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Abstract
Background: The first two steps in the capping of cellular mRNAs are catalyzed by the enzymes
RNA triphosphatase and RNA guanylyltransferase. Although structural and mechanistic differences
between fungal and mammalian RNA triphosphatases recommend this enzyme as a potential
antifungal target, it has not been determined if RNA triphosphatase is essential for the growth of
fungal species that cause human disease.

Results: We show by classical genetic methods that the triphosphatase (Pct1) and
guanylyltransferase (Pce1) components of the capping apparatus in the fission yeast
Schizosaccharomyces pombe are essential for growth. We were unable to disrupt both alleles of the
Candida albicans RNA triphosphatase gene CaCET1, implying that the RNA triphosphatase enzyme
is also essential for growth of C. albicans, a human fungal pathogen.

Conclusions: Our results provide the first genetic evidence that cap synthesis is essential for
growth of an organism other than Saccharomyces cerevisiae and they validate RNA triphosphatase
as a target for antifungal drug discovery.

Background
The m7GpppN cap structure is a defining feature of eu-

karyotic mRNA and is required for mRNA stability and

efficient translation. The cap is formed by three enzy-

matic reactions: the 5' triphosphate end of the nascent

pre-mRNA is hydrolyzed to a diphosphate by RNA tri-

phosphatase; the diphosphate end is capped with GMP

by RNA guanylyltransferase; and the GpppN cap is

methylated by RNA (guanine-7-) methyltransferase [1].

Although the three capping reactions are universal in eu-

karyotes, there is a surprising diversity in the genetic or-

ganization of the capping enzymes as well as a complete

divergence in the structure and catalytic mechanism of

the RNA triphosphatase component in "lower" versus

"higher" eukaryotic species [1]. Metazoans and plants

have a two-component capping system consisting of a bi-

functional triphosphatase-guanylyltransferase polypep-

tide and a separate methyltransferase polypeptide,

whereas fungi contain a three-component system con-

sisting of separate triphosphatase, guanylyltransferase,

and methyltransferase gene products. The primary

structures and biochemical mechanisms of the fungal

and mammalian guanylyltransferases and cap methyl-
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transferases are conserved. However, the atomic struc-

tures and catalytic mechanisms of the fungal and

mammalian RNA triphosphatases are completely differ-

ent [2,3]. Thus, it has been suggested that RNA triphos-
phatase is a promising target for antifungal drug

discovery [2].

The triphosphatase (Cet1), guanylyltransferase (Ceg1),

and methyltransferase (Abd1) components of the cap-

ping apparatus are essential for cell growth in the bud-

ding yeast S. cerevisiae[1,4–6]. Mutations of the RNA

triphosphatase Cet1 that abrogate catalytic activity in vit-

ro are lethal in vivo[7–9]; thus, it is reasonable to think

that pharmacological inhibition of Cet1 function in vivo

would impede cell growth. The key question is whether

RNA triphosphatase is a valid drug target in other fungal

species besides Saccharomyces cerevisiae (which is not

a human pathogen) and whether a mechanism-based in-

hibitor of one fungal RNA triphosphatase could be ex-

pected to display broad spectrum activity against

triphosphatases from other fungal species.

To address these issues, we have characterized the RNA

triphosphatases of two other fungi, including the human

pathogen Candida albicans and the fission yeast

Schizosaccharomyces pombe[10–12]. The fungal tri-

phosphatases, S. cerevisiae Cet1, C. albicans CaCet1 and

S. pombe Pct1, belong to a new family of metal-depend-

ent phosphohydrolases that embraces the triphos-
phatase components of DNA virus and protozoan mRNA

capping systems [1,7,13,14]. The defining features of the

metal-dependent RNA triphosphatases are two glutama-

te-containing motifs that are required for catalysis and

comprise the metal-binding site in the crystal structure

of S. cerevisiae Cet1. The yeast triphosphatase has a nov-

el tertiary structure in which the active site is situated

within a topologically closed hydrophilic tunnel com-

posed of 8 antiparallel β strands, which are conserved in

CaCet1 and Pct1 [2]. Mutational analysis of Cet1 has

identified 15 individual side chains within the tunnel that

are important for Cet1 function in vitro and in vivo[7–9].

