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Abstract 

Background  Colistin is an antibiotic used as a last-resort to treat multidrug-resistant Gram-negative bacterial infec-
tions. Colistin had been used for a long time in veterinary medicine for disease control and as a growth promoter 
in food-producing animals. This excessive use of colistin in food animals causes an increase in colistin resistance. This 
study aimed to determine molecular characteristics of colistin-resistant Escherichia coli in broiler chicken and chicken 
farm environments.

Results  Four hundred fifty-three cloacal and farm environment samples were collected from six different commer-
cial chicken farms in Kelantan, Malaysia. E. coli was isolated using standard bacteriological methods, and the isolates 
were tested for antimicrobial susceptibility using disc diffusion and colistin minimum inhibitory concentration (MIC) 
by broth microdilution. Multiplex PCR was used to detect mcr genes, and DNA sequencing was used to confirm 
the resistance genes. Virulence gene detection, phylogroup, and multilocus sequence typing (MLST) were done 
to further characterize the E. coli isolates. Out of the 425 (94%; 425/453) E. coli isolated from the chicken and farm envi-
ronment samples, 10.8% (48/425) isolates were carrying one or more colistin-resistance encoding genes. Of the 48 
colistin-resistant isolates, 54.2% (26/48) of the mcr positive isolates were genotypically and phenotypically resistant 
to colistin with MIC of colistin ≥ 4 μg/ml. The most prominent mcr gene detected was mcr-1 (47.9%; 23/48), followed 
by mcr-8 (18.8%; 9/48), mcr-7 (14.5%; 7/48), mcr-6 (12.5%; 6/48), mcr-4 (2.1%; 1/48), mcr-5 (2.1%; 1/48), and mcr-9 (2.1%; 
1/48) genes. One E. coli isolate originating from the fecal sample was found to harbor both mcr-4 and mcr-6 genes 
and another isolate from the drinking water sample was carrying mcr-1 and mcr-8 genes. The majority of the mcr posi-
tive isolates were categorized under phylogroup A followed by phylogroup B1. The most prevalent sequence typing 
(ST) was ST1771 (n = 4) followed by ST206 (n = 3). 100% of the mcr positive E. coli isolates were multidrug resistant. The 
most frequently detected virulence genes among mcr positive E. coli isolates were ast (38%; 18/48) followed by iss 
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(23%; 11/48). This is the first research to report the prevalence of mcr-4, mcr-5, mcr-6, mcr-7, and mcr-8 genes in E. coli 
from broiler chickens and farm environments in Malaysia.

Conclusion  Our findings suggest that broiler chickens and broiler farm environments could be reservoirs of colistin-
resistant E. coli, posing a risk to public health and food safety.

Keywords  AMR, Colistin resistance, Escherichia coli, mcr, Broiler chicken, Environment

Background
Antimicrobial resistance (AMR) is a major threat to 
global public health. AMR spreads to the community 
primarily due to the excessive use of antimicrobials in 
humans and animals [1]. The use of antimicrobials for 
disease control or growth promoters in animals causes 
the commensal microflora to acquire antimicrobial 
resistance genes (ARGs) through horizontal gene trans-
fer from resistant strains [2]. Evidence shows that AMR 
in humans can be caused by horizontal transfer of food 
animal-originated ARGs to human pathogens or through 
direct transfer of resistant bacteria [3].

Escherichia coli (E. coli) is an Enterobacteriaceae that 
commonly inhabits the guts of animals and humans. 
However, it is responsible for many life-threatening 
infections in humans and animals including chickens. 
Antimicrobial resistant E. coli strains cause a potential 
risk to public health. Meanwhile, antimicrobial resistant 
E. coli may function as carriers for antimicrobial resist-
ance determinants to its other strain or other bacteria 
species [4, 5]. Though colistin was previously avoided 
from human medicine due to its systemic toxicity, its 
use has been revived due to its efficacy in the treatment 
of multi-drug resistant (MDR) Gram-negative bacteria 
[6]. According to World Health Organization (WHO), 
colistin serves as a last-resort antibiotic that is critically 
important to human medicine [7]. Colistin has used for 
a long time in veterinary medicine for disease control 
and as a growth promoter in food-producing animals 
[8]. This excessive use of colistin in animals causes anti-
biotic resistance in bacteria from animals, leading to the 
emergence of colistin-resistant bacteria which spreads to 
humans [9]. Resistant microorganisms in humans could 
have originated from livestock and food producing ani-
mals. Colistin-resistant in bacteria was considered as the 
result of chromosomal mutation until the discovery of 
the transferable plasmid-mediated gene (mcr-1) in 2015 
[10]. The emergence of mcr related colistin-resistance is a 
major threat to the treatment of infections. Following the 
first report of mcr-1 from China, many studies reported 
continuously the novel mcr genes in Salmonella and E. 
coli [11–14].

