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Genetically altering the expression of neutral
trehalase gene affects conidiospore
thermotolerance of the entomopathogenic
fungus Metarhizium acridum
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Abstract

Background: The entomopathogenic fungus Metarhizium acridum has been used as an important biocontrol
agent instead of insecticides for controlling crop pests throughout the world. However, its virulence varies with
environmental factors, especially temperature. Neutral trehalase (Ntl) hydrolyzes trehalose, which plays a role in
environmental stress response in many organisms, including M. acridum. Demonstration of a relationship between
Ntl and thermotolerance or virulence may offer a new strategy for enhancing conidiospore thermotolerance of
entomopathogenic fungi through genetic engineering.

Results: We selected four Ntl over-expression and four Ntl RNA interference (RNAi) transformations in which
Ntl expression is different. Compared to the wild-type, Ntl mRNA expression was reduced to 35-66% in the RNAi
mutants and increased by 2.5-3.5-fold in the over-expression mutants. The RNAi conidiospores exhibited less
trehalase activity, accumulated more trehalose, and were much more tolerant of heat stress than the wild-type. The
opposite effects were found in conidiospores of over-expression mutants compared to RNAi mutants. Furthermore,
virulence was not altered in the two types of mutants compared to the wild type.

Conclusions: Ntl controlled trehalose accumulation in M. acridum by degrading trehalose, and thus affected
conidiospore thermotolerance. These results offer a new strategy for enhancing conidiospore thermotolerance of
entomopathogenic fungi without affecting virulence.

Background
Metarhizium acridum is a haploid entomopathogenic
fungus (Hypocreales: Clavicipitaceae). M. acridum iso-
lates have been used as biocontrol agents for crop pests,
including sugar cane grubs, termites, cockroaches, and
rhinoceros beetles [1]. M. acridum was commercialized
and used for locust control in Australia, West Africa [2],
and China [3].
Insecticide resistance, pest resurgence, and concerns

over environmental impact have made the search for
alternative means of biological pest control more urgent.
Unfortunately, large-scale use of fungal biocontrol

agents is partially limited by the failure of conidia to
retain virulence during long-term storage, transporta-
tion, and use under stressful conditions, such as high
temperature, low humidity, and sunlight exposure [4-6].
Manipulation of culture conditions could optimize the
concentration of spore polyols and sugars, including tre-
halose, and consequently increase tolerance to low rela-
tive humidity [7,8]. However, genetic manipulations of
these polyols and sugars to enhance environmental tol-
erance have not been explored in entomopathogenic
fungi.
To genetically engineer more robust entomopatho-

genic fungi, we focused on the trehalose pathways
involved in stress response. Trehalose is a storage car-
bohydrate as trehalose concentrations are high when
nutrients are limited in resting cells. In many microor-
ganisms and invertebrate animals, trehalose plays a role
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in environmental stress response [9,10] and is a known
stress metabolite as its concentration increases during
certain adverse environmental conditions, such as expo-
sure to heat or toxic chemicals [11]. In Saccharomyces
cerevisiae, trehalose is required for cells to survive
diverse stresses, such as heat shock, starvation, and
desiccation [12]. Additionally, it has been shown to pro-
vide one way for cells to survive thermal stress in vitro
[13]. Based on the stress-protection properties of treha-
lose in vitro and the positive correlation between treha-
lose concentration and stress resistance in vivo, it is
reasonable to expect that trehalose might function as a
protective agent against stress [14,15].
However, studies investigating the relationship

between trehalose and thermotolerance have shown
conflicting results. In S. cerevisiae, the trehalose level
was positively correlated with stress resistance in differ-
ent strains, growth conditions, and heat treatments
[16-18]. Almost all strains exhibited more than a 2- to
10-fold increase in trehalose level after heat-shock treat-
ment [19,20]. Additionally, the defective mutant of the
neutral trehalase gene (Ntl) produced organisms that
were more thermotolerant than the wild type, most
likely because of higher trehalose levels [21]. In contrast,
some studies found no correlation between trehalose
accumulation and thermotolerance under certain condi-
tions, suggesting that trehalose may not mediate ther-
motolerance [22,23].
In most fungal species, trehalose hydrolysis is carried out

