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Abstract

protected mice against infectious challenge.

colonization and invasive disease.

Background: Streptococcus pneumoniae (the pneumococcus) is the leading cause of otitis media, community-
acquired pneumonia (CAP), sepsis, and meningitis. It is now evident that S. pneumoniae forms biofilms during
nasopharyngeal colonization; the former which facilitates persistence, the latter, a prerequisite for subsequent
development of invasive disease. Proteomic evaluation of S. pneumoniae suggests the antigen profile available for
host-recognition is altered as a consequence of biofilm growth. This has potentially meaningful implications in
regards to adaptive immunity and protection from disseminated disease. We therefore examined the antigen
profile of biofilm and planktonic pneumococcal cell lysates, tested their reactivity with human convalescent sera
and that generated against biofilm pneumococci, and examined whether immunization with biofilm pneumococci

Results: Biofilm pneumococci have dramatically altered protein profiles versus their planktonic counterparts. During
invasive disease the humoral immune response is skewed towards the planktonic protein profile. Immunization
with biofilm bacteria does not elicit a strong-cross-reactive humoral response against planktonic bacteria nor confer
resistance against challenge with a virulent isolate from another serotype. We identified numerous proteins,
including Pneumococcal serine-rich repeat protein (PsrP), which may serve as a protective antigens against both

Conclusion: Differential protein production by planktonic and biofilm pneumococci provides a potential
explanation for why individuals remain susceptible to invasive disease despite previous colonization events. These
findings also strongly suggest that differential protein production during colonization and disease be considered
during the selection of antigens for any future protein vaccine.

Background

Streptococcus pneumoniae (the pneumococcus) is the
leading cause of otitis media, community-acquired
pneumonia (CAP), sepsis, and meningitis. Primarily a
commensal, S. pneumoniae colonizes the nasopharynx
of 20-40% of healthy children and 10-20% of healthy
adults. In most instances nasopharyngeal colonization is
asymptomatic and self-limited. However, in susceptible
individuals, in particular infants and the elderly, S. pneu-
moniae is capable of disseminating to sterile sites and
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causing opportunistic invasive disease [1-4]. Worldwide
and despite aggressive vaccination policies, the pneumo-
coccus is responsible for approximately 1.6 million
childhood deaths per year and is associated with a case-
fatality rate exceeding 20% in individuals >65 years of
age [5-7]. Thus, the disease burden caused by the pneu-
mococcus is tremendous.

It is now evident that S. pneumoniae forms biofilms
during colonization and in the middle ear during otitis
media. Pneumococcal biofilms have been detected in the
nasopharynx and sinuses of individuals with chronic rhi-
nosinusitis, the surface of resected adenoids, occluded
tympanostomy tubes and mucosal epithelial cells iso-
lated from the middle-ear of children with persistent
otitis media, and biofilm aggregates have been observed
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in nasal lavage fluids collected from experimentally
infected mice [8-14]. In general, bacterial biofilms are a
community of surface-attached microorganisms that are
surrounded by an extracellular polymeric matrix (EPM)
composed of DNA, polysaccharide, and protein [15-17].
Due to their EPM, as well as altered gene transcription,
metabolism, and growth rate, biofilm pneumococci have
been shown to be resistant to desiccation, host mechan-
isms of clearance including opsonophagocytosis, and to
antimicrobial therapy [14,16,18-22]. Thus, growth within
a biofilm presumably facilitates S. pneumoniae persis-
tence during colonization. A notion supported by the
finding that S. pneumoniae mutants deficient in biofilm
formation in vitro were outcompeted by wild type bac-
teria in the nasopharynx of mice [23].

Proteomic evaluation of a serotype 3 S. pneumoniae
clinical isolate found that the protein profile between
planktonic exponential growth-phase bacteria and
those in a mature biofilm differed by as much as 30%
[24]. Numerous investigators have since shown bio-
film-dependent changes in gene-expression and the
production of established virulence determinants.
These include the candidate protein vaccine antigens:
pneumolysin, a cholesterol-dependent cytolysin [25];
pneumococcal serine-rich repeat protein (PsrP), a lung
cell and intra-species adhesin [14,26,27]; choline bind-
ing protein A (CbpA), an adhesin required for coloni-
zation and translocation across the blood brain barrier
[28,29], and pneumococcal surface protein A (PspA),
an inhibitor of complement deposition [23,30,31].
Thus, the antigen profile available for host-recognition
is altered as a consequence of the mode of bacterial
growth (i.e. biofilm versus planktonic growth) with
potentially meaningful implications in regards to adap-
tive immunity.

