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Abstract

Background: In the past decade, researchers have proposed that the pldA gene for outer membrane
phospholipase A (OMPLA) is important for bacterial colonization of the human gastric ventricle. Several conserved
Helicobacter pylori genes have distinct genotypes in different parts of the world, biogeographic patterns that can be
analyzed through phylogenetic trees. The current study will shed light on the importance of the pldA gene in
H. pylori. In silico sequence analysis will be used to investigate whether the bacteria are in the process of preserving,
optimizing, or rejecting the pldA gene. The pldA gene will be phylogenetically compared to other housekeeping
(HK) genes, and a possible origin via horizontal gene transfer (HGT) will be evaluated through both intra- and inter-
species evolutionary analyses.

Results: In this study, pldA gene sequences were phylogenetically analyzed and compared with a large reference
set of concatenated HK gene sequences. A total of 246 pldA nucleotide sequences were used; 207 were from
Norwegian isolates, 20 were from Korean isolates, and 19 were from the NCBI database. Best-fit evolutionary models
were determined with MEGA5 ModelTest for the pldA (K80 + I + G) and HK (GTR + I + G) sequences, and maximum
likelihood trees were constructed. Both HK and pldA genes showed biogeographic clustering. Horizontal gene
transfer was inferred based on significantly different GC contents, the codon adaptation index, and a phylogenetic
conflict between a tree of OMPLA protein sequences representing 171 species and a tree of the AtpA HK protein
for 169 species. Although a vast majority of the residues in OMPLA were predicted to be under purifying selection,
sites undergoing positive selection were also found.

Conclusions: Our findings indicate that the pldA gene could have been more recently acquired than seven of the
HK genes found in H. pylori. However, the common biogeographic patterns of both the HK and pldA sequences
indicated that the transfer occurred long ago. Our results indicate that the bacterium is preserving the function of
OMPLA, although some sites are still being evolutionarily optimized.
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Background
More than half of the world’s population is colonized
with Helicobacter pylori [1]. Colonization usually occurs
in early childhood and results in disease in about 10% of
cases [2]. This disease will in most cases be diagnosed as
gastric or duodenal ulcers, while some cases will be
diagnosed as gastric cancer [3].
The human gastric ventricle is the only known natural

habitat for H. pylori, and one bacterial strain usually
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establishes a chronic, lifelong, persistent colonization in
one individual [4]. Helicobacter pylori has a high level of
sequence variation and has therefore been referred to as a
quasi-species [5-7]. Natural transformation by exogenous
DNA [8,9], mutations, and recombinations are probably
important mechanisms for H. pylori adaption and survival;
for example, a variable genome could give advantages in
evading the host’s immune system. In spite of the high se-
quence variation observed in H. pylori, 1237 core genes
have been described that are common to the analyzed
H. pylori genomes. The amino acid identities range be-
tween 65-100%. Among these core genes are housekeep-
ing (HK) genes that are essential for H. pylori survival,
and the genetic variability in these genes remains very low
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[10,11]. This conservation is reflected in phylogenetic ana-
lysis, where HK genes have been used to trace human mi-
gration, indicating co-evolution between H. pylori and its
host. Linz et al. traced H. pylori infection in humans to
before their migration from Africa through sequence ana-
lysis [11,12].
Analyses of conserved H. pylori genes indicate the evo-

lution of distinct genotypes in different parts of the
world. The virulence factor cytotoxin-associated gene A
protein, CagA, shows biogeographic variation. Yamaoka
et al. postulated that the geographical differences that
are observed in the incidence of gastric cancer could be
explained by different H. pylori strains (with regard to
the distribution of cagA and vacA genotype) [13]. CagA
is injected in the host cell through the Type IV secretion
system (T4SS) which is coded by Cag Pathogenicity Is-
land (cagPAI) genes. These genes are also involved in
horizontal gene transfer (HGT). Genes integrated into
the H. pylori genome via HGT may have originated from
either other bacteria or eukaryotic cells [14]. Olbermann
et al. [15] analyzed the selection pressure for cagPAI
genes and found that one-third of the genes were under
positive selection. Most of the genes under positive selec-
tion, including the cagA gene, code for surface-exposed
proteins. In positive selection, mutations increase fit-
ness and, thus, new alleles increase in frequency in the
population. In neutral (or nearly neutral) selection, mu-
tations have no drastic effect on fitness and increase or
decrease in frequency by chance. When fitness decreases
due to deleterious mutations, new alleles are removed
through purifying selection (i.e. virD4 and virB11 found
in T4SS) [15].
Several authors have proposed that the pldA gene

(coding for outer membrane phospholipase A, OMPLA)
is important for the ability of the bacterium to colonize
the human gastric ventricle [16,17]. Tannæs et al. [18]
characterized a classical phase-variation in this gene due
to DNA slippage in a homopolymeric tract that results
in either a complete (pldAON) or truncated protein
(pldAOFF). The homopolymeric tract was found in all of
the clinical isolates of H. pylori sequenced by Tannæs
et al. [18]. The conservation of the homopolymeric tract
in this gene through phylogenesis underlines the import-
ance of the gene product and maintenance of the phase
variation for this bacterium. This study investigated the
evolution of the pldA gene in H. pylori. In silico se-
quence analysis was used to determine whether the bac-
teria were in the process of preserving, optimizing, or
perhaps even rejecting the pldA gene. Sequences of pldA
were compared by both identity and phylogenetic ana-
lysis to a reference set of HK genes from a large number
of isolates sequenced by Falush et al. [11]. Horizontal
gene transfer prediction was carried out via both intra-
and inter-species phylogenetic analysis using related taxa
and the estimation of both codon bias and GC content
in H. pylori isolates.

Results
CagA EPIYA genotyping
All of the 20 Korean sequences had an East Asian cagA
ABD genotype. Nearly all of the 50 isolates analyzed
from Norway had Western cagA genotypes, with the fol-
lowing distribution: 66% ABC, 12% ABCC, 12% AB, 4%
ABCCC, and 2% AC. The two isolates collected from
patients with East Asian origins displayed a cagA ABD
genotype (4%).