by trehalase [24]. The single known exception is Pichia
fermentans, in which trehalase has phosphorylase activity
[25]. Fungal trehalases are classified into two categories
according to their optimum pH: acid trehalases or neutral
trehalases [26,27]. Cytosolic neutral trehalase degrades
intracellular trehalose. The Ntl of S. cerevisiae, Kluyvero-
myces lactis, Candida utilis, Torulaspora delbrueckii, Schi-
zosaccharomyces pombe, and Pachysolen tannophilus is
tightly controlled by signaling pathways that end with the
trehalose being reversibly activated by phosphorylation
[27]. These signaling pathways can be triggered in vivo by
glucose, nitrogen sources, heat shock, and chemicals like
protonophores, which produce intracellular acidulation.
This enzyme has been thoroughly studied in filamentous
fungi, such as Aspergillus nidulans, Neurospora crassa,
and Magnaporthe grisea [21,28], but little is known about
M. acridum neutral trehalase (Ntl) beyond the sequence
in two strains, M. roberstii ARSEF2575 [29,30] and
CQMa102 [31]. Using these sequences and genetic manip-
ulation tools, we can now determine how Ntl affects stress
response in terms of thermotolerance and virulence.
Different fungal growth phases (budding, conidiation,

and germination) are associated with trehalose accu-
mulation or mobilization. Depletion of trehalose sto-
rage marks early germination of fungal spores [26]. In

Cryptococcus neoformans and other pathogenic fungi,
the trehalose pathway is a selective fungicidal target
for antifungal development [28,32]. It is not known
whether Ntl is a virulence factor in M. acridum.
We report here the construction of RNA interference

(RNAi) and over-expression mutants of Ntl to investigate
its role in thermotolerance and virulence of M. acridum.
The results offer a new strategy for improving the ther-
motolerance of fungal conidia and yield insights into
M. acridum spore physiology.

Results
Over-expression and RNA interference mutants and the
expression of Ntl
The pBarEx-NTL over-expression vector contained a
2,535-nucleotide sequence from the Ntl genomic DNA
fragment, including the full coding sequence and parts
of the promoter and terminator sequences (Figure 1A).
The pDPB-NTL vector contained 435 nucleotides of the
Ntl coding sequence (Figure 1B). Both constructs were
transformed to M. acridum CQMa102 using microparti-
cle bombardment. Four M. acridum transformants for
each construct were selected according to their ability to
grow on selective media. PCR analysis showed that the
vector was integrated into the fungal genome.
Expression of Ntl was analyzed by real-time PCR

(Figure 2). In over-expression transformants, Ntl levels
were 2.5-3.5-fold higher than in wild-type levels. In con-
trast, Ntl expression in RNAi transformants was reduced
to 35-66% of wild-type levels.

Ntl is related to trehalose accumulation in conidia
The neutral trehalase activity of conidia increased signif-
icantly in over-expression mutants compared to the
wild-type strain and was reduced significantly in RNAi
mutants (p < 0.05) (Table 1). Significantly positive corre-
lation (correlation coefficient = -0.816, p < 0.05) was
established between neutral trehalase activity and Ntl
expression levels (Table 2). In contrast, the trehalose
concentration in the wild-type strain was significantly
higher than that in the over-expression mutants and

Figure 1 Schematic diagram of the Ntl over-expression vector
(A) and the Ntl RNAi vector (B).
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lower than that in the RNAi mutants (P < 0.05). This
showed that the neutral trehalase activity varied inver-
sely with the trehalose concentration in conidia.
Furthermore, the trehalose concentration was signifi-
cantly positively correlated with Ntl expression levels
and neutral trehalase activity (p < 0.05) (Table 2). This
demonstrated that Ntl is related to trehalose accumula-
tion because it controls the neutral trehalase activity.

Ntl affects conidiospore thermotolerance
After wet-heat exposure at 45°C, the germination rate of
conidia declined with increasing exposure time and the
conidia germination rates of the wild-type strain and
mutants appeared to be significantly reduced for each
succeeding 0.5-hour interval (Figure 3). However, the
response to tolerance was obviously different for the