In addition, following the invention of mcr-1 in China, 
an increased rate of colistin-resistant bacteria was 
reported in food animals including poultry worldwide, 

especially in Asia [15, 16]. Many countries includ-
ing Malaysia, have banned the use of colistin in food 
additives as a growth promoter due to increased colis-
tin-resistant strains in animals [17]. Even though colistin-
resistance has reduced after the complete ban of colistin 
in animal production, a significant colistin-resistance is 
still being reported from food animals mainly from pigs 
and poultry throughout the world [17]. To date, the com-
mon reported colistin-resistance encoding genes are 
mcr-1 through mcr-10 [18]. Previous studies from Malay-
sia specifically in Kelantan showed that chicken meat was 
contaminated with colistin mcr-1 encoded resistant E. 
coli [19, 20].

Escherichia coli strains are classified into phylogroups 
of A, B1, B2, C, D, E, F, and clade I/II [21]. Phylogroups 
B2 and D are associated with virulent extraintestinal 
pathogenic E. coli (ExPEC), whereas phylogroups A and 
B1 contain mainly commensal E. coli strains [22, 23]. 
Multilocus sequence typing (MLST) is important for 
understanding the molecular evolution and phyloge-
netic relationship of important bacteria such as E. coli 
[24]. It helps to detect the emerging E. coli sequence type 
lineages, which are important in the control of AMR in 
humans and animals. Commensal and environmental 
bacteria may serve as a reservoir of ARGs that may be 
transferred to pathogenic bacteria in farm environments. 
AMR bacteria may be shed with animal feces and con-
taminate the farm environment. In previous studies, high 
rates of AMR gene were reported from broiler chicken 
litter and sewage [25, 26]. Therefore, the purpose of 
this study was to identify the molecular characteristics 
of colistin-resistant E. coli in broiler chickens and farm 
environments, which is important for understanding 
the potential reservoir of ARGs in chicken farms in Kota 
Bharu and nearby located commercial farms.

Methods and materials
Sample collection
Sample size was calculated using the single population 
formula based on the previous prevalence 52.1% [19]. A 
total of 453 samples (210 cloacal and 243 environmen-
tal samples) were collected from six different farms in 
Kota Bharu, Malaysia since February-November 2021. 
Environmental samples collected were drinking water 
(n = 27), sewage water (n = 14), fresh droppings (feces) 
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(n = 55), feed (n = 32), litter (n = 20) and environmental 
swabs (a swab from utilities used in the farm) (n = 95). 
Cloacal and environmental swab samples were collected 
using Amies transport medium. The water samples were 
collected using a clean and sterile container. The col-
lected samples were transported to the laboratory in an 
ice box with an ice pack and the samples were processed 
within 6 h of sample collection.

Z = Z value (95% CI, z = 1.96)
p = estimated prevalence, p = 0.521 for previous preva-

lence [19] of colistin resistant
d = margin of error (0.05)
n = (1.96)2 × 0.521 x(1–0.521)/0.05 = 383, by adding 10% 

contingency, the sample size ( n)=421

Isolation and identification of E. coli
Collected samples were enriched in Buffered Peptone 
Water (Oxoid, Manchester, UK) and incubated at 37  °C 
for 24  h. Using sterile wire loop, the enriched bacteria 
were inoculated to MacConkey agar (Oxoid, Manches-
ter, UK). Lactose fermenter colonies were streaked with 
Eosin Methylene Blue (EMB) (Oxoid, Manchester, UK) 
agar and incubated at 37  °C for 24  h. The green metal-
lic sheen colonies were presumptively identified as E. coli 
and the colonies were further tested for biochemical tests 
such as triple sugar iron agar (TSI), citrate, urea, indole, 
methyl red and motility. E. coli ATCC​® 25922 was used 
as a positive control strain.