Amplification of vacA
One Norwegian isolate from a patient of North-African
origin was VacA genotyped. The sample contained an
s1b allele and the m1 mid-region type.

Bioinformatic analyses of H. pylori pldA and seven core
housekeeping genes
Gene evolution was assessed by comparing H. pylori
pldA gene sequences to concatenated core HK genes.
The average pairwise sequence identity was 97.26% ±
0.01 for the pldA sequences and 95.60% ± 0.01 for the
HK genes. The average genetic distance of the pldA
genes was 0.03, while it was 0.05 for the concatenated
HK genes.
The phylogenetic reference tree of concatenated HK

genes is shown in Figure 1. With a few exceptions, the
sequences clustered as expected according to geographic
region. In this phylogenetic tree, the majority of
sequences were from European isolates. They were sepa-
rated into two clades by the African and East Asian iso-
lates. The East Asian cluster could be further subdivided
into Maorian, East Asian, and Amerindian sequences.
Two isolates collected in Norway grouped in the East
Asian subcluster; these patients were of East Asian ori-
gin. As expected, the remaining two samples originating
from Norway were found in the European cluster in the
reference tree. Pecan4 was isolated from a Peruvian pa-
tient and thus initially classified as an Amerindian strain,
however, it does not cluster with the other Amerindians
in the East Asian cluster as was observed by Kawi et al.
[19]. Two isolates in our tree were described by Falush
as hpAfrica but clustered with European sequences, and
both patients were Cape Colored or Mezito, with
European ancestors. Four outliers were not found in the
European cluster [20]. The remaining outliers consisted
of two South African samples and one Piaroa isolate.
The Maorian and Amerindian sequences formed a sub-
cluster with the highest branch support when increasing
the stringency to a 75% bootstrap-value (M1 consensus
analysis; see Methods).
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Figure 1 Phylogenetic tree of Helicobacter pylori housekeeping sequences. The seven concatenated HK genes were biogeographically
classified: blue represents European strains (hpEurope), orange indicates the East Asian (hpEastAsia which includes the subpopulations
hspAmerindian, hspEastAsian and hspMaorian) isolates, and green denotes African (hpAfrica) strains. The outliers are identified by black arrows
(see Discussion for more information). Additional file 3: Table S1 contain label with corresponding MLST/GenBank ID. See Additional file 7: Figure
S1 for complete labeling. This radial tree of 393 sequences is the majority rule consensus of 1000 maximum likelihood bootstrap replicates
analyzed in PhyML with the GTR + I + G model and visualized in FigTree (see Methods for more details).
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The phylogenetic tree based upon the pldA gene
sequences is depicted in Figure 2 (see Additional file 1:
Table S2 for annotations). The majority of the Korean
sequences clustered in the same clade. This cluster con-
tained two isolates sampled in Norway that had an East
Asian cagA EPIYA-ABD genotype and came from patients
of East Asian origin. The four Amerindian strains and five
East Asian sequences from the 19 genome sequences were
also found in this cluster. One of the samples isolated in
Norway was from a patient of African origin and clustered
with the four African sequences. The vacA genotype of this
sample was s1b, the genotype that is most common among
the African, Spanish, and South American populations [21].
This pldA tree was unrooted and consisted of two main
clusters, the East Asian cluster and the smaller African
groups, nested within the vast majority of European
sequences. The two African pldA sequences from the J99
and SouthAfrica7 genomes were found among the
European sequences, as observed in the reference tree.
Only three of the African strains formed a clade with 75%
bootstrap analysis (in M1 consensus tree; data not shown).
The two pldA trees constructed using different models

were compared in TOPD/FMTS using split distances.
The average split distance was 0.58, which indicated that
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Figure 2 (See legend on next page.)
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Figure 2 Phylogenetic tree of Helicobacter pylori pldA sequences. The pldA sequences were biogeographically classified: blue represents
European strains, orange indicates hpEastAsian isolates, and green denotes African strains (hpAfrica). The outliers are identified by black arrows
(see Discussion for more information). Additional file 1: Table S2 contain label with corresponding GenBank Accession ID. Shown are radial
consensus trees of 246 pldA sequences based on 1000 maximum likelihood bootstrap replicates analyzed in PhyML and visualized in FigTree (see
Methods for details). Trees were constructed using either the K80 + G + I model chosen by ModelTest (A) or the GTR + I + G model (B) as used
to construct the reference tree (Figure 1).
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the two trees were neither identical (split difference = 0)
nor completely different (1). A random split distance
was calculated to analyze whether the split distances
were significantly different. Because the random split
distance resulted in a value close to 1 (0.999885, to be
exact), our observations were probably not due to
chance.

Horizontal gene transfer analysis of pldA and
OMPLA sequences
The average GC content of the 19 pldA gene sequences
was 40.18 ± 0.35%, while the average GC content of the
corresponding 19 whole-genome sequences was 38.98 ±
0.21%, a significant difference (P� 10-12). The pldA
mean GC content was greater than 1.5 standard devia-
tions from the GC genomic mean, suggesting horizontal
transfer. We further assessed whether the codon bias
found in the pldA gene sequences could be due to bio-
logical or random effects. The codon adaptation index
(CAI) was estimated by CAIcal [22] to be 0.77, while the
eCAI estimate was 0.75 (with p <0.01; 99% probability
for 99% of the population). This yields a CAI/eCAI ratio
of 1.03; a CAI value higher than the expected eCAI
value indicates codon bias.
We collected 958 OMPLA sequences (listed in the