wild-type strain, over-expression mutants, and RNAi
mutants. The conidia germination rate of the wild-type
strain was significantly higher than that of the over-
expression mutants (p < 0.05) and lower than that of
the RNAi mutants (p < 0.05). Similar results were
observed after dry-heat exposure at 65°C for 0, 1, 2, 3,
4, or 5 hours. Accordingly, the inhibition time value for
50% germination (IT50) of the wild-type strain was
longer than that of the over-expression mutants (p <
0.05) and shorter than that of the RNAi mutants (p <
0.05) (Figure 4). These data showed that the Ntl over-
expression mutants were significantly more sensitive to
heat compared with the wild-type strain (p < 0.05). Con-
trary to that of the over-expression mutants, the ther-
motolerance of the Ntl RNAi mutants was significantly
higher than that of the wild-type strain (p < 0.05).
Furthermore, both trehalase and Ntl mRNA levels

were negatively correlated with the germination rates of
conidia treated with wet heat and dry heat (p < 0.05)
(Table 2), suggesting that Ntl affects conidiospore
thermotolerance.

Ntl has no effect on virulence
Bioassays revealed that mortality trends of locusts inocu-
lated with over-expression mutants or RNAi mutants
were similar to that of locusts inoculated with wild strain
(Figure 5A). Accordingly, no significant differences were
observed in locust lethal time values for 50% mortality
(LT50) between the wild-type strain, over-expression
mutants, or RNAi mutants (p > 0.05) (Figure 5B). This
result suggested changes in Ntl expression level did not
affect the virulence of M. acridum.

Discussion
Resisting thermal stress is important for pathogens of
the locust, like M. acridum, because temperatures fluc-
tuate in locust habitats and locusts themselves could
also employ behavioral fever to counter fungal infection
[33]. Ntl has been reported to play an important role in
environmental stress response. In this study, the func-
tion of Ntl with respect to thermotolerance in M. acri-
dum was investigated by changing its expression level
via RNAi and over-expression mutants.
Trehalose is an important factor determining thermoto-

lerance in M. acridum. Trehalose content and thermoto-
lerance were significantly and positively correlated, and
Ntl activity was significantly and negatively correlated with

Figure 2 Real-time PCR analysis for relative expression of Ntl.
1: wild-type strain; 2-5: over-expression mutants; 6-9: RNAi mutants.
Gapdh was analyzed in parallel as a loading control (not shown).
Standard error (SE) bars are averages for three independent
experiments.

Table 1 Trehalose concentrations and neutral trehalase
activity in wild-type strain compared to over-expression
mutants and RNAi mutants

Strains Trehalose (pg/
conidium)*

Neutral trehalase activity (U/mg
protein)*

1 7.17 ± 0.93 c 14.28 ± 1.14 c

2 5.04 ± 1.17 e 18.08 ± 1.15 ab

3 6.10 ± 0.22 d 16.43 ± 1.21 b

4 5.91 ± 0.27 de 16.29 ± 1.15 b

5 5.51 ± 0.53 e 16.12 ± 0.96 b

6 9.72 ± 0.14 b 8.82 ± 1.26 d

7 10.76 ± 0.83 a 7.59 ± 0.99 e

8 10.38 ± 0.83 ab 8.33 ± 1.12 de

9 10.57 ± 1.31 ab 8.23 ± 1.39 de

*Means (±SE) of 3 repetitions followed by different lowercase letters in the
same column were significantly different at the p < 0.05 level according to
the ANOVA table and Tukey’s multiple range test. 1: wild-type strain; 2-5:
over-expression mutants; 6-9: RNAi mutants.

Table 2 Correlation coefficients (R) of treatments and
cellular components

Dry-heat(R) Wet-heat(R) Trehalose(R) mRNA(R)

mRNA -0.9818 -0.890 -0.831 1.000

Trehalose 0.873 0.898 1.000 -0.831

Trehalase -0.889 -0.905 -0.867 0.816
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thermotolerance (Table 2). These results suggest that tre-
halose accumulation and metabolism play important roles
in thermotolerance, but this factor is not the only control-
ler of thermotolerance [22,34]. The accumulation and
metabolism of other polyols, such as sucrose and glycerol,
may also be factors in stress response [22]. It is possible
that changes in trehalose concentration produced by up-
or down-regulating trehalase levels may also affect the
levels of other polyols and the entire metabolic process.
Further investigation of other polyols in the Ntl mutants is
required to understand fully the mechanism of the effect
of Ntl on M. acridum thermotolerance.
Field conditions and abiotic environmental factors, such

as temperature, moisture, and sunlight, influence whether
infection can occur. When the host temperature favors a
short germination time and that temperature is above or