PCR confirmation of isolated E. coli
Genomic DNA was extracted using the boiling method 
as described previously [27]. Extracted DNA of isolated 
E. coli were amplified with species-specific Pho A and E 
coli primers for further PCR confirmation as used in pre-
vious studies [19, 28–31]. The PCR protocol used for the 
Pho and E coli primers was as previously described [29, 
31]. DNA template extracted from E. coli ATCC​® 25922 
strain was used as a positive control and a PCR tube 
added nuclease free water instead of the DNA template 
was used as the negative control. In all PCR reactions in 
this study, PCR products were analyzed using agarose 
gel electrophoresis and gel images were analysed using 
GelDoc© Gel Documentation System (Bio-Rad, USA).

Antimicrobial susceptibility test
Antimicrobial susceptibility testing (AST) of isolated 
E. coli were conducted using Kirby-Bauer disk diffu-
sion method on Mueller-Hinton agar (MHA) (Oxoid, 
Manchester, UK). The antimicrobial resistant profile of 
the isolates were determined against 16 antibiotic discs 

n = Z2(p)(1− p)/d2
,

including aztreonam (30 µg), cefotaxime (30 µg), amox-
icillin-clavulanic acid (30 µg), ceftazidime (30 µg), ceftri-
axone (30  µg), trimethoprim-sulfamethoxazole (25  µg), 
chloramphenicol (30 µg), tetracycline (30 µg), imipenem 
(10 µg), meropenem (10 µg), ciprofloxacin (5 µg), ampi-
cillin (10 µg), streptomycin (10 µg), nalidixic acid (30 µg), 
cefuroxime (30 µg), and gentamicin (10 µg). All the anti-
biotics were from Oxoid, UK. The zone of inhibition 
was interpreted based on CLSI guideline. E. coli ATCC​® 
25922 was used as a control strain [32].

Colistin minimum inhibitory concentration (MIC)
According to the CLSI recommendation, colistin mini-
mum inhibitory concentration (MIC) was determined 
by broth microdilution (BMD) elusion using Cation-
Adjusted Mueller Hinton Broth (CAMHB) [32]. Briefly, 
four tubes with 10 ml each of CAMHB and colistin discs 
were thawed to room temperature. Then aseptically one 
colistin disc (10  µg) was added to the tube labelled as 
“1 μg/ml”, two colistin discs to the tube labelled as “2 μg/
ml” and 4 colistin discs to the tube labeled “4 μg/ml” and 
no colistin disc was added to the fourth growth control 
tube. The tubes were vortexed to precipitate the colistin 
disc into the broth and elute the colistin from the discs 
by leaving the mix for at 30  min at room temperature. 
Then after 3–5 freshly grown colonies were transferred 
to 4–5 ml of sterile saline, the turbidity of bacterial sus-
pension was adjusted to be equivalent to 0.5 McFarland 
standard. 50 μl bacterial suspension with an approximate 
inoculum concentration of 7.5 × 105  CFU/ml was added 
to each of the four tubes [32]. The minimum inhibitory 
concentration (MIC) was read as the lowest concen-
tration that inhibits the growth of E coli isolates after 
incubating for 16–20 h at 35  °C. The isolates were con-
sidered resistant with MIC ≥ 4  μg/ml and intermediate 
for MIC ≤ 2  μg/ml based on CLSI guideline [32]. E. coli 
ATCC​® 25922 was used as a negative control strain.

Molecular detection of colistin resistance encoding genes
The confirmed E. coli isolates were screened for mcr-1 
to mcr-9 genes using two separate multiplex PCR. The 
first multiplex PCR was mcr1-5 following previous pro-
tocol [33], and the second multiplex PCR was mcr6-9 as 
described previously [34]. PCR products were analyzed 
using agarose gel electrophoresis and gel images were 
analysed using GelDoc© Gel Documentation System 
(Bio-Rad, USA). Selected samples with mcr positive E. 
coli were further confirmed by sequencing. All the prim-
ers used in this study are summarized in Table 1.