Additional file 2: Table S3), of which 170 different spe-
cies had pairwise sequence identities to H. pylori be-
tween 15% and 90%. The vast majority of the protein
sequences used in this study were from proteobacteria,
with gamma proteobacteria accounting for nearly 72%. In
addition to proteobacteria, eight Bacteroidetes/Chlorobi
(CFB) species were present. The average length of the
OMPLA protein sequences was 320 amino acids (range
247–393), resulting in 79 residues in the final alignment.
The phylogenetic tree of OMPLA is shown in Figure 3.
The AtpA reference sequences had an average of 511 resi-
dues (range 499–548), and the final alignment contained
445 residues. The phylogenetic tree of AtpA is shown in
Figure 4. Two Enterobacteriaceae species, Proteus vulgaris
and Pantoea agglomerans (GammaPV and GammaPAa in
Figure 3), see Additional file 3: Table S1 for the annota-
tions used) were only found in the OMPLA dataset. The
reference tree displays three distinct clusters of CFB,
gamma, epsilon, and beta proteobacteria. However, the
four delta sequences occurred in two separate clusters in
both the reference and OMPLA trees. Two of them were
sister to the epsilon sequences, as expected because they
belong to the Epsilon/Delta subdivision within Proteobac-
teria. The main difference between the AtpA and OMPLA
trees was that in the OMPLAtree the epsilon proteobac-
teria cluster was separated by multiple gamma clades.
Helicobacter acinonychis and H. pylori were the two most
distant sequences among all of the species in the OMPLA
tree with a very strong bootstrap value (see Additional file
4). Sister to these two species were the remaining six
Helicobacter spp., divided into two subclusters. The div-
ision of the epsilon group was also found using a 75%
bootstrap support in the M1 consensus analysis) (see Add-
itional file 5: Figure S2 and Additional file 6: Figure S3),
indicating a strong branch that separates the Helicobacter
sequences from the rest of the epsilon group. The largest
cluster in the OMPLA phylogenetic tree consisted of
about 50 gamma species. The remaining gamma
sequences were found in closely-related subclusters. Some
gamma proteobacteria were also related to either the epsi-
lon, beta, or CFB subclusters.

Adaptive molecular evolution in pldA sequences
The SWAAP analysis resulted in an average Ka/Ks ratio
of 0.076 ± 0.035, indicating a protein under strong puri-
fying selection. The codon-based Z-test bootstrap ana-
lysis confirmed that a vast majority (98.86%) of the
nucleotide sequences had a high probability (p < 0.01) of
being under purifying selection.
Table 1 depicts the results of the test for positive selec-

tion in PAML. The two models that allowed positive se-
lection, M2 and M8, fit our data better than the models,
M1 and M7, that did not. The LRT showed that the M8
model best fit these data. This model estimated that
fourteen sites (4.63%) were under positive selection
(Table 2), with ω = 1.55 and 85.83% were under purify-
ing selection, with ω < 0.2. The M2 model estimated that
92.12% of the sites were under purifying selection, while
1.46% was positively selected. PAML estimated κ� 4 for
M2 and M8.

Discussion
Brok et al. compared OMPLA protein orthologs from
eleven different species and concluded that OMPLA con-
tained 30 highly-conserved residues. The fact that OMPLA
is present in a wide range of species, including H. pylori,
and that the sequence is conserved across those species,
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Figure 3 Phylogenetic tree of Proteobacteria OMPLA sequences. Majority-rule consensus tree of OMPLA sequences representing
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Figure 4 Phylogenetic tree of Proteobacteria AtpA sequences. Maximum likelihood majority-rule consensus tree of AtpA sequences derived
from 169 species of gamma proteobacteria (blue), beta proteobacteria (brown), epsilon proteobacteria (orange), delta proteobacteria (red), and
Bacteroidetes/Chlorobi (CFB; black). See Additional file 2: Table S3 for species labels used.

Table 1 Likelihood ratio test for model selection

Model lnL LRT χ2 distribution

M1 −12515.96 47.04 >9 with 2 d.o.f. P < 0.01

M2 −12492.44

M7 −12521.64 83.94 >9 with 2 d.o.f. P < 0.01

M8 −12479.67

Nested models with and without positive selection (M1 vs. M2 and M7 vs. M8)
were compared in PAML. The χ2 distribution column shows the minimum
likelihood ratio (=2ΔlnL) necessary for the more complex of two models to be
significantly better (p < 0.01).
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strongly indicates that its physiological role is significant
[23]. This study aimed to better understand the significance
of pldA, the gene coding for OMPLA, in H. pylori; an im-
portant gut bacterium in humans.
The H. pylori pldA gene had a low degree of variability

and, thus, a conserved OMPLA protein sequence align-
ment. Housekeeping genes are essential for bacterial sur-
vival, and are thus highly conserved. The seven HK
genes, atpA, efp, ppa, tphC, ureI, trpC, and mutY, and
the pldA gene are among the core genes that are found



Table 2 Positively-selected sites in pldA of Helicobacter
pylori

Site Residue Probability ω >1 Posterior probability

5 W 0.955* 1.48 ± 0.20

6 L 0.996** 1.52 ± 0.15

21 S 0.830 1.37 ± 0.33

27 I 1.000** 1.52 ± 0.14

34 R 0.576 1.15 ± 0.42

40 I 0.999** 1.52 ± 0.14

50 A 0.989* 1.51 ± 0.15

59 P 0.858 1.39 ± 0.29

137 D 1.000** 1.52 ± 0.14

144 D 0.760 1.32 ± 0.33

153 M 1.000** 1.52 ± 0.14

209 P 0.851 1.39 ± 0.31

211 G 0.836 1.38 ± 0.30

278 V 0.962* 1.48 ± 0.15

PAML predicted that 14 sites were under positive selection (ω >1) using Bayes
empirical Bayes analysis for the M8 model. One asterisk (*) signifies a
probability >95% that ω >1, while two asterisks (**) signify a probability
greater than 99%. The best ancestral reconstruction is indicated by the highest
value in the final posterior probability column.
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in all H. pylori genomes sequenced to date [10]. The
average sequence identity was higher in pldA and the
molecular distance was lower than in the HK genes.
The present study focused on analyzing pldA gene se-
quences that code for functional OMPLA proteins. In
previous studies, we showed that most clinical isolates
contain these coding pldAON sequences [13]. In this
study, we included 155 isolates from a Norwegian pop-
ulation used in the Sørreisa study [24]. Most (97.5%)
of these isolates showed an ON phase variant, indicating
that the gene encodes a functional OMPLA protein in
most individuals. The homopolymeric tract induces a
shift between a functional and a truncated protein by en-
abling a frameshift mutation. Wernegreen et al. postu-
lated that selection will purge nucleotide changes that
could interrupt the slippery tract, to maintain otherwise
volatile sequences [25].
Why the pldA gene in H. pylori contains a homopoly-