Each of the 8 strands contributes at least one functional

group to the active site. Mutational analysis of the Cand-

ida triphosphatase suggested strongly that the tunnel

fold and the constituents of the active site are similar, if

not identical, in Cet1 and CaCet1 [10].

Here we address the critical question of whether RNA

triphosphatase is essential for cell growth in fungal spe-

cies other than S. cerevisiae. This is not a straw-man is-

sue, given that S. cerevisiae encodes two homologous

RNA triphosphatases (Cet1 and Cth1), of which only Cet1

is essential for capping and cell viability [8,15]. We use

classical genetic approaches to show that the respective
genes encoding RNA triphosphatase and RNA guanylyl-

transferase are essential in S. pombe. Using a novel

method of Enloe et al. [16] to test gene function in diploid

C. albicans, we were unable to disrupt both copies of the

CaCET1 gene, signifying that RNA triphosphatase is also
essential in that species, a significant human pathogen.

Based on these findings, and the presence of a Cet1 ho-

molog in the Apergillus fumigatus proteome, we con-

clude that RNA triphosphatase is a valid target for

antifungal drug development.

Results
RNA Triphosphatase and RNA Guanylyltransferase are Es-
sential in S. pombe
S. pombe RNA triphosphatase Pct1 is a 303-amino acid

polypeptide with a homodimeric quaternary structure

[12]. The pct1+ gene contains a single intron within the

open reading frame [12]. S. pombe RNA guanylyltrans-

ferase Pce1 is a 402-amino acid monomeric protein [20];

there are no introns within the pce1+ gene. Although re-

combinant Pct1 and Pce1 enzymes have been purified

and characterized biochemically, and shown to function

in cap formation when expressed in S. cerevi-

siae[12,20,21], there have been no antecedent genetic

studies of the essentiality of Pct1 or Pce1 in fission yeast.

Here we constructed pct1∆ and pce1∆ plasmids contain-

ing 5' and 3' flanking genomic sequences in which the en-

tire triphosphatase or guanylyltransferase coding

sequence was deleted and replaced by the kanamycin re-

sistance gene [17]. The pct1::kanMX and pce1::kanMX
constructs were transformed separately into a diploid

strain of S. pombe and chromosomal integrants contain-

ing one copy of the wild-type gene and one of pct1::kan-

MX or pce1::kanMX were selected on medium

containing G418. Correct integration was confirmed by

diagnostic PCR amplification of genomic DNA from the

heterozygotes. We then sporulated the heterozygotes,

dissected tetrads, and scored for spore viability and the

presence of the kanMX marker. We found for both

knock-outs that 20 out of 20 tetrads yielded only 2 viable

spores and all of the viable haploids were G418-sensitive,

i.e., none contained the pct1::kanMX or pce1::kanMX

alleles. We conclude that the RNA triphosphatase and

RNA guanylyltransferase genes are essential for cell

growth in S. pombe.

Plasmid-based complementation of pct1∆ and pct1∆
The pct1+ and pce1+ cDNAs were cloned separately into

the S. pombe expression vector pREP41X (LEU2 ars1+)

so as to place them under the control of the nmt1* pro-

moter. We also cloned the intron-containing chromo-

somal pct1+ gene into the same expression vector. The

plasmids were introduced into heterozygous pct1+/

pct1::kanMX or pce1+/pce1::kanMX diploids. The Leu+

diploid transformants were selected and then sporulat-
ed. A random population of Leu+ haploids was tested for
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G418-resistance or sensitivity (Table 1). We found that

half of the Leu+ haploids derived from a pct1+/

pct1::kanMX strains containing a plasmid with either

the pct1+ cDNA or pct1+ gene (with intron) also con-

tained the pct1::kanMX chromosomal allele and were

resistant to G418. Similarly, half of the Leu+ haploids de-

rived from a pce+/pce1::kanMX strain containing the

pce1+ plasmid were resistant to G418. In contrast, none

of the Leu+ haploids derived from pct1+/pct1::kanMX or

pce1+/pce1::kanMX strains containing the control LEU2

plasmid vector lacking an insert were G418-resistant.