For the latter reason, we examined the antigen profile
of biofilm and planktonic pneumococcal cell lysates and
tested their reactivity with human convalescent sera.
Additionally, we examined whether antibodies generated
against biofilm pneumococci preferentially recognized
cell lysates from either the planktonic or biofilm pheno-
type and protected against infectious challenge. Our
findings show that the humoral immune response devel-
oped during invasive disease is strongly skewed towards
the planktonic phenotype. Furthermore, that the anti-
body response generated against biofilm bacteria poorly
recognizes planktonic cell lysates and does not confer
protection against virulent pneumococci belonging to
another serotype. These findings provide a potential
explanation for why individuals remain susceptible to
invasive disease despite prior colonization and strongly
suggest that differential protein production during colo-
nization and disease be considered during the selection
of antigens for any future vaccine.
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Results

Differential protein production during biofilm growth
Large-scale proteomic analysis of S. pneumoniae during
biofilm growth is currently limited to a single isolate,
serotype 3 strain A66.1 [24]. To examine the protein
changes incurred during mature biofilm growth in
TIGR4, a serotype 4 isolate, we first separated cell
lysates from planktonic and biofilm TIGR4 by 1DGE
and visualized proteins by silver stain (Figure 1A). As
would be expected, extensive differences were observed
with numerous unique protein bands present in either
the biofilm or planktonic lanes, some bands with
enhanced intensity under one growth condition, and
other bands demonstrating no change. Following visuali-
zation of whole cell lysates by 2DGE and Coomassie
blue staining, we confirmed biofilm-growth mediated
changes at the individual protein level with numerous
spots having reproducible unique and enhanced/dimin-
ished protein spots the gels (Figure 1B).

To identity those proteins with altered biofilm produc-
tion, whole cell lysates from biofilm and planktonic pneu-
mococcal cell lysates were separated by 1DGE and
proteins within the gel were identified by MALDI-TOF
analysis by cross-referencing the detected peptides against
the TIGR4 genome. Of note, enumeration of the detected
peptides allows for a semi-quantitative analysis [32], thus
we could assess whether the detected proteins were altered
during biofilm growth. In total, 123 proteins met our strin-
gent criteria for identification (see methods), 103 (84%) of
which demonstrated a >2-fold difference in the number of
enumerated peptides in a given growth-phenotype (Table
1). Strikingly, during biofilm versus planktonic growth, 96
proteins (78%) had diminished production and only 8 pro-
teins (6.5%) had enhanced production. The former
included proteins involved in mRNA translation (i.e. Elon-
gation factor Tu and G, 50 s and 30 s ribosomal proteins),
virulence (i.e. pneumolysin, enolase, pyruvate oxidase) and
assorted metabolic pathways. Thus our findings were in
agreement with the overall accepted notion that biofilm
bacteria experience reduced protein synthesis, altered viru-
lence determinant production, and have an altered meta-
bolism [15,16]. The 8 proteins found to be upregulated
during TIGR4 biofilm growth included: PsrP; Foldase pro-
tein A (PrsA); the manganese ABC transporter PsaA;
ArcB, an ornithine carbamolytransferase; AsnA, an aspa-
rate ammonia ligase subunit; the CTP synthase PyrG;
PrfC, a peptide chain release factor; and SP_0095, a pro-
tein with unknown function.

Biofilm and planktonic pneumococci have disparate
immunoreactivity with antiserum

To determine whether these growth-phase dependent
changes altered the immunoreactivity of pneumococci,
we compared the ability planktonic and biofilm TIGR4
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stained with Coomassie blue.

Figure 1 Comparison of protein expression profiles of planktonic and mature S. pneumoniae biofilms. A) Crude protein extracts (50 ug)
of S. pneumoniae grown under planktonic (PK) or biofilm (BF) conditions separated by SDS-PAGE using 12% polyacrylamide gels and silver
stained. B) Representative 2DGE images of total cell lysates of S. pneumoniae TIGR4 grown planktonically and as a 2 day old biofilm. Crude
protein extracts (300 pg) were separated on pH 3.0-5.6 Immobiline Dry strips followed by SDS-PAGE using 8-16% polyacrylamide gels. Gels were
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cell lysates to react with convalescent sera from humans
who had confirmed pneumococcal pneumonia and sera
from mice immunized with ethanol-killed S. pneumo-
niae biofilm pneumococci. Following immunoblotting
with human convalescent sera, robust detection of pro-
teins in the planktonic cell lysates occurred whereas,
and in stark contrast, substantially fewer and weaker
bands were observed for biofilm cell lysates (Figure 2A).
Not unexpectedly, considerable variability was observed
between human serum samples with those from patient
2 and 3 having the most dramatic reduction in the abil-
ity to detect biofilm cell lysates. The opposite effect was
observed with sera obtained from biofilm-immunized
mice. Mouse antisera strongly recognized proteins in
the biofilm cell lysates and was weakly reactive with cell

lysates from planktonic pneumococci (Figure 2B). These
findings demonstrate that the humoral immune
response developed against one growth phenotype is
indeed poorly reactive against the other due to altered
protein production.