meric tract is an enigma, and we explored whether its
existence could be part of a gene deletion process or
perhaps a mechanism needed to prevent activation in
certain environments. The homopolymeric tract corre-
sponded to residues 226–228 in the translated OMPLA
protein. Residue 278 was the most downstream site that
was predicted to be under positive selection in this pro-
tein. The remaining twenty percent of the protein (after
residue number 279) is under purifying selection, indi-
cating functional constraints and implying that the pro-
tein is important to bacterial survival.
Genes under purifying selection are often involved in

host-pathogen interactions. For example, purifying
selection in orthopoxvirus is probably caused by host
defense mechanisms [26]. However, pathogens must also
evolve novel residues to evade the host immune system,
resulting in positive selection on some residues [27].
Such positive selection has been shown in the flagellum-
coding gene flA, which is involved in adhesion in
Aeromonas; nearly the entire protein was under purify-
ing selection, while 17 residues were subject to positive
selection [28]. Our analyses demonstrated purifying se-
lection in most of the pldA sequence, while the
remaining residues were predicted to be under positive
selection. The positively-selected sites were scattered
throughout the OMPLA protein. Petersen et al. con-
cluded that positively-selected sites are exclusively
located in the loops of outer membrane proteins [27]. In
Rickettsiaceae, positively-selected sites were important
for host-parasite interactions and were located at the ex-
terior of the proteins [29]. The E. coli OMPLA structure
had a beta-barrel transmembrane conformation [30].
Thus, one might reasonably assume that its positively-
selected sites are also within surface-exposed regions.
The N-terminal end of the protein contained four
positively-selected sites (two with p ≥ 99), but they
are most likely a signal sequence and not part of the ma-
ture protein.
Bacterial survival and persistence in the gastric mucosa

requires adapting to an environment with constant fluctu-
ating pH. Helicobacter pylori adjusts to pH fluctuations in
the stomach by regulating the expressions of niche-
adapted genes such as urease and ferric uptake regulator
(Fur), which protect against acidity by producing ammo-
nium and modulating the expression of many genes under
acidic conditions, respectively. Both genes are required for
survival under acidic conditions. Fur mutants do not
colonize well and are probably killed by environmental
conditions in regions other than the final colonization
sites, like in the mucus layer. The exact mechanism still
remains unclear [31]. Because the pldA gene is required
for growth at low pH [32] and active OMPLA protein is
important for survival in acidic environments [33], the
gene may be part of the acidic environment niche-adapted
mechanism described. Helicobacter pylori OMPLA is an
outer-membrane protein that is exposed to the continu-
ously changing environment of the host, so its interactions
should be optimized. This could cause some of the resi-
dues to be under positive selection pressure while the rest
of the protein is conserved and is typically observed in
proteins that are in the process of adapting to environ-
mental changes [34].
Helicobacter pylori has demonstrated geographical

clustering of its HK, virulence, and outer membrane
protein genes in phylogenetic studies [11,12,35-38]. Be-
cause many genes with biogeographic patterns are highly
conserved, we were interested in determining whether
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pldA gene sequences showed such partitioning. As a
point of reference, we constructed a phylogenetic tree
with the same sequences used by Falush et al. [11]. We
found biogeographic patterns in both the reference HK
and pldA gene trees; however, bootstrap values in both
trees, indicates relatively weak support for the biogeo-
graphic clades perhaps due to the high sequence identity
found in both alignments. The strongest clade found in
the pldA tree (with >75% bootstrap in the M1 consensus
analysis; see Method section) contained three out of the
four African H. pylori. However, one of the African iso-
lates in the original analysis was not found in this clade.
Thus, the African cluster could be due to the fact that
the data were taken from same patient over many years
[39].The HK reference tree contained sequences from
around the world (using the Falush dataset and H. pylori
genomes). The majority of the Amerindian samples clus-
tered in the East Asian cluster, as reported for other
genes [11,12,37]. However, although SJM180 is from a
native American Peruvian isolate, it clustered with the
European isolates, as described by Manjulata et al. [40].
The two samples in the East Asian subcluster were of
East Asian origin and had an East Asian CagA genotype.
The majority (86%) of the East Asian pldA sequences
contained two mutations (residues K168E and E176K).
In future work, we would like to assess whether and
how these two mutations influence OMPLA structure
and function.
The phylogenetic trees were constructed to analyze

the biogeography of the pldA sequences. In the process,
we discovered that the best-fit substitution model for
the pldA sequences was different from that of the HK
genes. This indicates that the genes have not evolved
under the same conditions and could be explained by
HGT of the pldA gene. The K80 algorithm adjusts for
transition to transversion (ts/tv) bias which was also
confirmed with a high ts/tv rate ratio (κ~4) in the pldA
dataset. We constructed two phylogenetic pldA trees,
using the two models selected for reference and pldA, to
determine how the model would affect the geographical
clustering. This would give insight into how pldA se-
quence evolution compares to that of the housekeeping
genes. The HK reference genes represents the core gen-
ome diversity within H. pylori as they are scattered
around the genome, flanked by conserved genes not
expected to be under any immune selection [11].The
two trees were found to be quite different, with a split
distance ratio of 0.58. Our findings were most likely due
to biological effects rather than random bias. Interest-
ingly, the only biogeographical difference observed be-
tween the two models was in the placement of the
American J99 isolate, which had African characteristics
[11]. This sequence was found in the European cluster
in the pldA K80 tree, while it clustered with the other
African sequences in both the HK and pldA GTR trees.
These analyses could indicate that the genes have co-
evolved along different phylogenetic lines for a long time
and that a possible HGT event involving pldA may have
occurred relatively early in the evolution.
Our hypothesis of HGT was confirmed through both