These results show that the pct1∆ and pce1∆ strains are

viable if the chromosomal deletions are complemented

by an extrachromosomal triphosphatase or guanylyl-

transferase gene. There was no apparent difference in

complementation of pct1∆ by the intron-containing

pct1+ gene versus the pct1+ cDNA.

Although the plasmid-encoded capping enzyme genes

are under the control of a regulated nmt1* promoter,

which can be repressed by inclusion of 5 µg/ml thiamine

in the growth medium [19], we observed that the growth

of the plasmid-dependent strains was not affected by ex-

ogenous thiamine. We suspect that expression levels of

the Pct1 or Pce1 enzymes in these strains exceeded a
threshold required for cell viability.

Test of CaCET1 Essentiality in C. albicans
Candida albicans strains are diploid and do not undergo

meiotic division. Thus, the classical approach of allelic

disruption in diploid cells followed by sporulation and

segregation analysis of haploids is not applicable to the

analysis of gene function in C. albicans. Tests of gene es-

sentiality in Candida necessitate serial disruption of

both alleles using two different selection markers. If the

gene of interest is nonessential, a homozygous diploid

disruptant can be isolated. However, if the gene is essen-

tial, it will be impossible to disrupt both alleles. Mitchell

and colleagues [16] have developed a single-transforma-

tion method to test gene function in diploid C. albicans

that entails the following steps, which we have applied to

First we constructed a deletion allele plasmid containing

5' and 3' genomic sequence flanking the target CaCET1

gene and an intervening marker cassette (ura3∆3'-

ARG4-ura3∆5', referred to as UAU1) composed of the C.

albicans ARG4 gene flanked by overlapping 5' and 3'

fragments of the URA3 gene. This construct deletes the

coding sequence for amino acids 206 to 506 of the 520-
aa CaCet1 polypeptide. The deleted segment contains the

catalytic domain essential for triphosphatase activity in

vitro and for complementation of the cet1∆ strain of S.

cerevisiae[10,11]. Second, we introduced the linearized

deletion allele into a diploid C. albicans ura3/ura3

arg4/arg4 strain and selected for Arg+ transformants.

Correct insertion via homologous recombination into

one copy of the CaCET1 gene, resulting in cacet1::UAU1

(Figure 1), was confirmed by Southern blotting of ge-

nomic DNA digested with diagnostic restriction endonu-

cleases. For example, a probe specific for the 5' end of the

CaCET1 gene (probe A in Figure 1) hybridized to a single

4.4 kbp BglII fragment after restriction digestion of total

DNA from the parental diploid strain, whereas the heter-

ozygote contained an additional 2.7-kbp fragment de-

rived from scission at a novel BglII site located within the

ARG4 component of the UAU1 insert of the disrupted

cacet1::UAU1 allele (Figure 2A, lane P versus lane H).

The 2.7-kbp fragment was also detected with an ARG4-

specific probe (not shown). We found that the hetero-

zygous CaCET1/cacet1::UAU1 strain displayed normal

growth and morphology (not shown).