Identification of proteins produced during biofilm growth
that are recognized by convalescent sera

As antigenic proteins produced during biofilm formation
may represent novel targets for intervention, we identi-
fied pneumococcal proteins enhanced during biofilm
growth that were also reactive with human convalescent
sera. To do so, planktonic and biofilm whole cell lysates
were separated by 2DGE and Western blotting was per-
formed with pooled convalescent sera. Consistent with
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our previous immunoblots, 2DGE-transferred mem-
branes with biofilm cell lysates were less immunoreac-
tive than those loaded with planktonic cell lysates when
probed with the convalescent human sera (Figure 3A).
By comparing the biofilm 2DGE immunoblots to their
corresponding 2DGE Coomassie blue stained gels, we
identified 20 protein spots enhanced during biofilm
growth that were also immunoreactive (Figure 3B).
These spots were excised and a total of 24 proteins
were identified by MALDI-TOF mass spectrometry
(Table 2). Twelve of these 24 proteins had been pre-
viously observed to be produced at lower levels during
biofilm growth in the analysis of whole cell lysates
(Table 1); a finding reflecting the fact that multiple pro-
teins may be present within each 2D-gel spot. Of the
remaining 12 proteins only PsrP had been detected as
biofilm-growth enhanced during our previous MALDI-
TOF analysis (Table 1). The remaining 11 proteins had
varied roles in assorted housekeeping cellular processes.

Immunization with biofilm-pneumococci does not protect
against disease by other serotypes

Finally, we tested whether immunization with ethanol-
killed biofilm pneumococci conferred protection against
challenge with the same strain or another belonging to a
different serotype (Figure 4). Compared to sham-immu-
nized control mice, animals immunized with TIGR4 bio-
film cell lysates were protected against the development
of bacteremia following challenge with TIGR4. In con-
trast, no protection was observed for mice challenged
with A66.1, a serotype 3 isolate, despite prior immuniza-
tion with TIGR4. Of note, A66.1 does not carry PsrP
(data not shown). The protection observed against
TIGR4 was most like due to the fact that the TIGR4
biofilm cell lysates, despite having a different protein
profile, contained serotype 4 capsular polysaccharide, a
protective antigen. Thus, immunization with biofilm-
derived cell lysates was insufficient to confer protection
against virulent pneumococci belonging to a different

serotype.

Discussion

Biofilms are recognized as the primary mode of growth
of bacteria in nature. Notably more than half of all
human bacterial infections are believed to involve bio-
films [16,18]. Consistent with this notion, S. pneumoniae
has been observed to form biofilms both in vitro and in
vivo [9,12-14,24,30,33,34]; although during invasive dis-
ease, pneumococci in the bloodstream and sputum seem
to be exclusively diplococci. While a large body of work
has been published on the characteristics of pneumococ-
cal biofilm formation in vitro as well as the genes
involved in this process, little is known about the host
immune response to pneumococcal biofilms and how
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this differs with respect to planktonic bacteria. This is a
significant lapse as pneumococcal biofilms are now
recognized to be present in the nasopharynx of colo-
nized humans.

In the present study, we identified the differential pro-
tein profile of S. pneumoniae serotype 4, strain TIGR4
in a mature 3-day old biofilm versus during planktonic
exponential growth. As expected, we observed consider-
able differences in the protein profiles of planktonic and
biofilm TIGR4 with the vast majority of detected pro-
teins being produced in diminished quantities. Notably,
our proteomic findings are in disagreement with those
of Allegrucci et al. which described a dramatic increase
in the number of detectable proteins in 9 day-old bio-
films including phosphoglyceromutase, phosphoglycerate
kinase, 30S ribosomal protein S1, translation elongation
factor Tu, 50S ribosomal protein L1, enolase, DnaK pro-
tein, and pyruvate oxidase, among many other proteins
[24]. This discrepancy may be due to the different
strains used, the different age of the biofilms examined,
alternatively, due to our strict criteria for protein identi-
fication combined with the fact that that a large portion
of mature biofilm is composed of dead and presumably
degraded bacterial components. Importantly, our find-
ings are in agreement with the generally accepted notion
that the synthetic and metabolic activity of bacteria are
reduced during biofilm growth [15,16], as well as with
previous studies examining the transcriptional changes
incurred during pneumococcal biofilm growth which
showed down-regulation of the genes encoding many of
these proteins [17,25,30,35].

Due to the altered protein profiles, unsurprisingly, but
also previously undocumented, convalescent sera only
robustly recognized planktonic cell lysates. Likewise,
sera from biofilm-immunized mice weakly recognized
cell lysates from planktonic pneumococci. Together,
these results support the notion that invasive pneumo-
coccal disease is predominantly caused by the planktonic
phenotype. They also suggest that the antibody response
and potentially the T-cell response generated against S.
pneumoniae during nasopharyngeal colonization would
be of limited utility against planktonic bacteria during
invasive disease. This latter notion is supported by our
finding that immunization with ethanol-killed TIGR4
biofilm pneumococci failed to protect against invasive
disease caused by a serotype 3 isolate. In regards to the
development of a protein vaccine using pneumococcal
antigens, our findings strongly advocate that candidate
proteins be explored for differences in production dur-
ing biofilm and planktonic growth, which could affect
an antigen’s utility as a protective epitope.