intra- and inter-species evolutionary analyses. Multiple
analyses can infer HGT, including phylogenetic analysis
of orthologs and estimates of codon bias and GC con-
tent. Our results indicated an ancient transfer, because
the pldA tree had a similar biogeographical pattern to
that of the reference tree. The OMPLA protein is
mainly found in gamma proteobacteria. Horizontal gene
transfer has been observed in, e.g., the CagPAI region,
which has a lower GC content than the rest of the H.
pylori genome [41]. The current study demonstrated a
possible HGT event through the analysis of phylogeny,
GC content, and codon bias. The GC content of the
pldA sequences was slightly but significantly elevated
compared to the rest of the H. pylori genome, and the
difference was well above the accepted mean deviation
threshold [42,43]. Although the H. pylori genomes as a
whole lacked codon bias [44], further analysis was
needed to ensure that the pldA gene was an exception
to this conclusion. The CAI confirmed that the
observed codon bias was most likely due to biological
effects rather than artifact. Thus, the codon bias in the
pldA gene suggested horizontal transfer [22]. Further
confirmation for HGT was found in the phylogenetic
analysis comparing OMPLA and AtpA sequences in
which Helicobacter differed from the other epsilon pro-
teobacteria. In particular, H. pylori and H. acinonychis
were the two most divergent species in the OMPLA
phylogenetic tree. These results were validated using an
approximate likelihood ratio test in PhyML [45]. The
phylogenetic tree of OMPLA conflicts with that of
AtpA, indicating multiple HGT events. The species
found outside of their expected clusters might have
adapted quickly to environmental changes as a result of
HGT events, which accelerate the rate of adaption [46].
This is illustrated in the epsilon cluster; three of the
four non-epsilon bacteria in that clade colonize humans
either as pathogenic bacteria or as part of the intestinal
microbiota (see Figure 3 and Additional file 2: Table S3
for details).

Conclusions
The pldA gene in Helicobacter pylori has high nucleotide
sequence identity due to purifying selection at the vast
majority of residues. The result is a conserved H. pylori
protein that likely has an evolutionarily stable function,
although some probable interaction sites are subject to
positive selection. Although HGT was detected by codon
bias, GC content, and phylogenetic analysis, the
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biogeography of the pldA sequences indicated that the
transfer was ancient. The protein structure of H. pylori
OMPLA will yield a better understanding of the po-
sitively selected sites, which may be surface-exposed
regions. Our analyses indicated that pldA may be a niche-
adapted protein; it was horizontally acquired, is highly
conserved, but positive selection occurs at sites needed
for possible pathogenic interactions.
Methods
Helicobacter pylori sample collection and pldA sequencing
The pldA gene of 227H. pylori isolates was sequenced.
The samples included 207 Norwegian and 20 Korean
isolates. The Norwegian samples consisted of a total of
155 isolates from the Sørreisa study [24] and 52 isolates
collected from four hospitals in the Oslo region. Among
these isolates, 40 had been previously described [33].
The Oslo isolates included samples with known foreign
origins; four isolates with Indo-European origins, two
with Asian origins, and one with an African origin.
DNA was isolated using BioRobot M48 and MagAt-

tract DNA Mini M48 Kit (Qiagen Inc., Valencia, CA,
USA). The pldA gene, including short parts of the up-
and downstream genes, was amplified by polymerase
chain reaction (PCR) with forward primer HP498/499-F
(5’- ttatcgcgcctgtagtga -3’) and reverse primer HP499/
500-R (5’- tatgatcgctggcatgga -3’) at an annealing
temperature of 57°C. The 1068 base pair (bp) pldA-gene
was sequenced using the ABI BigDye Terminators v 1.1
Cycle Sequencing Kit (Applied Biosystems, Foster City,
CA, USA) with the PCR primers and the internal se-
quencing primers HP498/499-R (5’-ggttgatattggggtggta-
3’), PLA-F (5’-tgtccaattcttggtatctc-3’), PLA-R (5’-atgcga-
taggtatagcctaag-3’) and HP499/500-F (5’-tatgatcgctgg-
catgga-3’). The sequencing products were analyzed with
an ABI PRISM 3130 Genetic Analyzer (Applied Biosys-
tems) and the sequences were aligned using Sequencher
software (Gene Codes Corporation, Ann Arbor, MI,
USA). Finally, the DNA sequences were translated to
complete protein sequences using RevTrans [47].
In addition to the 207 sequences collected in Norway

that were included in this study, three additional isolates
were sequenced and excluded because they coded for
truncated proteins.
CagA EPIYA genotyping
To discriminate the East Asian from the European iso-
lates, the CagA genotype was determined in the 20 Ko-
rean samples and 50 of the Norwegian ones.
Amplification and sequencing of the 3’ region of the
cagA gene was performed as described by Yamaoka
et al. [48].
Amplification of vacA
To confirm the African origin of one of the Norwegian
samples, PCR amplification of the vacA signal sequence
and mid-region was performed as described by Atherton
et al. [49].