Third, we grew 54 independent liquid cultures of the het-

erozygotes in nonselective medium and then selected for
cells that were Arg+ and Ura+. Uracil prototrophy re-

Table 1: Plasmid-based Complementation of pct1∆ and pce1∆

Strain Plasmid G418 
resistant

G418 
sensitive

pct1+/pct1::kanMX pREP41X 0 24
pREP41X-pct1+ (cDNA) 21 19
pREP41X-pct1+ 22 18

pce1+/pce1::kanMX pREP41X 0 24
pREP41X-pce1+ 22 18

Figure 1
Genotype of the CaCET1/cacet1::UAU1 heterozygote strain of C.
albicans. Illustrated in cartoon form are the configurations of
the wild-type CaCET1 and the cacet1::UAU1 chromosomal
loci in the Arg+ heterozygous diploids. The positions of perti-
nent restriction sites and the CaCET1 5'-specific (A) and 3'-
specific (B) hybridization probes are shown. Also shown is
the configuration of the triplicated cacet1::URA2 allele in the
Arg+ Ura+ segregants.
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quires restitution of the integrity of the disrupted ura3

gene of the UAU1 cassette by recombination between the

overlapping regions of the ura3∆3' and ura3∆5' frag-

ments with excision of the intervening ARG4 gene [16].

If CaCET1 were nonessential, then recombination of

UAU1 into the second copy of CaCET1 (to generate

cacet1::UAU1/cacet1::UAU1) followed by excisional re-

combination of ARG4 in one allele to restore URA3 (gen-
erating cacet1::UAU1/cacet1::URA3) would result in the

selected Arg+ Ura+ phenotype with complete loss of the

wild-type CaCET1 locus. However, if CaCET1 is essential

for growth, then all of the Arg+ Ura+ isolates will have

three copies of the CaCET1 locus (cacet1::UAU1/cacet1::

URA3/CaCET1).

We used Southern blotting to determine the genotype of

one randomly selected Arg+ Ura+ derivative from each of

the 54 separate cultures of the heterozygote diploids. The

blots were probed with a 5' specific CaCET1 fragment

(probe A in Figure 1), which detects both the wild-type

CaCET1 allele and the cacet1::UAU1 allele, and with a 3'-

specific CaCET1 fragment (probe B in Figure 1) derived

from the segment deleted during construction of the

cacet1::UAU1 disruption cassette. Note that probe A hy-

bridized to a single 4.4-kbp BglII fragment in both the

parental diploid strain and the heterozygote (Figure 2B,

lanes P and H), thereby verifying that it did not detect the

disrupted allele. We found that 54/54 Arg+ Ura+ isolates

retained the wild-type CaCET1 locus (Figure 2 and data

not shown), implying that CaCET1 is an essential gene.

All 54 isolates also retained the cacet1::UAU1 allele that

was present in the heterozygote (Fig. 2A and data not

shown) and they acquired a new ~5-kbp BglII fragment
that hybridized to 5'-specific CaCET1 probe (Figure 2A

and data not shown). The novel BglII fragment migrated

identically in 53/54 of the strains analyzed. Recombina-

tion within UAU1 to regenerate URA3 eliminates the

BglII site and results in a cacet1::URA3 locus that would

yield an ~5-kbp fragment upon digestion with BglII (Fig-

ure 1). Therefore, we surmise that the vast majority of the

events leading to the Arg+ Ura+ phenotype entailed allel-

ic triplications. This conclusion is supported by addition-
al Southern analyses of ScaI digests and EcoRI/PstI

digests of genomic DNA from the parental diploid, the

heterozygotes, and the 54 Arg+ Ura+ segregants (data not

shown).

We conducted in parallel an analysis of the function of

the C. albicans CES1/ZDS1 gene, which encodes a pro-

tein homologous to the product of the S. cerevisiae

CES1/ZDS1 gene isolated by us and others in various

suppressor screens [[23] and references therein]. We

found that 3/26 Arg+ Ura+ segregants emanating from a

CES1/ces1::UAU1 heterozygote were homozygous for

disruption at both loci (ces1::UAU1/ces1::URA3) and

had lost the wild-type CES1/ZDS1 allele [B. Schwer, un-

published]. This frequency of homozygosity at a nones-

sential locus is similar to that reported by Mitchell's

group (2 out of 30) for homozygous disruption of the C.

albicans CDC25 gene [16]. These results confirm that the

single-transformation test can, in our hands, be used to

identify a nonessential gene and they underscore the in-

ference from the data presented here that RNA triphos-

phatase is essential for growth of C. albicans.