The biofilm upregulated proteins that were reactive
with convalescent sera included PsrP. Similar to our
own findings, Geifing et al., found in an unbiased screen
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Table 1 Comparison of Protein Expression Profiles during Biofilm and Planktonic Growth

Page 5 of 12

Detected Peptides

Group and Function Protein Gene Biofilm  Planktonic
Protein synthesis and processing ~ 30S ribosomal protein S2 rpsB (SP_2215) 14 22
30S ribosomal protein S3 rpsC (SP_0215) 4 5
30S ribosomal protein S4 rpsD (SP_0085) 4 5
30S ribosomal protein S5 rpsE (SP_0227) 6 23
30S ribosomal protein S8 rpsH (SP_0224) 6 10
30S ribosomal protein S7 rpsG (SP_0272) 0 3
30S ribosomal protein S10 rpsJ (SP_0208) 3 4
30S ribosomal protein S12 rpsL (SP_0271) 0 3
30S ribosomal protein S11 rpsK (SP_0235) 4 6
30S ribosomal protein S13 rpsM (SP_0234) 0 2
30S ribosomal protein S17 rpsQ (SP_0218) 0 4
50S ribosomal protein L1 rplA (SP_0631) 9 28
50S ribosomal protein L2 rplB (SP_0212) 0 7
50S ribosomal protein L3 rplC (SP_0209) 0 4
50S ribosomal protein L4 rpID (SP_0210) 5 11
50S ribosomal protein L5 rplE (SP_0221) 10 23
50S ribosomal protein L6 rplF SP_0225 6 5
50S ribosomal protein L7/L12 rpll (SP_1354) 0 14
50S ribosomal protein L9 rpll (SP_2204) 0 2
50S ribosomal protein L10 rplJ (SP_1355) 0 7
50S ribosomal protein L11 rplK (SP_0630) 0 9
50S ribosomal protein L14 rpIN (SP_0219) 3 5
50S ribosomal protein L15 rplO SP_0229 0 5
50S ribosomal protein L18 rpIR (SP_0226) 0 3
50S ribosomal protein L19 plS (SP_1293) 8 8
50S ribosomal protein L21 rplU (SP_1105) 0 2
50S ribosomal protein 22 rplV (SP_0214) 0 6
50S ribosomal protein 30 romD (SP_0228) 0 2
Elongation factor G fusA (SP_0273) 10 72
Elongation factor P efp (SP_0435) 5 7
Elongation factor Ts tsf (SP_2214) 14 16
Elongation factor Tu (SP_0681) 29 59
Arginyl-tRNA synthetase argS (SP_2078) 11 14
Alanyl-tRNA synthetase alaS (SP_1383) 4 8
Glutamyl-tRNA(GIn) amidotransferase subunit A gatA (SP_0437) 0 4
Glycyl-tRNA synthetase alpha subunit glyQ (SP_1475) 0 4
Methionyl-tRNA formyltransferase fmt (SP_1735) 0 2
Methionyl-tRNA synthetase metG (SP_0788) 0 2
Phenylalanyl-tRNA synthetase beta chain pheT (SP_0581) 0 2
Prolyl-tRNA synthetase proS (SP_0264) 0 12
10 kDa chaperonin groEsS (SP_1907) 3 8
60 kDa chaperonin groEL (SP_1906) 24 57
33 kDa chaperonin hslO (SP_2188) 0 4
Chaperone protein dnaK dnak (SP_0517) 12 89
ATP-dependent Clp protease ATP-binding subunit clpE (SP_0820) 3 3
ATP-dependent Clp protease proteolytic subunit clpP (SP_0746) 0 5
Adapter protein mecA mecA SP_1362 0 2
Ribosome-recycling factor frr (SP_0945) 0 2
Foldase protein prsA prsA SP_0981 13 5
Peptide chain release factor 3 prfC (SP_0439) 4 0
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Table 1 Comparison of Protein Expression Profiles during Biofilm and Planktonic Growth (Continued)
Peptide deformylase def (SP_1456) 0 4
Protein grpE grpE (SP_0516) 0 5