Multilocus sequence typing (MLST)
Escherichia. coli isolates that were positive for colistin-
resistant encoding mcr gene were selected for MLST 
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analysis. MLST was performed by sequencing seven 
housekeeping genes, adk, fumC, gyrB, icd, mdh, purA, 
and recA, as described online in, https://​enter​obase.​readt​
hedocs.​io/​en/​latest/​mlst/​mlst-​legacy-​info-​ecoli.​html.

The primers and PCR protocol used are available on 
the website [36]. The amplified PCR products were sent 
to Apical 1st base Sequencing service (Apical, Malaysia), 
to perform a sequence analysis. The alleles and sequence 
types were assigned from the E. coli database at the 
MLST website, http://​enter​obase.​warwi​ck.​ac.​uk/.

Phylogenetic typing of E. coli isolates
Quadruplex PCR was used to classify the isolates into 
phylogroups A, B1, B2 and D using primers chuA, yjaA, 
TspE4.C2 and arpA according to the revised protocol of 
Clermont et  al. [35]. The isolates of phylogroup A were 
separated from phylogroup C by trpAgpC primer which 
is C-specific primers. Similarly, phylogroup D isolates 
were differentiated from E using ArpAgpE primer and 
phylogroup F was separated from phylogroup D in the 
quadruplex PCR as F does not contain ArpA gene.

Table 1  Forward and reverse primers sequences used in this study

Primer name Gene name Sequence Amplicon size 
(bp)

Annealing 
Temperature(°C)

Reference

Pho A-f pho F: 5′- GTG​ACA​AAA​GCC​ACA​CCA​TAA​ATG​CCT-3′ 903 56 [29]

Pho A-r R: 3′-TAC​ACT​GTC​ATT​ACG​TTG​CGG​ATT​TGG​CGT​-5′
Ecoli-f Ecoli F: 5′-TGA​CGT​TAC​CCG​CAG​AAG​AA-3′ 832 55 [31]

Ecoli-r R: 3′-CTC​CAA​TCC​GGA​CTA​CGA​CG-5′
mcr-1_mp_f mcr-1 F: 5′- AGT​CCG​TTT​GTT​CTT​GTG​GC-3′ 320 58 [33]

mcr-1_mp_r R: 3′- AGA​TCC​TTG​GTC​TCG​GCT​TG-5′
mcr-2_mp_f mcr-2 F: 5′- CAA​GTG​TGT​TGG​TCG​CAG​TT-3′ 715

mcr-2_mp_r R: 3′- TCT​AGC​CCG​ACA​AGC​ATA​CC-5′
mcr-3_mp_f mcr-3 F: 5′- AAA​TAA​AAA​TTG​TTC​CGC​TTATG-3′ 929

mcr-3_mp_r R:3′- AAT​GGA​GAT​CCC​CGT​TTT​T-5′
mcr-4_mp_f mcr-4 F:5′-TCA​CTT​TCA​TCA​CTG​CGT​TG-3′ 1116

mcr-4_mp_r R:3′-TTG​GTC​CAT​GAC​TAC​CAA​TG-5′
mcr-5_mp_f mcr-5 F:5′-ATG​CGG​TTG​TCT​GCA​TTT​ATC-3′ 1644

mcr-5_mp_r R:3′-TCA​TTG​TGG​TTG​TCC​TTT​TCTG-5′
mcr-6_mp_f mcr-6 F:5′-AGC​TAT​GTC​AAT​CCC​GTG​AT-3′ 252 55 [34]

mcr-6_mp_r R:3′-ATT​GGC​TAG​GTT​GTC​AAT​C-5′
mcr-7_mp_f mcr-7 F:5′-GCC​CTT​CTT​TTC​GTT​GTT​-3′ 551

mcr-7_mp_r R:3′-GGT​TGG​TCT​CTT​TCT​CGT​-5′
mcr-8_mp_f mcr-8 F:5′-TCA​ACA​ATT​CTA​CAA​AGC​GTG-3′ 856

mcr-8_mp_r R:3′-AAT​GCT​GCG​CGA​ATG​AAG​-5′
mcr-9_mp_f mcr-9 F:5′-TTC​CCT​TTG​TTC​TGG​TTG​-3′ 1011

mcr-9_mp_r R:3′-GCA​GGT​AAT​AAG​TCG​GTC​-5′
ChuA. 1b chu A F:5′-TGC​CAT​CAA​CAC​AGT​ATA​TCC-3′ 288 59 [35]

