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Male-killing Wolbachia do not protect Drosophila
bifasciata against viral infection
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Abstract

Background: Insect symbionts employ multiple strategies to enhance their spread through populations, and some
play a dual role as both a mutualist and a reproductive manipulator. It has recently been found that this is the
case for some strains of Wolbachia, which both cause cytoplasmic incompatibility and protect their hosts against
viruses. Here, we carry out the first test as to whether a male-killing strain of Wolbachia also provides a direct
benefit to its host by providing antiviral protection to its host Drosophila bifasciata. We infected flies with two
positive sense RNA viruses known to replicate in a range of Drosophila species (Drosophila C virus and Flock House
virus) and measure the rate of death in Wolbachia positive and negative host lines with the same genetic
background.

Results: Both viruses caused considerable mortality to D. bifasciata flies, with Drosophila C virus killing 43% more
flies than the uninfected controls and Flock House virus killing 78% more flies than the uninfected controls.
However, viral induced mortality was unaffected by the presence of Wolbachia.

Conclusion: In the first male-killing Wolbachia strain tested for antiviral effects, we found no evidence that it
conferred protection against two RNA viruses. We show that although antiviral resistance is widespread across the
Wolbachia phylogeny, the trait seems to have been lost or gained along some lineages. We discuss the potential
mechanisms of this, and can seemingly discount protection against these viruses as a reason why this symbiont
has spread through Drosophila populations.

Background
Maternally transmitted bacterial symbionts are extre-
mely common in insects, with over half of all species
estimated to be infected by bacteria from the genus
Wolbachia alone [1]. Because maternal inheritance is
often imperfect, and there is commonly a direct physio-
logical cost to infection associated with presence of the
bacteria, these infections can only be maintained where
they increase either the survival or production of female
hosts [2]. Some symbionts become parasites that manip-
ulate the reproduction of their hosts to enhance their
own transmission [3]. For example, many distort the sex
ratio of the host towards females — the transmitting sex
— to aid their spread [4-6]. Others act as mutualists,
increasing the survival or reproductive success of their

hosts, and therefore the number of offspring to which
they are transmitted [7]. Some mutualists are essential
for the host to survive and reproduce (primary sym-
bionts) [8], while others play non-essential facultative
roles and typically only infect a subset of the population
(secondary symbionts [7,9]).
A number of recent studies have found secondary

symbionts providing the host with protection against
parasites and pathogens [10]. In aphids various bacterial
symbionts confer protection to parasitoid wasps [11-13]
and fungi [14], while Spiroplasma bacteria provide pro-
tection from nematodes in Drosophila neotestacea [15]
and parasitoids in Drosophila hydei [16]. Recently, Wol-
bachia has been shown to make species of Drosophila
and mosquitoes resistant to RNA viruses [17-22]. It can
also make D. melanogaster more tolerant to viral infec-
tion, as the survival of flies infected with flock house
virus (FHV) increased despite there being no effect on
viral titres [18]. This protection against viruses is effec-
tive against a remarkably diverse range of single-
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stranded positive-sense RNA viruses, including; Dicistro-
viridae (Drosophila C virus and Cricket paralysis virus),
Nodaviridae (Flock House virus), Picorna-like viruses
(Nora virus), Togaviridae (Chikungunya virus) and Fla-
viviridae (Dengue virus and West Nile virus)
[17,18,20,22,23].
Symbionts can sometimes employ multiple strategies