Energy Metabolism Phosphoglycerate kinase pgk (SP_0499) 22 46
L-lactate dehydrogenase Idh (SP_1220) 21 30
Glyceraldehyde-3-phosphate dehydrogenase gapN (SP_1119) 10 38
Fructose-bisphosphate aldolase fba SP_0605 6 32
Glycerol-3-phosphate dehydrogenase [NAD(P)+] gpsA (SP_2091) 2 6
2,3-bisphosphoglycerate-dependent phosphoglycerate mutase gpmA (SP_1655) 7 11
6-phosphofructokinase pfkA (SP_0896) 8 21
Phosphoenolpyruvate-protein phosphotransferase ptsl (SP_1176) 0 10
Ribose-phosphate pyrophosphokinase 1 prsA (SP_0027) 2 4
Ribose-5-phosphate isomerase A piA (SP_0828) 0 3
Triosephosphate isomerase tpiA (SP_1574) 2 8
Tagatose 1,6-diphosphate aldolase lacD (SP_1190) 4 6
Phosphoenolpyruvate-protein phosphotransferase ptsl (SP_1176) 0 6
Ribose-phosphate pyrophosphokinase 2 prs2 (SP_1095) 0 3
Phosphoglucosamine mutase glmM (SP_1559) 0 2
Glucosamine—fructose-6-phosphate aminotransferase [isomerizing] — glmS (SP_0266) 12 31
Ornithine carbamoyltransferase, catabolic arcB (SP_2150) 4 2
Dihydrodipicolinate reductase dapB (SP_1555) 0 4
Dihydrodipicolinate synthase dapA (SP_1014) 0 3
Glucosamine-6-phosphate deaminase nagB (SP_1415) 0 2
Carbamoyl-phosphate synthase large chain carB (SP_1275) 5 5
2,3/4,5-tetrahydropyridine-2,6-dicarboxylate N-acetyltransferase dapH (SP_2097) 0 8
Aspartate—ammonia ligase asnA (SP_1970) 3 0
Dihydroxy-acid dehydratase ilvD (SP_2126) 0 7
ATP synthase subunit alpha atpA (SP_1510) 4 21
ATP synthase subunit beta atpD (SP_1508) 9 18
ATP synthase gamma chain atpG (SP_1509) 0 8
Phosphate import ATP-binding protein PstB 1 pstB1 (SP_1396) 0 9
Phosphate import ATP-binding protein PstB 2 pstB2 (SP_1397) 0 4
Maltose/maltodextrin-binding protein malX (SP_2108) 0 10
Manganese ABC transporter substrate-binding lipoprotein psaA (SP_1650) 13 0
GMP synthase [glutamine-hydrolyzing] guaA (SP_1445) 6 21
Hypoxanthine-guanine phosphoribosyltransferase guaA (SP_1445) 0 9
Adenylate kinase guaA (SP_1445) 2 5
Inosine-5-monophosphate dehydrogenase guaA (SP_1445) 0 14
Uracil phosphoribosyltransferase guaA (SP_1445) 4 11
Dihydroorotate dehydrogenase guaA (SP_1445) 0 5
Uridylate kinase guaA (SP_1445) 0 5
CTP synthase guaA (SP_1445) 3 0
Bifunctional protein glmU guaA (SP_1445) 0 3
Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta  accD (SP_0426) 0 2
Phosphate acyltransferase plsY (SP_0851) 0 2
Formate-tetrahydrofolate ligase fhs (SP_1229) 0 5
6,7-dimethyl-8-ribityllumazine synthase ribH (SP_0175) 0 3
manganese-dependent inorganic pyrophosphatase ppaC (SP_1534) 2 3
Serine hydroxymethyltransferase glyA (SP_1024) 0 7
Pyridoxal biosynthesis lyase pdxS pdxS (SP_1468) 0 9

Capsule production & Cell wall ~ Tyrosine-protein kinase CpsD cpsD (SP_0349) 0 2
Glucan 1,6-alpha-glucosidase dexB (SP_0342) 2 3
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Table 1 Comparison of Protein Expression Profiles during Biofilm and Planktonic Growth (Continued)

UTP-glucose-1-phosphate uridylyltransferase cap4C (SP_2092) 4 4
UDP-N-acetylmuramoylalanine-D-glutamate ligase murD (SP_0688) 0 3
D-alanine-poly(phosphoribitol) ligase subunit 1 ditC (SP_2174) 0 3
Virulence Factors Enolase eno (SP_1128) 25 89
Pyruvate oxidase spxB (SP_0730) 28 62
Pneumolysin ply (SP_1923) 0 11
PsrP psrP (SP_1772) 72 21
Unknown & Hypothetical DegV domain-containing protein (SP_1112) 0 5
UPF0176 protein (SP_0095) 2 0
UPF0371 protein (SP_0341) 0 6
UPF0082 protein (SP_1922) 0 8
Probable transketolase tkt (SP_2030) 4 37
Regulation & DNA Binding HPr kinase/phosphorylase hprK (SP_1413) 0 2
Single-stranded DNA-binding protein ssb (SP_1540) 0 9
DNA-binding protein HU hup (SP_1113) 0 10
GTP-sensing transcriptional pleiotropic repressor CodY codY (SP_1584) 0 2
Pur operon repressor purR (SP_1979) 0 5
Transcription DNA-directed RNA polymerase subunit alpha rpoA (SP_0236) 5 3
DNA-directed RNA polymerase subunit beta rpoB (SP_1961) 2 4
Transcription elongation factor GreA greA (SP_1517) 0 3
p
A. B.
Human 1 Human 2 Human 3 Mouse 1 Mouse 2
P BF P BF P BF P BF P BF
kDa . _kDa
T170 - S - 10
130 - 130
95 - 95
72 - 72
33 : - 33
y s
2 “ -
e -
17 - 17