Biogeographic analysis
Reference phylogenetic tree
A reference phylogenetic tree was constructed using
concatenated HK genes (atpA, efp, ppa, tphC, ureI, trpC,
and mutY) collected from the H. pylori Multi Locus Se-
quence Typing (MLST) database [http://pubmlst.org/
helicobacter/] as described by Falush et al. [11]. In
addition, 19 of the 29 currently-sequenced H. pylori gen-
omes (See Appendix 1 for further annotation) collected
from the National Center for Biotechnology Information
(NCBI) database [http://www.ncbi.nlm.nih.gov] and four
Norwegian isolates, sequenced according to the H. pylori
MLST protocol, were used in the reference tree con-
struction. In total, 393 sequences were aligned using
ClustalW [50], and regions with gaps were removed
using BioEdit [51]. Model selection in MEGA5 [52] was
used to determine the best fit model for maximum like-
lihood (ML) analysis. PhyML v3.0 [53] was used to gen-
erate 1000 ML bootstrap trees using the generalized
time-reversible (GTR) model in which both the discrete
gamma distribution (+G) with five rate categories and
invariable sites (+I) were set to 0.61, as this was the
model with the lowest Bayesian Information Criterion
score.
A consensus tree was constructed with Phylip’s Con-

sense package [54] and imported into FigTree v1.3.1
[http://tree.bio.ed.ac.uk/software/figtree/] for further
visualization. These resolved trees contain monophyletic
groups not contradicting more frequent groups with a
50% default threshold (majority-rule). As a supplement,
a strict analysis with a higher threshold was included
where only groups occurring more than 75% are
included.

PldA phylogenetic tree
The phylogenetic tree for pldA gene sequences was con-
structed using the same method as described for the
reference tree. The pldA sequences were obtained
through a Blast search of jhp_0451, limiting the search
to H. pylori genome sequences. Only pldAON sequences
coding for the entire OMPLA protein were included in
this study. In addition, 19 of the 29 currently-sequenced
H. pylori genomes collected from the NCBI database
were aligned with the pldA gene sequences from the 227
isolates described in the current study. Genomes con-
taining pldA genes that coded for truncated proteins
were excluded from analyses. Reversed sequences from
the genomes were converted to a 5’–3’ reading frame

http://pubmlst.org/helicobacter/
http://pubmlst.org/helicobacter/
http://www.ncbi.nlm.nih.gov
http://tree.bio.ed.ac.uk/software/figtree/
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using a reverse complement calculator [http://www.bio-
informatics.org/sms/rev_comp.html]. The pldA align-
ment was stripped of gaps in BioEdit [51] and imported
into MEGA5 [52] for model selection as described
above. The alignments were analyzed in PhyML [53]
using 1000 bootstraps and the Kimura two-parameter
(K80) model with the gamma distribution (five rate cat-
egories) and invariant sites set to 0.34 and 0.53, respect-
ively; this model was found to be the best by MEGA5. A
consensus tree was made in Phylip’s Consense package
[54] and represented as an unrooted radial tree in
FigTree. The pldA dataset was also analyzed using the
same model (GTR + G + I) used for the reference tree.
The two pldA trees generated using the GTR + G + I
and K80 + G + I models were compared with the
TOPD/FMTS software [55]. A random average split dis-
tance of 100 trees was also created to check if the differ-
ences observed were more likely to have been generated
by chance.

Comparison of pldA sequences with seven core
housekeeping genes
The average pairwise nucleotide identity for pldA and
concatenated HK sequences was calculated in BioEdit
[51]. The average genetic distance was calculated with
the default K80 algorithm in MEGA5 [53,56].

Horizontal gene transfer analysis of pldA and OMPLA
sequences
The DNA stability was determined by calculating the
GC content of the pldA sequences using SWAAP 1.0.3
[57]. The GC content of the pldA sequences was com-
pared to the overall GC content of the H. pylori gen-
omes, and significant differences between these two
groups were calculated using a two-tailed t-test (Excel
2003, Microsoft, Redmond, WA, USA). The Codon
Adaptation Index (CAI) detects codon bias in a DNA se-
quence and indicates the possibility of HGT. CAIcal [22]
was used to calculate the degree of codon bias and com-
pare it to an estimated value from a reference set
(eCAI).
The OMPLA protein sequences from 171 species were

used for an intra-species phylogenetic analysis. Sequences
were collected both from the KEGG database [58], using
KEGG orthologs belonging to EC13.3.13, and, NCBI’s
similar sequence option. Both NCBI Batch Entrez [http://
www.ncbi.nlm.nih.gov/sites/batchentrez] and the Protein
Information Resource (PIR) [59] were used to retrieve the
protein sequences. Pairwise sequence identities were cal-
culated for ClustalW aligned sequences in BioEdit [51].
Sequences with pairwise identities between 15-90% were
kept, and the sequences (Appendix 1 lists all of the Pro-
tein IDs used) were re-aligned using the MAFFT web
server [http://www.genome.jp/tools/mafft/], where the
auto-option chose the FFT-NS-i model (an iterative
method) [60]. Jalview [61] displayed the minimum, max-
imum, and average number of residues in the alignment.
Poorly-aligned and divergent regions were removed using
Gblocks [62]. PhyML [53] was used to construct a phylo-
genetic tree using the default variables (including LG ( Le
and Gascuel) method estimates of the gamma and invari-
able sites). The same procedure was performed on the
ATP synthase subunit alpha (AtpA) reference sequences
that were collected for the species in the OMPLA protein
list by searching the protein NCBI database (See Appendix
1 for the Protein IDs used). The consensus tree of AtpA
and OMPLA sequences were generated from the 1000
PhyML bootstrap trees using Phylip’s Consense package
[54]. Results were visualized as circular trees using FigTree
[http://tree.bio.ed.ac.uk/software/figtree/].