Discussion
Previous genetic analyses establishing the essentiality of
cap formation were performed in the budding yeast S.

Figure 2
Southern blot analysis. DNA isolated from the parental diploid strain (lane P), one of the Arg+ heterozygotes (isolate #19; lane
H), and fourteen independent Arg+ Ura+ segregants were digested with BglII and resolved by agarose gel electrophoresis. A
photograph of the ethidium bromide-stained gel is shown in panel C. The positions and sizes (kbp) of DNA size markers are
indicated on the right. The DNA was transferred to a Hybond membrane, which was serially hybridized to 32P-labeled DNA
probes A (panel A) and B (panel B) derived from the 5' and 3' segments of the CaCET1 gene, respectively.
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cerevisiae. It remained to be seen whether the homologs

from other fungal species are also essential for viability.

It is not a foregone conclusion that essentiality or dispen-

sability of a gene product in S. cerevisiae can be extrap-
olated to pathogenic fungi. For example, Cdc25 is not

essential in C. albicans whereas its homolog is essential

in S. cerevisiae[16]. Conversely, the enzyme DNA topoi-

somerase I is nonessential in S. cerevisiae and S. pombe,

but essential for viability in the pathogenic fungus Cryp-

tococcus neoformans[24].

Here we have shown that the RNA triphosphatases Pct1

and CaCet1 are essential for viability of S. pombe and C.

albicans, respectively The conclusion that CaCet1 is es-

sential is based on a finding that none of the 54 inde-

pendent isolates in the single-transformation test were

homozygous for cacet1∆; our interpretation is consistent

with criteria established by Mitchell and colleagues for

inference of essentiality using this genetic approach. De

Backer et al. [25] had previously generated a single allele

knockout in C. albicans of the guanylyltransferase com-

ponent of the capping apparatus (Cgt1) using the URA-

blaster technique and noted a variety of pleiotrophic ef-

fects on stress response, hygromycin sensitivity, and col-

ony morphology in the CGT1/cgt1∆ heterozygote, but

they found that the heterozygote was just as virulent as

the wild-type strain in animal models of systemic candi-

diasis. They were unable to recover a homozygous cgt1∆/

cgt1∆ isolate after a second transformation with the
URA3 disruption cassette after testing 13 transformants.

Although their sample size was not large, their data, to-

gether with the present findings, indicate that the tri-

phosphatase and guanylyltransferase are both essential

for viability of C. albicans.

Conclusions
RNA triphosphatase is an attractive therapeutic target

for fungal infections because: (i) the active site structure

and catalytic mechanism of fungal RNA triphosphatase

are completely different from the RNA triphosphatase

domain of the metazoan capping enzyme and (ii) meta-

zoans encode no identifiable homologs of the fungal

RNA triphosphatases. Thus, a mechanism-based inhibi-

tor of fungal RNA triphosphatase should be highly selec-

tive for the fungal pathogen and have minimal effect on

the human or animal host. This scenario is plausible only

if RNA triphosphatase is essential for growth of patho-

genic fungi that cause human disease (e.g., Candida al-

bicans, Aspergillus fumigatus, Cryptococcus

neoformans, Pneumocystis carinii, etc.). The finding

that the RNA triphosphatase CaCet1 is essential in the

pathogenic fungus C. albicans provides impetus for the

discovery of compounds that inhibit CaCet1 activity.

Searches of public genome databases indicate that As-
pergillus fumigatus (a major invasive pathogen in hu-

mans, with severe morbidity and mortality) encodes a

homolog of Cet1, as does Neurospora crassa. Thus, we

suspect that all fungal species will have metal-dependent

RNA triphosphatases resembling those of S. cerevisiae,
C. albicans and S. pombe.