Figure 2 Human convalescent sera has diminished reactivity against proteins from biofilm pneumococci. Whole cell lysates from biofilm

(BF) and planktonic (PK) pneumococci were separated by 1DGE and transferred to nitrocellulose. Membranes were probed using A)

convalescent sera from humans recovered from confirmed pneumococcal pneumonia or B) sera from mice immunized with biofilm
pNeumococci.

.
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Figure 3 Identification of immunogenic proteins enhanced during pneumococcal biofilm growth. A) Immunoblots of planktonic and
biofilm S. pneumoniae cell lysates separated by 2DGE and probed with pooled human convalescent sera. B) Coomassie blue stained 2DGE gel
of biofilm proteins showing the 20 immunogenic protein spots (circled in red) selected for analysis by MALDI-TOF. The corresponding spots
detected with convalescent sera are circled in the biofilm immunoblot in panel A.
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that recombinant PsrP also interacted with human con-
valescent sera [36], indicating that PsrP is also produced
in vivo during invasive disease. The latter most likely
reflects the dual role of PsrP as a bacterial and lung cell
adhesin. Importantly, antibodies against PsrP are capable
of neutralizing biofilm formation and lung cell attach-
ment in vitro. Furthermore, immunization with recombi-
nant PsrP BR has been shown to protect against invasive
disease caused by TIGR4 [14,26,27,37]. Unfortunately,
epidemiological studies indicated PsrP is present in only
50-60% of all invasive isolates [38]. Its absence in A66.1
thereby helps to explain the lack of protection that was
observed in mice immunized with biofilm TIGR4. Along
this line, it would be worthwhile to confirm that immuni-
zation of mice with biofilm TIGR4 protects against chal-
lenge with a non-serotype 4 PsrP-positive strain.

The remaining proteins with enhanced biofilm pro-
duction that were also reactive with convalescent sera

might also be protective antigens. In support of this
notion, Brady et al. has shown that immunization of
rabbits with biofilm S. aureus protected against osteo-
myelitis in a rabbit model of infection [39]. While the
vast majority of the proteins that we identified are
involved in metabolism, recent studies have shown that
enzymes involved in glycolytic metabolism, including
enolase and fructose bisphosphate aldolase, as well ribo-
somal proteins are localized to the cell surface of S.
pneumoniae, S. agalactiae and S. pyogenes and are cap-
able of playing a role in virulence [40-42]. Notably, the
majority of proteins within the S. aureus biofilm fraction
that was recognized by sera from rabbits with osteomye-
litis were also predominately involved in metabolism
[39]. Thus, further studies are warranted to determine
whether antibodies against these S. pneumoniae meta-
bolic proteins might confer protection against coloniza-
tion and possibly invasive disease.
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Table 2 Biofilm proteins present in spots reactive with human convalescent sera identified by MALDI-TOF analyses

Gene Product

Annotation*

elongation factor G (fusA)

alcohol dehydrogenase (adhP)

trigger factor (tig)

3-oxoacyl-(acy! carrier protein) synthase Il
phosphoglycerate kinase (pgk)

molecular chaperone DnaK (dnak)
phenylalanyl-tRNA synthetase subunit beta (pheT)
fructose-bisphosphate aldolase

50S ribosomal protein L1

pyruvate oxidase (spxB)

branched-chain amino acid ABC transporter, amino acid binding protein (/ivJ)

30S ribosomal protein S1 (rpsA)
6-phosphofructokinase (pfkA)
pyruvate kinase

hypothetical protein SP_1027
phosphopyruvate hydratase (eno)
50S ribosomal protein L10 (rpl))
GMP synthase (guaA)

NADH oxidase

FOF1 ATP synthase subunit alpha
phosphoglyceromutase (gpmA)
Pneumococcal Serine-rich repeat protein (psrP)
acetate kinase

elongation factor Ts (tsf)

SP_0273*
SP_0285
SP_0400
SP_0422
SP_0499
SP_0517*
SP_0581*
SP_0605*
SP_0631*
SP_0730*
SP_0749
SP_0862
SP_0896*
SP_0897
SP_1027
SP_1128*
SP_1355*
SP_1445*
SP_1469
SP_1510*
SP_1655*
SP_1772*
SP_2044
SP_2214*

* Identified in comparative analysis of biofilm versus planktonic lysates (Table 1).