ChuA.2 R:3′-TCA​GGT​CGC​GAG​TGA​CGG​C-5′
YjaA.1b yja A F:5′-ATC​ACA​TAG​GAT​TCT​GCC​G-3′ 211

YjaA.2b R:3′-CAG​CGG​AGT​ATA​GAT​GCC​A-5′
TspE4C2.1b TspE4.C2 F:5′-AAG​GAT​TCG​CTG​TTA​CCG​GAC-3′ 152

TspE4C2.2b R:3′-AAC​TCC​TGA​TAC​AGG​TGG​C-5′
AceK.f arpA F:5′-TGA​TAT​CAC​GCA​GTC​AGT​AGC-3′ 400

ArpA1.r R:3′-CCG​GCC​ATA​TTC​ACA​TAA​-5′
trpAgpC.1 trpAgpC F:5′-ACA​AAA​AGT​TCT​ATC​GCT​TCC-3′ 219 62

trpAgpC.2 R:3′-CCT​GAT​CCA​GAT​GAT​GCT​C-5′
ArpAgpE.f ArpAgpE F:5′-ACT​ATT​CTC​TGC​AGG​AAG​TC -3′ 301 59

ArpAgpE.r R:3′-CTT​CCG​ATG​TTC​TGA​ACG​T-5′
trpBA.f trpBA F:5′-TCC​TGG​GAC​ATA​ATG​GTC​AG-3′ 489

trpBA.r R:3′-GTG​TCA​GAA​CGG​AAT​TGT​-5′

https://enterobase.readthedocs.io/en/latest/mlst/mlst-legacy-info-ecoli.html
https://enterobase.readthedocs.io/en/latest/mlst/mlst-legacy-info-ecoli.html
http://enterobase.warwick.ac.uk/
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PCR detection of virulence genes of E. coli isolates
The mcr positive E. coli isolates were assessed for avian 
pathogenic E. coli (APEC) associated virulence genes. 
Multiplex PCR protocol used to determine the presence 
of papC, iucD, irp2, tsh, vat, astA, iss and cva/cvi viru-
lence genes associated with virulence factors as previ-
ously described [37].

Results
A total of 425(94%) E. coli were isolated from the 453 col-
lected samples. Out of these, 203(97%) of E. coli strains 
were isolated from cloacal swab, 83(87%) from environ-
mental swab, 23(85%) from drinking water, 55(100%) 
from fecal, 31(97%) from feed and 20(100%) from litter. 
All the isolated E. coli were confirmed targeting species 
specific pho and E. coli genes (Fig. 1).

Antimicrobial susceptibility profile
Isolated E. coli was evaluated for antimicrobial sus-
ceptibility towards 16 antibiotics of 11 different classes 
(Fig.  2). All the mcr positive E. coli isolates were resist-
ant to at least three of the tested antibiotic discs belong-
ing to different classes. The result shows that 100% of the 
mcr positive E. coli isolates were resistant to tetracycline, 
streptomycin, chloramphenicol, and ampicillin (Fig. 3). It 
was further revealed that 98% of the mcr positive E. coli 
strains were susceptible to meropenem. Moreover, com-
pared with mcr negative E. coli, mcr harboring E. coli 
isolates showed higher resistance rates to nalidixic acid, 
ciprofloxacin, trimethoprim/sulfamethoxazole, and cefo-
taxime (Fig.  3). Out of 48 mcr gene positive E. coli iso-
lates 26 (54.2%) of them were with colistin MIC of ≥ 4 μg/
ml while the rest, 22 (45.8%) of the mcr gene positive iso-
lates were MIC ≤ 2 μg/ml (Table 4).