below the pathogen’s optimum, temperature can be a limit-
ing factor for the disease. However, oil-based formulations
and selective media have been shown to enhance the ther-
motolerance of M. acridum conidia, resulting in promising
acridid control in the field [35,36]. Using the genetic
manipulation tools introduced here for M. acridum, the
thermotolerance of the mycoinsecticidal strain will be
improved to allow for wider commercial application.
A secretary trehalase activity of M. acridum was

detected in the hemolymph of infected insects, suggest-
ing that it is a virulence factor in insect pathogenesis
[29]. In contrast, the changes in neutral trehalase
expression had no effects on virulence in this study,
which agrees with the report on C. neoformans that a
neutral trehalase mutant does not possess any known
virulence defects [32]. Our results indicate that trehalose

Figure 3 Germination rates of M. acridum wild-type strain and Ntl mutants. Wet-heat: aqueous conidial suspensions exposed to 45°C for 0,
0.5, 1, 1.5, 2, or 2.5 hours; dry-heat: dried conidia exposed to 65°C for 0, 1, 2, 3, 4, or 5 hours. 1: wild-type strain; 2-5: over-expression mutants;
6-9: RNAi mutants. Standard error bars (SE) show averages for three independent experiments. Significant differences are designated by the
lowercase letters on the bars of each group (p < 0.05).
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in conidia does not affect virulence; thus, genetically
engineering the trehalose pathway would increase the
thermotolerance of fungal strains with no loss of viru-
lence. Temperature tolerance also affects fungal agent
storage longevity [4]. Further studies are required to
investigate the longevity of the mutants.
The dual promoter RNAi system developed in this study

successfully knocked down the gene expression in filamen-
tous fungus. In previous studies, genes that were knocked
down with isopliae over-expression and RNAi Ntl
transformants exhibited no loss in virulence compared to
wild-type silencing vectors that produced hairpin or
intron-containing hairpin RNA in fungi [37-43], which
involved two steps of oriented cloning. The dual promoter
system simplified the RNAi construction procedure to one
single-step non-oriented cloning, in which transcription of
a target gene from each promoter produced a pool of
sense and antisense RNAs in the cells. This system pro-
vides an easy and efficient tool for knocking down gene
expression, and can be extended to knock down multiple
gene targets from transcriptionally fused genes. Thus, the
dual promoter system offers an efficient platform for func-
tional analysis of entomopathogenic fungal genes and
genetic manipulation for strain improvement.

Conclusions
Our study shows that Ntl expression of M. acridum can
be effectively enhanced or inhibited by over-expression
or RNAi mutants, respectively, using a dual promoter
system. Compared to the wild-type, Ntl mRNA was
reduced to 35-66% in RNAi mutants and increased by
2-3-fold in the over-expression mutants. The conidios-
pores of RNAi mutants had less trehalase activity, accu-
mulated more trehalose, and were much more tolerant
of heat stress than the wild type. The opposite effects
were found in conidiospores of over-expression mutants
compared to RNAi mutants. The Ntl mRNA level was
positively correlated with neutral trehalase activity and
negatively correlated with trehalose concentration and
the thermotolerance of conidiospores, further confirm-
ing the role of Ntl in the thermotolerance of M. acri-
dum. Furthermore, bioassays showed that alteration of
Ntl expression did not affect the virulence.
In conclusion, Ntl regulates thermotolerance through

trehalose accumulation in M. acridum but does not
affect its virulence. The use of the RNAi mutant of Ntl
could provide a new strategy for improving the coni-
diospore thermotolerance of an entomopathogenic fun-
gus without compromising its virulence.

Methods
Strain growth conditions
M. acridum strain CQMa102, a locust-specific strain,
was isolated by our laboratory in Chongqing, China.

Figure 4 IT50 of M. acridum wild-type strain and Ntl mutants.
IT50: inhibition time values for 50% germination of aqueous conidial
suspensions exposed to 45°C and dried conidia exposed to 65°C,
respectively. 1: wild-type strain; 2-5: over-expression mutants; 6-9:
RNAi mutants. Standard error (SE) bars show averages for three
independent experiments. Significant differences are designated by
the different lowercase letters on the bars of each group in the
wet-heat or dried-heat test (p < 0.05).