Detection of adaptive molecular evolution of
pldA sequences
To study evolutionary divergence among the pldA
sequences, the mean numbers of synonymous (Ks) and
nonsynonymous (Ka) substitutions per site were esti-
mated using the Nei and Gojobori method [63] in
SWAAP [57]. The Ks value is the mean number of syn-
onymous (silent) substitutions per site, while Ka repre-
sents the mean number of nonsynonymous substitutions
per site (a change of amino acid is observed). The
MEGA5 [52] codon-based Z-test for purifying selection
was used to estimate the probability of rejecting strict
neutrality (null hypothesis where Ka equals Ks) in favor
of the alternate hypothesis Ka < Ks.
The PAML program [64] estimates the nonsynon-

ymous/synonymous ratio, omega (ω), using maximum
likelihood codon substitution models. In this study, four
different models (M1, M2, M7, and M8) were used to
estimate ω as described by Yang et al. [65]. These mod-
els are nested pairs in which one (M1 and M7) does not
allow for positive selection, while the other (M2 and
M8) includes an additional parameter to detect posi-
tively selected sites. The neutral model M1 assumes two
classes of proteins, highly conserved codons (ω = 0) and
neutral codons (ω = 1), and is nested within the M2
model, which has a third category for positive selection
(ω > 1). The two most advanced models, M7 and M8,
use a discrete ß distribution; M8 has an extra class of
codons that allows positive detection (ω > 1) and simpli-
fies to M7. The two pairs of nested models (M1 vs. M2
and M7 vs. M8) were compared using the likelihood
ratio test (LRT) statistic, where 2ΔlnL equals 2*(lnL1 –
lnL0). The lnL1-value is the log-likelihood for the more
advanced model and lnL0 is the log-likelihood for the
simpler model. The 2ΔlnL value follows a χ2 distribu-
tion, where the degree of freedom is the difference in
the number of parameters used in the two models. The

http://www.bioinformatics.org/sms/rev_comp.html
http://www.bioinformatics.org/sms/rev_comp.html
http://www.ncbi.nlm.nih.gov/sites/batchentrez
http://www.ncbi.nlm.nih.gov/sites/batchentrez
http://www.genome.jp/tools/mafft/
http://tree.bio.ed.ac.uk/software/figtree/
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identification of positive selected sites implemented in
PAML uses Bayes empirical Bayes where the posterior
probabilities of each codon was calculated from the site
class of the M2 and M8 models; sampling errors have
been accounted for through Bayesian prior [66,67]. A
pldA tree generated in PhyML using the K80 model (the
best fit as determined in MEGA5) was used in the
PAML analysis. PAML also calculated possible transition
(ts) to transversion (tv) bias (κ = ts/tv).

Nucleotide sequence accession numbers
The nucleotide sequences analyzed in this study were
deposited in the NCBI GenBank database under acces-
sion numbers JX114520 to JX114746.

Appendix 1: Protein and gene annotation IDs
The 19 genomes used, and their pldA EMBL IDs, along
with their expected Helicobacter pylori biogeographic
traits are listed below:

� European traits: HPAG1, Lithuania75, P12, 52,
26695, SJM180, India7 [NCBI NC_008086.1,
CP002334.1, NC_011498.1, CP001680.1,
NC_000915.1, NC_014560.1, CP002331.1];

� African traits: J99, 2017, 2018, 908 and SouthAfrica7
[NCBI NC_000921.1, CP002571.1, CP002572.1,
CP002184.1, CP002336.1, CP002337.1, ];East Asian
traits: F16, F30, 35A, PeCan4, Shi470, 83 and Sat464
[NCBI AP011940.1, AP011941.1, CP002096.1,
CP002074.1, NC_010698.2, CP002605.1,
CP002071.1].

Genes that coded for truncated proteins (pldA OFF)
were not included in this study.

The 169 AtpA sequences used in the HGT analysis
AtpA [NCBI: EHB93466.1, EEB65020.1, EGK01617.1,
EAZ96951.1, EIA10014.1, EHO10730.1, EHQ42656.1,
EAS72787.1, AAZ48838.1, ACV28038.1, EGK08739.1,
EEG10159.1, EDM84731.1, EGC64000.1, AAZ98752.1,
ACN14443.1, EAT15601.1, ADW17434.1, ACD96878.1,
EFU68802.1, ADG93995.1, BAK73949.1, EDZ61621.1,
EIB16597.1, EAT97454.1, EAU01020.1, ABK81906.1,
EEV18591.1, ABS52242.1, ADN90332.1, EET80348.1,
EHL90702.1, EFU71262.1, CAJ99396.1, EEO22948.1,
CCF80240.1, EFR48376.1, EFR47618.1, CBY83548.1,
AAP77024.1, EEQ62944.1, AAD08176.1, EFX42435.1,
EEO26643.1, ABB44682.1, ACZ11550.1, ADR33423.1,
CAE09651.1, CAL18176.1, EAW26695.1, AEB00215.1,
EEY85631.1, EDX91133.1, CAQ80745.1, AEF05917.1,
EAR22945.1, EHD23759.1, AAO91433.1, EHL85304.1,
ACQ68874.1, YP_001451687.1, AAZ26667.1, CBG90709.1,
ABE60630.1, ABU79194.1, ADN00765.1, CBJ48151.1,
AEN67142.1, EDS93360.1, EFV38590.1, CAX62120.1,
EFC54899.1, AEW75952.1, CAG77409.1, CAP78192.1,
CAQ91467.1, GAB51972.1, ACR71021.1, EHQ52780.1,
ABP62783.1, EFE21167.1, EGW54096.1, ADN77981.1,
AEC17221.1, AEP31454.1, GAB56517.1, AEE25184.1,
CBV44330.1, ABC33685.1, ACX97137.1, EHK61102.1,
EGP19691.1, EAQ31531.1, AAV83453.1, EHS93248.1,
AEK00623.1, EGL54277.1, ADP99760.1, EDM48519.1,
ABM20945.1, EGE27602.1, EAW32658.1, EHJ04715.1,
ADZ93414.1, AEF56544.1, EBA00697.1, EAQ64801.1,
ABR73359.1, EDM65164.1, EEF79996.1, EAS66680.1,
EEB44391.1, ABG42796.1, EEX50537.1, EGI73341.1,
ABM05406.1, GAA05763.1, AET16617.1, EEI49869.1,
EAS45491.1, EEG87182.1, EFE51392.1, EFB70640.1,
EFM18673.1, ADU71268.1, EIB97664.1, EAR55051.1,
EDU61485.1, GAA64110.1, EAR27048.1, AEX54272.1,
GAB59628.1, EAR11223.1, ABM01849.1, CCC32467.1,
AEG13513.1, ABE57027.1, CAR35257.1, ABI73872.1,
BAE75687.1, ABZ78836.1, ABO25710.1, EFA14838.1,
ABV89552.1, ACJ31773.1, ADV56630.1, EIC83933.1,
ABV39090.1, EGM67869.1, BAJ04308.1, ACA89149.1,
EGV28007.1, EGV18064.1, EGZ46719.1, EAS75526.1,
EAS62862.1, AAW87061.1, EEX40605.1, EGF42098.1,
EDL54805.1, EGD19228.1, ZP_09853641.1, EEP94770.1,
EEQ08006.1, EEQ18999.1, YP_654074.1, EEQ03775.1,
EEQ00089.1, EHM50189.1].