Importantly, incomplete strain coverage by PsrP and
other pneumococcal proteins that have been suggested
to be vaccine candidates, along with limited efficacy for
those that are conserved in all strains such as pneumo-
lysin and CbpA, indicate two or probably three proteins
would be minimally required for complete coverage in
any efficacious protein vaccine formulation against S.
pneumoniae [43].

Conclusions

In all, our findings add to the considerable body of evi-
dence that indicates biofilm pneumococci have dramati-
cally altered phenotypes versus planktonic bacteria. Our
studies advance this concept and demonstrate that this
altered protein profile results in a skewed antibody
response during invasive disease, and that biofilm bac-
teria do not elicit a strong-cross-reactive humoral
response against planktonic bacteria. This latter suggests
that the adaptive immune response developed towards
biofilm bacteria during colonization would have
restricted utility during invasive disseminated disease.
Our studies also identify PsrP as one possible antigen
that may confer protection against both colonization
and invasive disease. The other proteins identified as
enhanced during biofilm formation and immunogenic

during invasive disease may also represent novel targets
for intervention.

Methods

All animal experiments were reviewed and approved by
the Institutional Animal Care and Use Committee at
The University of Texas Health Science Center at San
Antonio under protocol number 09022x-34.

Strain and bacterial growth conditions

Streptococcus pneumoniae strain TIGR4 is a serotype 4
clinical isolate whose genome has been sequenced and
annotated [44]. A66.1 is a serotype 3 isolate that has
also been previously described [24]. For planktonic
growth, Todd Hewitt Broth (THB) was inoculated with
overnight plate cultures and grown to mid-logarithmic
phase (ODgyo = 0.5; ~1.0 x 10® CFU/ml) at 37°C in 5%
CO,. Mature biofilms were grown under once-through
flow conditions as previously described [14]. Briefly,
planktonic seed cultures were used to inoculate 1 meter
long silicone tubing (0.89 mm internal diameter, Cole
Parmer Inc., Vernon Hills, IL). Bacteria in the line were
allowed to attach for 2 hours, after which the flow rate
of THB was adjusted to 0.035 ml/minute. Biofilm
derived bacteria were harvested after 3 days by pinching
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Figure 4 Challenge of mice immunized with TIGR4 biofilm
pneumococci. Bacterial titers in the blood of mice challenged
intranasally with 10" CFU of planktonic TIGR4 or A66.1 after 48
hours. Mice were immunized with ethanol-killed biofilm
pneumococci in Freund's adjuvant (TIGR4 n = 8, A66.1 n = 9) or
were sham-immunized and received Freund’s adjuvant alone (TIGR4
n =9 A66.1 n = 9). Each spot represents an individual mouse.
Horizontal bars indicate the median value. Statistical analysis was
performed using a two-tailed Student's t-test.

the tube along its entire length, thereby removing the
bacterial cells.

One and two-dimensional gel electrophoresis and
differential protein analysis

For one-dimensional (1IDGE) comparative analysis of
proteins, whole cell lysates (25 pg) from the biofilm and
planktonic pneumococci were separated by 12% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) and silver stained using standard methods. Two-
dimensional electrophoresis (2DGE) was conducted
according to the principles of O’Farrell [45], and done
using the optimized conditions for S. pneumoniae as
previously described by Allegrucci et al. [24]. Briefly,
planktonic and biofilm pneumococci were collected,
washed, and suspended in TE buffer (10 mM Tris-HCI,
1 mM EDTA, pH 8.0) supplemented with 300 pg/ml
phenylmethyslfonylfluoride (Sigma, St. Louis, MO). Bac-
teria were disrupted by sonication on ice using 6, 10-
second bursts. Samples were prepared for isoelectric
focusing (IEF) using a ReadyPrep 2-D cleanup kit (Bio-
Rad, Hercules, CA) after which the protein pellet was
dissolved in DeStreak rehydration solution (GE Health-
care, Piscataway, NJ). Protein levels were quantified
using a Non-Interfering protein assay (G-Biosciences,
Maryland Heights, MO). For each sample, 300 pg of
protein were applied to 11-cm Immobiline DryStrips
(pH 3-5.6 Non-linear, GE Healthcare) and rehydrated
for 17 hours at 4° C with DeStreak rehydration solution
containing 0.5% IPG buffer (pH 3-5.6 NL, GE
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Healthcare). The rehydrated IPG strips were focused at
20°C for a total of 17 kVh using an Ettan IPGphorII IEF
system (GE Healthcare). Prior to the separation by SDS-
PAGE, IPG strips were equilibrated using a reducing
buffer (75 mM Tris-HCI, pH 8.8), 6 M urea, 29.3% gly-
cerol, 2% SDS, 1.0% dithiothreitol, and 0.002% bromo-
phenol blue) for 15 minutes at room temperature,
followed by alkylation with 2.5% (wt/vol) iodoacetamide
for an additional 15 minutes. Proteins were separated
on pre-cast 8-16% gradient Criterion polyacrylamide
gels at 200 V (Bio-Rad, Hercules, CA). Protein spots
were visualized by Coomassie blue staining, and gel
images were recorded using a ChemiDoc XRS system
(Bio-Rad).