Figure 5 Bioassay results for M. acridum against Locusta
migratoria. 1: wild-type strain; 2-5: over-expression mutants; 6-9:
RNAi mutants. A: mortality (±SE) of Locusta migratoria treated with
wild-type strain and various Ntl transformants; B: lethal time values
for 50% mortality (LT50) values of Locusta migratoria treated with
wild-type strain and various Ntl transformants. Standard error (SE)
bars are averages for four independent experiments. Same
lowercase letters indicate no significant differences (p > 0.05).
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Conidia were harvested from cultures grown on 1/4
strength Sabouraud’s dextrose agar medium (SDA: 1%
dextrose, 0.25% mycological peptone, 2% agar, and 0.5%
yeast extract) at 28°C. Mycelia for DNA and RNA
extraction were grown by inoculating 100 mL 1/4 SDA
liquid media with 106 conidia and incubating at 28°C
with shaking at 150 rpm for 2-3 days.

Construction of the Ntl over-expression vector
An over-expression vector (pBarEx) for filamentous
fungi was constructed based on pBTM. pBarEx con-
tained a bar gene, promoter pGpdA, and terminator
TTrpC from A. nidulans and a polylinker between
pGpdA and TTrpC.
The full cDNA sequence of Ntl was amplified using

Pyrobest DNA polymerase (TaKaRa, Japan) with primers
B1 (5’-AAT TAC GCG TAC CTC CAC GTT CGT
CAG TC-3’ with an MluI recognition sequence at the 5’
end) and B2 (5’-CGC CAC GCG TTT GAG AGG GCA
ATT AAT CG-3’ with an MluI recognition sequence at
the 3’ end). The PCR product and vector pBarEx were
both digested with MluI, and then ligated using T4
DNA ligase (pBarEx-NTL, Figure 1A).

Construction of the Ntl RNAi vector
A dual promoter RNAi vector for filamentous fungi was
first constructed based on pBTM, which was reported pre-
viously [44], pDPB containing a selectable marker, the bar
gene (resistance to ammonium glufosinate), polylinker,
and two promotors in opposite direction (pGpdA and
pTrpC from A. nidulans).
A fragment of the coding sequence of Ntl (310-745)

was then amplified from M. acridum Ntl cDNA with
primers A1 (5’-ATT AAC GCG TAG CAC AAG AAG
ATA CCG ATG-3’ with an MluI restriction site at the
5’ end) and A2 (5’-TAT AAC GCG TCG CGC CAG
GGA GCT GCT GGA CAT CTAG-3’ with an MluI
restriction site at the 3’ end), which was designed
according to the CQMa102 Ntl cDNA sequence (Gen-
Bank AY557612). The PCR product and vector pDPB
were both digested with MluI, and then ligated using T4
DNA ligase (Takara, Japan) (pDPB-NTL) (Figure 1B).

Transformation of M. acridum
Intact M. acridum CQMa102 conidia were transformed
by microparticle bombardment (Model PDS-1000/He
biolistic particle delivery system, Bio-Rad, USA). For
bombardment, 50 μL of conidia suspension (109 coni-
dia/mL) were placed in the center of a Petri dish. Plas-
mids pDPB-NTL and pBarEx-NTL were linearized with
BamHI and bound to 0.6-μm diameter golden particles
and then transformed into M. anisoplia by particle-
mediated DNA delivery (Model PDS-1000/He biolistic
particle delivery system, Bio-Rad, USA), according to St

Leger [45]. Following bombardment, conidia were resus-
pended in 5 mL of MilliQ water. Aliquots of 200 μL
were plated on Czapek’s medium (3% saccharose, 0.2%
NaNO3, 0.1% K2HPO4, 0.05% KCl, 0.05% MgSO4,
0.001% FeSO4) containing 200 μg/mL ammonium glufo-
sinate and incubated at 27°C for 6-8 days. Transfor-
mants were confirmed by PCR amplification of bar
gene. Post-transformation mitotic stability was evaluated
according to the method in a previous report [46].