to enhance their spread through populations. Rickettsia
in whiteflies act both to directly increase host fitness
and distort the sex ratio towards the production of
female offspring [24]. It has recently been shown that
the same strain of Wolbachia can both act as both a
mutualist and a reproductive manipulator; in Drosophila
simulans, strains of Wolbachia that induce strong cyto-
plasmic incompatibility also protect the host from viral
infection [19]. Such dual strategies have the potential to
explain several puzzling aspects of symbiont biology. For
example, symbionts that cause cytoplasmic incompatibil-
ity are extremely common, despite them only being able
to invade populations when they exceed a threshold pre-
valence [2,25,26]. This restrictive condition for invasion
can disappear if the bacterium is also a mutualist [2]. If
symbionts are maintained in populations by cytoplasmic
incompatibility, theory predicts that there are no stable
equilibria below 50%, and yet observed prevalence for
Wolbachia in D. melanogaster are commonly below 50%
[27,28]. This has led to the prediction that such sym-
bionts must also carry some unknown benefit to host
fitness [29], and recent models have suggested natural
enemy resistance can both eliminate any threshold for
invasion and stabilize low prevalence Wolbachia infec-
tions [30]. Similarly, male-killing bacteria spread when
the death of a male benefits its sisters who will transmit
the infection, and this will only occur when there are
antagonistic sibling interactions such as cannibalism or
competition [4]. However, some male-killers have been
reported from species where eggs are laid singly [31], so
sibling interactions are of low intensity. Again, this
could be explained if these bacteria have other effects,
such as increasing host resistance to pathogens. The
high prevalence of symbionts within and across species
[32] could therefore be result of such symbionts that
‘employ’ multiple strategies, and may help explain their
apparent success in invading new host populations or
host species.
In this study we have tested whether D. bifasciata

infected with a male-killing strain of Wolbachia have
greater protection from viral pathogens. This strain of
Wolbachia naturally infects 5-7% of female D. bifasciata
resulting in close to 100% female broods at 18°C [33].
At elevated temperatures, infected males can be pro-
duced, and then the bacteria cause weak cytoplasmic
incompatibility when crossed to uninfected females [33].
In this study we examine whether this bacterium has a

third phenotype by testing whether it confers protection
from two RNA viruses.
The first virus we used was Drosophila C virus (DCV),

a positive sense RNA virus in the family Dicistroviridae
[34] that naturally infects D. melanogaster in the wild
[35,36]. DCV commonly infects laboratory stocks of
other Drosophila species [37], and can replicate when
injected into a wide range of insects [38]. Secondly we
used Flock House virus (FHV), a positive sense RNA
virus in the family Nodaviridae [39]. It is not a natural
pathogen of Drosophila (having been isolates from a
coleopteran [40]), but will replicate in a broad range of
insects and other taxa [41-44]. Wolbachia has been
reported to increase the survival of D. melanogaster
infected with both of these viruses [17,18].

Methods
The Wolbachia-infected line of Drosophila bifasciata
was collected in Japan in 1998 [33]. Since then (>140
generations) they have since been maintained by back-
crossing infected females to males from an isofemale
uninfected line present in the lab for 20 years. The two
lines therefore have the same nuclear genetic back-
ground. Because infected flies were maintained using
male flies from the uninfected stock, other aspects of
the flies (such as any commensal flora) will also be simi-
lar. The Wolbachia infection rate was 100% (no males
were observed in the infected line). The flies were reared
on agar-malt medium at ~18°C.
We used reverse transcription (rt) PCR to check that

the fly stocks we were using were not infected with
DCV or FHV before the experiment. Total RNA was
extracted from 40 individuals per line using Trizol
reagent (Invitrogen Corp, San Diego, CA, USA) as
described previously [45]. RNA was then reverse-tran-
scribed with Promega Goscript reverse transcriptase
(Promega Corp, Madison, WI, USA) using random hex-
amer primers. PCR was carried out on each line using
DCV (kindly provided by Darren Obbard) and FHV pri-
mers [46] (DCV1290F 5’- GATGGTGTTGGCTCT-
GAACAGATG-3’, DCV1590R 5’-CAACTGTATCT
TCCAATGCACCCTG-3’ FHV RNA 1&3 F 5’-GGACC-
GAAGTGCGGTGATG-3’, FHV RNA 1&3 R 5′-
CAGTTTTGCGGGTGGGGGG-3′) with a touchdown
PCR cycle and the viral isolates used for injections as
positive controls. The FHV primer pair are located in
conserved regions (based on alignment to the related
Black Beetle virus and Boolara virus) as are the DCV
primers (based on an alignment to another DCV isolate:
Darren Obbard personal communication) so should
amplify any similar viruses if present.
We then tested the effect of fly Wolbachia infection

status on viral pathogenicity. The viral isolates have
been described previously [36,46] (kindly provided by