Methods and materials
Gene disruption in S. pombe
We used a modified version of the long flanking homolo-

gy PCR technique [17] to produce pct1∆ and pce1∆ gene

disruption cassettes in which the open reading frames

were replaced by the kanMX gene. For each gene, a set of

four primers was synthesized: LI, a 20-mer correspond-

ing to the sense-strand sequence of the 5'-flanking region

~1.2 kb upstream of the translation start codon of pct1+

or pce1+; L2, a 40-mer in which 20 bases were identical

to the 5' sequence of pFA6a-KanMX4 (GCTTCAGCT-

GGCGGCCGCGT) and 20 bases were identical to the an-

tisense strand sequence immediately 5' of the translation

start site of pct1+ or pce1+; L3, a 40-mer in which 20 bas-

es were identical to the 3' sequence of pFA6a-KanMX4

(AGTGGCCTATGCGGCCGCGG) and 20 bases corre-

sponded to the sense-strand sequence immediately 3' of

the stop codon of pct1+ or pce1+; L4, a 20-mer corre-

sponding to the antisense-strand sequence of the 3'-

flanking region ~1 kb downstream of stop codon of pct1+

or pce1+. In the first-stage PCR, a 5'-flanking fragment

was synthesized using S. pombe genomic DNA as the

template and LI plus L2 as primers. The 3' flanking frag-
ment was synthesized using primers L3 and L4. In the

second-stage PCR, aliquots of the purified products from

the first amplification (0.1–0.2 µg) were mixed with 0.5

µg of NotI-digested pFA6a-kanMX4 and amplification

synthesis was primed with the LI and L4 oligonucle-

otides. The products of the second PCR amplification

were gel-purified and subcloned into pGEM-T (Prome-

ga). The recombinants were selected on LB agar medium

containing 100 µg/ml ampicillin and 60 µg/ml kanamy-

cin. The pPCT1∆ and pPCE1∆ plasmid constructs were

confirmed by restriction enzyme digestion and partial

sequencing. The pct1::kanMX cassette was PCR-ampli-

fied from the pPCT1∆ plasmid using primers LI and L4.

The pce1::kanMX cassette was excised from PCE1∆ by

digestion with AatII and NdeI. The cassette fragments

were gel-purified and then used to transform diploid S.

pombe.

The S. pombe diploid strain was generated by crossing

two heterothallic strains FY527(ura4-D18 leuI-32 ade6-

M216 his3-DI h-) and FY528(ura4-D18 leuI-32 ade6-

M210 his3-D1 h+) on ME plates at room temperature. Af-

ter 24 h, the cells were streaked onto medium lacking ad-

enine to select for diploids. The Ade+ diploids were

verified by staining with phloxin B and a single diploid
colony was picked and incubated in 100 ml of YE medi-



BMC Microbiology 2001, 1:29 http://www.biomedcentral.com/1471-2180/1/29
um to prepare competent S. pombe cells. The transfor-

mations were performed using the lithium acetate

method [18]. The integrants were selected at 30°C on YE

plates containing 200 µg/ml G418. Single colonies were
restreaked on YE agar containing G418. Genomic DNA

was prepared from individual isolates and the integra-

tion of the pct1::kanMX or pce1::kanMX cassettes into

the correct locus was tested by PCR using diagnostic

primers. The heterozygous diploids were sporulated on

ME plates at room temperature. Tetrads were dissected

from single asci and the spores were incubated at 30°C.

All viable haploids were tested for growth on YES agar

and YES agar containing 200 µg/ml G418.