Fig. 1  Cropped gel electrophoresis image of amplified PCR product of Pho A (a) and E. coli (b) genes
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Colistin resistance encoding genes
Colistin-resistance encoding genes were detected using 
multiplex PCR. Out of the PCR confirmed E. coli, 48 
(10.8%) isolates were found harboring at least one mcr 
gene. The most prominent mcr gene detected was 
mcr-1 (47.9%; 23/48), followed by mcr-8 (18.8%; 9/48), 
mcr-7 (14.5%; 7/48), mcr-6 (12.5%; 6/48), mcr-4 (2.1%; 
1/48), mcr-5 (2.1%; 1/48), and mcr-9 (2.1%; 1/48) genes 
(Table  2). Four (8.3%) isolates harbored more than one 
gene, mcr-4 and mcr-6, mcr-1, and mcr-8, mcr-1and 

mcr-7 and the fourth one was harboring mcr-1and mcr-5. 
In this study out of the mcr positive isolates the dominant 
mcr gene detected were mcr-1. Majority of the mcr-1 
gene positive E. coli were isolated from cloacal and envi-
ronmental swab samples. Meanwhile, the mcr-1 posi-
tive isolates were also detected in food, fecal, litter and 
drinking water samples. The mcr-4 and mcr-5 gene posi-
tive isolates were detected from freshly passed fecal and 
food samples respectively. In the current study, 33.3% 
(16/48) of mcr positive E. coli were from cloacal samples, 

Fig. 2  Antimicrobial resistance profiles of E. coli isolates from broiler chicken and farm environment in Kelantan, Malaysia n = 334

Fig. 3  Antimicrobial resistance profiles of mcr positive E. coli isolates from broiler chicken and farm environment in Kelantan, Malaysia n = 48
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29.2% (14/48) from environmental swab,10.4% (5/48) 
from drinking water,10.4% (5/48) fecal,10.4% (5/48) feed, 
and 6.3% (3/48) were from litter. The gel electrophoresis 
image of amplified PCR product with mcr-1, mcr-4, and 
mcr-5 gene (Fig. 4); mcr-7 gene (Fig. 5); mcr-6,mcr-8, and 
mcr-9, and ESBL (TEM, SHV, and  CTX) genes (Fig.  6); 
mcr-6 and mcr-8 genes (Fig. 7) are described below.

Phylogenetic typing of E. coli isolates
The majority of the mcr positive E. coli isolates were 
assigned to phylogroup A, which is 50% (24/48), followed 
by B1(12.5%) (Table 3). While the rest belonged to phy-
logroup C (n = 5, 10.4%); D (n = 5, 10.4%); E (n = 2, 4.2%); 
F (n = 2, 4.2%); Clade I or II (n = 2, 4.2%) and B2 (n = 1, 
2.1%). Most isolates with phylogroup A originated from 
cloacal (n = 6) and poultry environment (n = 18). Fig-
ure  8 below shows the gel electrophoresis image of the 

four genes used to separate the isolates to phylogenetic 
groups.

Multilocus sequence typing and virulence genes
Among the forty-eight mcr encoding colistin-resistant 
isolates, 23 mcr gene and virulence gene positive isolates 
were selected for MLST sequencing. Tthe MLST result 
of the isolates shows that the E. coli isolates were widely 
diverse. The most prevalent STs found were ST1771 
(n = 4) followed by ST206 (n = 3). ST 1771 was found from 
cloacal, food and drinking water source isolates, ST206 
was found from cloacal, environmental swab and drink-
ing water sources. In this study among 18STs, the major-
ity belonging to phylogroup A (44.4%) (Table 4). All the 
ST1771 except one were phylogroup A, one was group 
C and two of the ST206 were phylogroup A whereas one 
was phylogroup C. E. coli strains with ST165, ST206, 

Table 2  Colistin resistance encoding mcr genes in E. coli isolates from broiler chicken and farm environment in Kelantan, Malaysia 
(n = 48)