Antiserum against S. pneumonia

Convalescent serum from 3 individuals recently recov-
ered from confirmed pneumococcal pneumonia was a
kind gift from Dr. Daniel Musher (Houston, TX). Anti-
bodies against biofilm pneumococci were generated in 6
week old female Balb/c mice by immunization with 20
pg of ethanol-killed biofilm pneumococci emulsified
with Freund’s Complete Adjuvant (Sigma). After 21 and
42 days, mice were boosted with the same bacterial
sample emulsified with Freund’s Incomplete Adjuvant
(Sigma). Sera from vaccinated mice were collected at
day 50 by retro-orbital bleeding.

Western blotting

1D and 2D gels were electrophoretically transferred to
nitrocellulose membranes, blocked in PBS containing
4% bovine serum albumin (BSA) and 0.1% Tween-20
(T-PBS) for 1 hour and incubated overnight at 4 °C
with T-PBS containing convalescent sera (1:10,000)
from each of the individual patients or from immunized
mice. Following overnight incubation, membranes were
washed 3 times with T-PBS for 5 minutes and a second-
ary HRP-conjugated Goat anti-human IgG antibody
(Sigma) (1:5,000) or Goat anti-mouse IgG antibody
(Jackson Immunoresearch Laboratories, Westgrove, PA)
was used for detection of the immunogenic proteins
recognized by human convalescent sera or sera from
immunized mice by chemiluminesence respectively.

Protein identification by mass spectrometry

Proteins of interest were excised from SDS-PAGE gels
and destained twice in 50% acetonitrile (ACN)/40 mM
ammonium bicarbonate (pH 7.4), prior to digestion. Gel
plugs were then dehydrated in 100% ACN and rehy-
drated with 5-10 pl of 10 ng/ul trypsin (Promega, Madi-
son WI) in 40 mM ammonium bicarbonate/20% ACN
and incubated overnight at 30° C. Peptides were
extracted in 4 volumes of 0.1% trifluoroacetic acid
(TFA) in 50% ACN for 1 to 2 hours at room
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temperature, decanted from the gel slice, dried down in
an autosampler tube in a speed vacuum without heat,
and suspended in 0.1% TFA. Peptides were analyzed by
capillary-HPLC-electrospray tandem mass spectrometry
(HPLC-ESI-MS/MS) on a Thermo Fisher LTQ ion trap
mass spectrometer coupled to an Eksigent NanoLC
micro HPLC by means of a PicoView (New Objective,
Woburn, MA) nanospray interface. Capillary on-line
HPLC separation of tryptic peptides was conducted
using the following conditions: column, New Objective
PicoFrit, 75 um id, packed to 11 cm with C18 adsorbent
(Vydac 218 MSB5); mobile phase A, 0.5% acetic acid/
0.005% TFA in water; mobile phase B, 90% ACN/0.5%
acetic acid/0.005% TFA in water; gradient, 2% B to 42%
B in 30 min; flow rate, 0.4 pul/min. A data-dependent
acquisition protocol was employed consisting of one
survey scan followed by 7 collision-induced dissociation
spectra. The un-interpreted CID spectra were searched
against the NCBI NR database using Mascot (Matrix
Science; 10 processor in-house license). Methionine oxi-
dation was the only variable modification considered.
Maximum missed cleavages for trypsin was set at 1,
peptide charge at 2+ and 3+, peptide tolerance at +/-
1.5 Da, and MS/MS tolerance at +/- 0.8 Da. Mascot
data was then run in Scaffold 3.1 http://www.proteome-
software.com and cross-correlation of the Mascot results
was carried out by X! tandem against the NCBI NR sub-
set database. Proteins with an expectation score of 10
or lower were considered positive identities. Proteins
were identified with 3-15 matched peptides and a mini-
mum of 95% sequence coverage.

Mouse challenge experiments

At day 56, TIGR4 biofilm- and sham-immunized mice
(i.e. receiving only Freund’s adjuvant), were challenged
intranasally with 10" CFU of planktonic TIGR4 or A66.1
in 25 pl PBS [37]. On day 2 post-infection, blood was
collected from the tail vein of each mouse and bacterial
titers determined by serial dilution, plating, and extrapo-
lation from colony counts following overnight incuba-
tion. Statistical analysis was performed using a two-
tailed Student’s ¢-test.
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