Quantification analysis of Ntl transcript
Total RNA was isolated from mycelia using the Trizol
reagent (Invitrogen, USA). The cDNA was synthesized
from DNaseI-treated total RNA with an anchored oligo-dT
primer following the manufacturer’s protocol (Promega,
USA). Real-time PCR was performed using the SYBR-
Green PCR Master Mix kit (Bio-Rad) in a Light Cycler
(Bio-Rad). A standard curve was made to optimize the
amplification efficiency with the primer pairs L1 (5’-GCA-
CAAGAAGATACCGATGGC-3’) and L2 (5’-CGATC-
CACTGGGTTCTCATTTA-3’). Gdpdh encoding gly
ceraldehyde-3-phosphate dehydrogenase was selected as an
internal control, and the primers of 5’-AGATGGAG-
GAGTTGGTGTTG-3’ and 5’-GACTGCCCGCATTGA-
GAAG-3’ were used for it [47]. The cycling conditions
were 95°C for 3 min followed by 45 cycles of 95°C for 10
sec, annealing at 59°C (Ntl) or 60°C (Gdpdh) for 10 sec.
The relative expression level of the Ntl in M. acridum
transformants compared to that in wild-type strain was
determined with the comparative cycle threshold (CT)
method [48]. Biological techniques were conducted in
quadruplicate.

Measurement of trehalose concentrations and
trehalase activity
Trehalose levels in conidia were measured using a
method modified from Foster et al. [28]. Conidia of
both wild-type and M. acridum transformants were har-
vested from 14 day plates, washed with distilled water,
resuspended in 500 μL of water, boiled for 20 min, and
disrupted by vortexing with glass beads (0.5 mm). Cell
debris was removed by centrifugation at 13,000 g for
5 min and the supernatant was stored at 0°C prior to
trehalose assay. A 50-μL aliquot of the conidia lysis
solution was added to 50 μL of 0.1 M sodium citrate
buffer (pH 5.6). Duplicate samples were incubated with
or without 10 μL porcine kidney acidic trehalase (Sigma,
USA) overnight at 37°C. The reaction was stopped by
boiling the sample for 10 min. Following centrifugation,
the glucose concentration in the supernatant was
assayed via a glucose assay kit (Bioscience, China).
To assay trehalase activity, 25 μL of the trehalase

extraction solution were added to the trehalose solution
containing 50 mM HEPS, and the mixture was incubated
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for 30 min at 37°C. The reaction was stopped by boiling
the samples for 10 min, the samples were centrifuged,
and the glucose in the supernatant was assayed using a
commercial kit (Trinder, Sigma).

Heat shock treatment
Conidia were prepared as described above. For the wet-
heat shock test, conidia were suspended in 1 mL steri-
lized water. The suspension was vigorously shaken and
filtered through cotton cloth and diluted to a concentra-
tion of 1 × 107 conidia·mL-1. Subsequently, the suspen-
sion was immediately placed in a stirred water bath at
45°C for 0.5, 1, 1.5, 2, or 2.5 hours. For the dry-heat
shock test, conidia were dried in a desiccator containing
silica gel until the moisture content was less than 5%.
Dried conidia were maintained in an incubator oven at
65°C for 1, 2, 3, 4, or 5 hours, and then suspended in
sterilized water (1 × 107 conidia·mL-1). The conidial sus-
pensions maintained at 28°C were used as a control.
Germinations were measured by plating 50 μL on
1/4SDA plates. After 24 hours incubation in the dark at
28°C, the germination rate was checked with a micro-
scope (Motic, china) at 400× magnification. About 300
conidia were evaluated for germination from different
areas in each plate. Inhibition time values for 50% ger-
mination (IT50) were used to estimate the conidiospore
thermotolerance of M. acridum using DPS software [49].

Bioassays
Locusta migratoria were reared in our lab under
crowded conditions as previously described by He et al.
[50]. Male and female insects were separated after adult
emergence. Male adult locusts (2-3 days after eclosion)
were used in the bioassay tests. A 5-μL solution of 2 ×
106 conidia/mL of either wild-type M. acridum or trans-
formants in cottonseed oil (Sigma) was applied to the
locusts’ head-thorax junctions. Treated locusts were
separately confined in cages (20 × 20 × 20 cm) by
40 mesh, and kept at a temperature of 28°C with a 16:8 h
(light:day) photoperiod. There were four replications of n
= 30 locusts in each treatment. Mortality was recorded
daily and lethal time values for 50% mortality (LT50)
values were used to estimate the infectivity of
M. acridum by DPS software [49].

Statistical analysis
All samples and treatments were carried out in triplicate
unless stated otherwise. Data were square root arcsine
transformed before being subjected to analysis of var-
iance (ANOVA) for a completely randomized design.
The means were separated using Tukey’s multiple range
test, carried out using DPS software [47]. Statistical sig-
nificance was established at p < 0.05.
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