S. pombe expression vectors for RNA triphosphatase and 
guanylyltransferase
The cDNA encoding Pct1 was amplified from plasmid

pET-PCT1 [12] using primers that introduced an XhoI

site immediately upstream of the translation start codon

and a BamHI site immediately downstream of the stop

codon. The intron-containing chromosomal pct1+ gene

was amplified from total S. pombe genomic DNA. The in-

tron-less pce1+ gene was amplified from plasmid pl32-

PCE1 [12]. The PCR products were digested with XhoI

and BamHI and then inserted into the S. pombe expres-

sion vector pREP41X (LEU2 ars1+) [19]. The inserts

were sequenced to exclude the acquisition of unwanted

mutations during the amplification and cloning steps.

Expression of the capping enzymes from these plasmids
is driven by the nmt1* promoter [19]. The plasmids were

transformed into heterozygous pct1+/pct1::kanMX or

pce1+/pct1::kanMX diploids using the lithium acetate

method [18]. The Leu+ diploid transformants were then

sporulated on ME plates at room temperature. A loopful

of cells was inoculated into 500 µl of sterile water and the

mixture was incubated overnight at 28°C with 10 µl of β-

glucuronidase (Sigma G7770). The spores were plated on

EMM(-Leu) agar medium and incubated at 30°C. Indi-

vidual colonies were then restreaked onto YES agar and

on YES agar containing 200 µg/ml G418. Growth was

scored after incubation for 5 to 7 days at 30°C.

Gene disruption in C. albicans
The CaCET1 gene was disrupted by insertion of a UAU1

cassette [16]. We first constructed plasmid pKS-

5'3'CaCET1, in which a 665-bp PCR fragment derived

from the 5' end of the CaCET1 gene (from nucleotides -

50 to +615 of the open reading frame, with the A residue

of the ATG translation start codon defined as position

+1) was cloned between the KpnI and XbaI sites of pB-

luescript KS+ and a 720-bp fragment extending from po-

sition +1518 of the 1560-nt CaCET1 coding sequence into

the 3' flanking genomic region was inserted between the

SacI and SacII sites of pBluescript KS+ The 3.8-kbp
UAU1 gene was excised from pBME101 with XbaI and

SacII and inserted between the XbaI and SacII sites of

pKS-5'3'CaCET1 to yield pCaCET1::UAU1. This DNA was

linearized with KpnI and SacI and then transformed into

the diploid C. albicans strain BWP17 using the lithium
acetate method. We selected 25 Arg+ transformants and

analyzed them by Southern blotting for integration of the

UAU1 cassette into one of the two CaCET1 chromosomal

loci to yield the heterozygote CaCET1/cacet1::UAU1

configuration depicted in Figure 1. Briefly, genomic DNA

was isolated from the 25 Arg+ strains, then digested with

ScaI (which cuts neither CaCET1 nor UAU1). The digests

were resolved by agarose gel-electrophoresis and trans-

ferred to membranes, which were probed with a radiola-

beled DNA corresponding to the 5' segment of CaCET1

(probe A in Figure 1). Whereas probe A hybridized to a

single 3.8-kbp ScaI fragment in the parental BWP17

strain, the probe detected two fragments in the heterozy-

gote – a 3.8-kbp fragment corresponding to the wild-

type CaCET1 locus and an ~7.5-kbp fragment corre-

sponding to cacet1::UAU1 (data not shown). This analy-

sis identified 16/25 of the Arg+ transformants as

CaCET1/cacet1::UAU1 heterozygotes. Recombination

rates at the UAU1 gene in the heterozygote were deter-

mined as described by Enloe et al [16]. Ura+ segregants

arose at a rate of 5 x 10-5 per division and Arg+ Ura+ seg-

regants arose at rate of 8 x 10-9 per division.

The sixteen CaCET1/cacet1::UAU1 heterozygotes were

streaked to YPD agar and grown for 3 days at 30°C. A to-
tal of 54 single colonies derived from the 16 heterozy-

gotes were inoculated into separate YPD liquid cultures.

After growth to saturation, aliquots of the cultures were

plated on SD(-Arg-Ura) agar medium. Genomic DNA

was prepared from one Arg+ Ura+ segregant from each

culture and subjected to restriction digestion and South-

ern analysis.
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