Longdon et al. BMC Microbiology 2012, 12(Suppl 1):S8
http://www.biomedcentral.com/1471-2180/12/S1/S8

Page 2 of 6



Luis Texiera) and were prepared as in [18]. We injected
virgin females aged between 4 and 10 days old with
69nl of virus into the abdomen of the fly using a Nano-
ject II (Drummond scientific, Bromall, PA, USA). The
viruses were injected at a tissue culture infective
dosage50 of 1.35 x 106 TCID50 in 69nl for FHV and
1000 TCID50 in 69nl for DCV.
To produce the virus, Schneider Drosophila line 2

(DL2) cells were cultured at 26.5°C in Schneider’s Dro-
sophila Medium (Invitrogen) supplemented with 10%
Fetal Bovine Serum, 2mM L-Glutamine, 100 U/ml peni-
cillin, and 100 μg/ml streptomycin (all Invitrogen). The
cells were infected with DCV, and after they showed
cytopathic effect they were filtered through a 0.45 μm
filter and centrifuged at 13.500 rpm for 10 minutes to
remove any bacteria or cellular components. Aliquots of
a 10-4 dilution of the virus suspension were prepared
using 50 mM TE buffer and frozen at -80°C. To calcu-
late the infectivity of the virus, the Tissue Culture Infec-
tive Dose 50 (TCID50) was calculated. Starting from the
10-4 dilution, serial dilutions to 10-10 were made in
Schneider’s medium, and each dilution was added to 8
wells of a plate. After 7 days the wells were examined
and classed as “infected” when cell death and cytopathic
effects were clearly visible. The TCID50 was calculated
by the Reed-Muench end-point method [47]. The Pois-
son distribution was used to get the number of infective
units per ml (IU/ml) [48]. The experiment was done
twice to ensure the estimates of the TCID50 were
consistent.
As a negative control we also injected flies with Dro-

sophila Ringer’s solution [49] for the DCV experiment
and Drosophila Ringer’s solution diluted 1:2 with Tris
50mM pH 7.5 for the FHV experiment. The different
negative controls reflect how the viral isolate was
diluted. After injection, flies were kept in vials of agar-
sugar medium at ~18°C.
The flies were examined each day and the number of

dead individuals in each vial was recorded. The effect of
Wolbachia on survival rates was analysed using a Cox’s
proportional hazards mixed effect model, which
accounted for between vial variation in survival rates.
The hazard for the ith individual from vial j at time t
was modelled as:

H t H t eij
X b

i j( ) ( )= +
0

b

Where H0(t) is the baseline hazard at time t, Xi is a
vector of the fixed effects, b is the corresponding vector
of coefficients, and bj is a random effect of vial j. The
fixed effects consisted of treatment (virus or negative),
Wolbachia (infected or uninfected) and their interaction.
Flies alive at the end of the experiment were censored.

The model was fitted by maximum likelihood using the
coxme package in R (R Foundation for Statistical Com-
puting, Vienna, Austria).

Results and discussion
DCV: Having established that neither of the D. bifas-
ciata lines tested positive for DCV-like viruses by
rtPCR, 454 flies were injected with DCV (Additional file
1), and their mortality recorded over 16 days (Figure
1a). DCV caused considerable mortality (z=-4.32,
P<0.001), with the death rate of infected flies accelerat-
ing after ten days, such that 59% of the DCV injected
flies had died by day 16 in comparison to 16% in the
uninfected controls. However, the presence of Wolba-
chia did not affect the rate at which DCV kills flies
(Wolbachia x treatment interaction: z=0.23, P=0.82), nor
was there an overall effect of Wolbachia on survival
(z=0.51, P=0.61).
FHV: The results from the FHV experiment were simi-
lar. In this experiment 539 flies were injected (Addi-
tional file 1), and their mortality recorded over 12 days
(Figure 1b). At the end of this time period 88% of the
FHV infected flies were dead compared to 10% of the
uninfected controls (z=-8.72, P<0.001). Again the pre-
sence of Wolbachia had no affect on the rate at which
FHV killed flies (Wolbachia x treatment interaction:
z=0.95, P=0.34), nor was there any main effect of Wol-
bachia (z=-0.29, P=0.77). Neither of the fly lines tested
positive for FHV-like viruses by rtPCR.
It has recently become clear that secondary symbionts