The 171 OMPLA sequences used in the HGT analysis
OMPLA: [NCBI EAZ99640.1, ADW17991.1, EHQ52957.1,
EGL54504.1, EGK10785.1, EGV19191.1, CAQ79680.1,
EEY87557.1, EEB64935.1, EHO08344.1, EGC65261.1,
EIA07918.1, EAR22975.1, EGD17737.1, EHK60019.1,
AAZ46833.1, AAZ96049.1, EGP20312.1, EHB92999.1,
EDM47887.1, ZP_09857083.1, EHJ06187.1, EAS71795.1,
EDM84432.1, ABM17560.1, GAB54415.1, AEP29176.1,
EGK01773.1, CAL17552.1, EEF79803.1, ACN14146.1,
ADR35309.1, EDX88885.1, EHQ44562.1, EET80219.1,
ABB43297.1, AEF53991.1, ADP95974.1, AEE23125.1,
ADZ90582.1, EAR10180.1, EAQ32639.1, CBV41928.1,
EDL54875.1, ABR72196.1, EAQ63108.1, ACV26008.1,
EAS65010.1, EGZ42951.1, EGV31023.1, ZP_01234806.1,
GAA04467.1, EEG09398.1, EDZ63591.1, EAR56640.1,
EGF41493.1, AAV83321.1, AEF05108.1, AEA97203.1,
EAU01382.1, ACQ67963.1, CAD32066.1, EAS76085.1,
ADG93813.1, ABM05176.1, EAZ96211.1, ABE58799.1,
ABS52347.1, AAW86051.1, ABG40599.1, EDM67950.1,
EEV17429.1, ADN76662.1, EHD19745.1, ABC27991.1,
ADN00421.1, EFB72463.1, BAK72959.1, ABV35292.1,
BAJ03481.1, GAB60703.1, ACA85081.1, EAR28662.1,
EGI74195.1, EEB46686.1, GAA62323.1, EAT16431.1,
EAS40470.1, ACJ30728.1, ACD97136.1, AEN66963.1,
EAW30307.1, ABZ78078.1, EFE52140.1, EDU58126.1,
EFC53577.1, ABO22543.1, ABV11329.1, ACX96270.1,
EAW29496.1, EIC83527.1, ABV85988.1, ABM01096.1,
BAE75613.1, CAR35328.1, EEP97888.1, EGM70992.1,
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CAA54224.1, EFA15011.1, ABU78936.1, AET16551.1,
EFU69622.1, ABI73025.1, EGW55053.1, ACZ13275.1,
EEQ18686.1, EEP94174.1, ABE54243.1, AEG10235.1,
CAQ91143.1, EHL84474.1, CAX57751.1, 1FW2,
ABP62630.1, EHM51878.1, GAB53576.1, EHS92439.1,
CBG90636.1, EFV38511.1, EAT97941.1, CCC32538.1,
CAA54223.1, EIB97812.1, EEG87253.1, CAE01133.1,
ADV55550.1, EDS90253.1, EEX50977.1, EEQ03301.1,
AAD03498.1, AEX54094.1, ABK82197.1, ACR67376.1,
EEQ04956.1, EFM18818.1, EEI47649.1, ADU67494.1,
ACV41773.1, CAA71915.1, EFE21458.1, AEC17546.1,
CAE09192.1, CAJ99604.1, EEO25025.1, CCF79664.1,
EES88872.1, EFR45804.1, CBY82368.1, AAP77450.1,
EEQ63232.1, AAD07564.1, EFX41646.1, EEO25572.1]
[SwissProt C9PFN8_VIBFU, D4ICJ7_ERWAE, D6DP51_ENTCL,
E6LA24_CAMUP, Q0P8Q8_CAMJE, Q83E43_COXBU]
[PRF 3020410HLP, 3117429CWR].
Additional files

Additional file 1: Table S2. pldA labeling. Lists the NCBI accession
number with the corresponding labelling used in Figure 2a and b.

Additional file 2: Table S3. Proteobacteria labelling. This table contains
the abbreviated Proteobacteria names found in Figures 3 and 4 with the
corresponding full bacteria name.

Additional file 3: Table S1. Housekeeping labelling. This table lists the
MLST ID or NCBI accession number of the 7 concatenated housekeeping
genes used in the analysis depicted in Figure 1.

Additional file 4: Extended majority rule consensus tree (outfiles).
The outfiles that are the CONSENSE software results file from the
phylogenetic trees from the phylogenetic analysis of housekeeping
(Figure 1), pldA (Figure 2a and b), OMPLA (Figure 3) and AtpA (Figure 4).

Additional file 5: Figure S2. Phylogenetic tree of Proteobacteria
OMPLA sequences. Additional file 5 is a strict analysis of the OMPLA
sequences found Figure 3. In this analysis, a higher threshold is used
where only groups occurring more than 75% is included (M75).

Additional file 6: Figure S3. Phylogenetic tree of Proteobacteria AtpA
sequences. Additional file 5 is a strict analysis (M75) of the OMPLA
sequences found Figure 4.

Additional file 7: Figure S1. Phylogenetic tree of H. pylori
housekeeping sequences. Additional file 7 supplements Figure 1 with
complete labelling.
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