identified.
3 Correctness of assignment: SC = correct at species level, SI = incorrect at species level, GC = correct at genus level, GI = incorrect at genus level, N = not identified.
4 Taxon included in the VITEK 2 NH database; Capnocytophaga spp. is included as genus.
5 Accepted as correct genus as Haemophilus aphrophilus was renamed as Aggregatibacter aphrophilus [22].
6 Pasteurella multocida is included in the database of the VITEK 2 ID GNB card (bioMérieux).
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Discussion
In this study, we analysed a large set of fastidious GNR
clinical isolates covering diverse genera and species,
which were obtained under routine conditions in a diag-
nostic microbiology laboratory. Molecular identification
is vastly superior to conventional identification, both in
number of isolates assigned to correct taxon level and in
accuracy (Table 2). A minority (6%) of the 158 isolates
included in the study could not be assigned to species
level by 16S rRNA gene sequence analysis. In contrast,
47% of the 158 isolates were not identified or misidenti-
fied by conventional phenotypic methods (Table 2).
However, the performance of supplemental phenotypic
tests was helpful to support the molecular identification
in cases with low demarcation of two or more species
due to highly similar 16S rRNA gene sequences
(Table 1).
Although the overall correct assignment to taxa by

conventional phenotypic methods was rather poor, some
species are easily assigned to correct species level by con-
ventional identification procedures (Table 3). These are A.
aphrophilus, C. hominis, E. corrodens, P. multocida and
Capnocytophaga sp. other than C. canimorsus, which are
characterised by typical biochemical key reactions that
readily differentiate them from other fastidious GNR. In
contrast, genera of Moraxella and Neisseria represent a
challenge for the biochemical identification. Both genera
often show similar biochemical reaction patterns, e.g.,
positive oxidase reaction or missing acid production from
glucose, sucrose, maltose, mannitol, and xylose in semi-
solid cystine-trypticase agar medium; furthermore, the
morphology in the Gram-stain does often not differentiate
Moraxella and Neisseria species [13].
As alternative to conventional phenotypic methods, we

analysed a subgroup of 80 isolates of fastidious GNR by
the commercially available colorimetric VITEK 2 NH
card (bioMérieux). Despite the limited database, this sys-
tem supports the identification of fastidious GNR similar
to that of conventional biochemical reactions by identi-
fying 31% and 9% of the isolates to correct species and
genus level, respectively.
Accurate identification of clinically relevant isolates of

fastidious GNR is important for adequate interpretation
and reporting as infectious agents and susceptibility test-
ing [1]. However, in a routine diagnostic microbiology
laboratory it is not feasible to subject all clinical isolates
to molecular analyses for identification. Mahlen et al.
proposed an efficient strategy by applying selective cri-
teria such as discordant morphologic or biochemical re-
sults and knowledge of validity of phenotypic testing of
isolates of Gram-negative bacilli [23]. Based on our data,
we propose a cost-efficient algorithm, which is based on
the knowledge of easy-to-identify organisms by conven-
tional phenotypic methods and molecular analyses by
the 16S rRNA gene for other difficult-to-differentiate
species of this group. For identification of fastidious
GNR conventional biochemical reactions and 16S rRNA
gene sequence analysis can be implemented in a diagnostic
laboratory as follows: (i) conventional biochemical identifi-
cation of A. aphrophilus, C. hominis, E. corrodens, and P.
multocida based on the typical reaction pattern is reliable;
and (ii) any other result including Capnocytophaga sp.
should be subjected to molecular methods by 16S rRNA
gene analysis when accurate identification is of concern. By
applying this approach to the 158 fastidious GNR analysed
in our study, at least a third (32%) of the isolates would be
readily identified by conventional phenotypic methods
without laborious molecular analyses.

Conclusions
In time of cost-effectiveness and rapid development of
newer identification methods such as MALDI-TOF MS,
an efficient strategy for difficult-to-identify bacteria is
mandatory as alternative method. In this study we
analysed a substantial set of various clinical isolates cov-
ering 20 genera and 50 species of fastidious GNR and
evaluated the reliability of both conventional phenotypic
methods and 16S rRNA gene analyses for accurate iden-
tification of such microorganisms. We propose an iden-
tification algorithm for fastidious GNR for a routine
diagnostic laboratory as follows: (i) conventional bio-
chemical identification of A. aphrophilus, C. hominis, E.
corrodens, and P. multocida based on the typical reac-
tion pattern is reliable; and (ii) any other result including
Capnocytophaga sp. should be subjected to molecular
methods by 16S rRNA gene analysis when accurate
identification is of concern.
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