have often evolved multiple strategies to spread through
host populations, and tests on a small number of Wol-
bachia strains have suggested that they may commonly
play a dual role as a mutualist and reproductive parasite
[19]. For the first time we have tested a male-killing
strain of Wolbachia for antiviral effects, and we found it
does not protect its host from the two RNA viruses we
used. The number of other Wolbachia strains that have
been examined for antiviral effects is still small, but the
majority of these have provided protection against
viruses. For example, in Drosophila, of the five Wolba-
chia strains tested, three have antiviral effects (wMel
and the mutant wMelPop from D. melanogaster, and
wAu and wRi from D. simulans) [17-19]. Our results
suggest that Wolbachia strains that do not protect their
hosts against viruses may be common, and that each
strain will require independent evaluation.
There are a number of possible explanations as to why

many Wolbachia strains provide antiviral protection,
whereas the D. bifasciata male killer strain does not.
The difference could be caused by genes in the host, but
results from other species suggest that this may not be
the most likely explanation, as wMel retained its
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antiviral effect even when it was transferred between dif-
ferent dipteran families [20]. We may also have picked
two viruses not affected by this strain of bacterium, but
again results from other Wolbachia strains suggest that
protection is effective against a diverse range of RNA
viruses with positive sense genomes [17,18,20,23].
Therefore, perhaps the most likely reason that the D.
bifasciata male killer may lack the antiviral effect seen
in other strains is due to genetic factors in the bacteria.

Phylogenies of Wolbachia place the D. bifasciata male
killer within the A clade, along with the other Wolba-
chia strains in Drosophila that offer protection against
viruses [33,50,51]. In contrast, the Wolbachia strains
from mosquitoes with antiviral effects belong to the B
clade [21,23]. The lack of association between this trait
and the bacterial phylogeny suggests that the trait has
been lost or gained on some lineages. This is unsurpris-
ing as the Wolbachia genome is known to recombine

Figure 1 Cumulative mortality following injection with DCV (a) or FHV (b). Flies were Wolbachia infected (squares) or uninfected (triangles). Filled
points represent viral injected and unfilled points control injected flies.
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[52,53] and contains mobile phage [54]. In Hamiltonella
defensa, the only case where the genetic basis of sym-
biont-mediated protection is known, a protection of
aphids from parasitoid wasps is encoded on genes car-
ried by a phage [55].
Regardless of whether host or bacterial genes deter-

mine whether different strains have antiviral effects, it is
possible that these genes may not encode the antiviral
factors themselves, but may simply control bacterial
density. In both D. simulans [19] and Aedes albopictus
[22] the Wolbachia strains offering the greatest protec-
tion to viruses have significantly greater densities of
Wolbachia than those that did not.
In many cases the spread of male-killing bacteria

through host populations is surprising. Male-killing bac-
teria are only expected to invade insect populations when
the death of males benefits the surviving females who
will transmit the infection to their offspring [4]. For
example, the females may gain resources by eating their
dead brothers or avoiding competing with them for
resources. In species like ladybird beetles, the eggs are
laid in clutches and there are strong antagonistic interac-
tions between siblings. In other species, like Drosophila
and some butterflies [31], the benefits of killing males are
less obvious and it is possible that the bacteria may
employ other strategies to aid their spread. However, we
have found that in the case of D. bifasciata it seems the
spread of the male-killer has not been aided by any anti-
viral effect against the two viruses examined here.
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