Sample type mcr-1 mcr-4 mcr-5 mcr-6 mcr-7 mcr-8 mcr-9 Grand total

Cloacal Swab 7 - - 4 1 3 1 16

Drinking water 2 - - 3 - 5

Environmental 7 - - 1 4 2 - 14

Fecal 2 1 1 1 - - 5

Food 3 - 1 1 5

Litter 2 - - 1 3

Grand Total 23 1 1 6 7 9 1 48

Fig. 4  Cropped gel electrophoresis image of amplified PCR product with mcr-1, mcr-4, and mcr-5 genes
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ST1771, ST162, ST398, ST1285 and ST106 were found 
associated with mcr, CTX and SHV genes originate 
from fecal, cloacal, environmental swab, water, and litter 
sources. Moreover, ST165, ST1771, ST155, ST48, ST206, 
ST162, ST159, ST38 were found positive for ast, iss, irp2, 
or /and iucD virulence genes, which belongs to phylo-
group A, B1, D, C, E and Clade I/II. The most frequently 
detected virulence genes among mcr positive E. coli iso-
lates were ast (38%; 18/48) followed by iss (23%; 11/48), 

irp2 (17%; 8/48), iucD (13%; 6/18), papC(6%; 3/48) and 
tsh (2%; 1/48) genes.

Discussion
In the present study, 425 (94%) E. coli were isolated from 
453 cloacal and environmental samples. Forty-eight 
(10.8%) of E. coli isolates were positive for at least one of 
the colistin-resistance encoding mcr gene. 100% of the 
mcr positive isolates were multidrug-resistant, which 

Fig. 5  Cropped gel electrophoresis image of amplified PCR product mcr-7 gene

Fig. 6  Cropped gel electrophoresis image of amplified PCR product with mcr-6, mcr-8, and mcr-9, and ESBL genes, TEM, SHV and CTX genes
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have the potential to disseminate to human and farm 
animals.

In this study 100% of the mcr positive E. coli isolates 
were resistant to tetracycline, streptomycin, chloram-
phenicol, and ampicillin. This correlation between mcr 
and resistance of these antibiotics might be due to the 
coexistence of mcr and ESBLs in the plasmids that could 
also harbor resistant genes of different classes of anti-
microbials and have the trait of being multi-drug resist-
ant [38, 39]. Among the mcr positive strains, 98% were 
susceptible to meropenem, a carbapenem antibiotic. 
Moreover, mcr harboring E. coli isolates exhibited higher 
resistance rates against nalidixic acid, ciprofloxacin, tri-
methoprim/sulfamethoxazole, and cefotaxime as com-
pared with mcr negative E. coli. High resistance rate to 

tetracycline and ampicillin was also reported in E. coli iso-
lates from chicken in Malaysia and Vietnam [20, 40]. The 
susceptibility test for colistin by disc diffusion and E-test 
is difficult due to polymyxins’ poor agar diffusion [41], 
and reliable reference break point is not available. There-
fore, in this study MIC was used for colistin susceptibility 
test. This study revealed that 26(54.2%) of the mcr positive 
isolates have MICs of colistin ≥ 4  µg/ml, suggesting that 
the isolates are genotypically and phenotypically resist-
ant to colistin. However, 22(45.8%) of genetically resistant 
isolates were phenotypically susceptible to colistin, with 
MIC ≤ 2 µg/ml. These discrepancies might be due to sen-
sitivity difference between broth micro dilution and PCR 
detection methods in colistin resistance. A previous study 
stated that broth micro dilution has a 71.4% sensitivity 

Fig. 7  Cropped gel electrophoresis image of amplified PCR product with mcr-6 and mcr-8 genes

Table 3  Phylogroup of isolated E. coli isolates from broiler chicken and farm environment in Kelantan, Malaysia n = 48

a Evt swab Environmental swab

Sample Type Phylogroup

A B1 B2 C Clade I/II D E F Unknown

Cloacal 6 3 1 2 1 2 1 1

Evt swaba 8 1 1 1 1

Fecal 3 - 1

Food 4 - 2

Litter 1 - 1 1

Swage - 1

Water 2 2 1

Total 24 6 1 5 2 5 2 2 1

Percentage (%) 50.0 12.5 2.1 10.4 4.2 10.4 4.2 4.2 2.1
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rate in the detection of mcr-1 positive Enterobacteriaceae 
[42]. Nonetheless, PCR is widely considered as the gold 
standard method in detecting colistin-resistance [10, 33].

An interesting finding of this research is that 48 (10.8%) 
of the E. coli isolates were positive for at least one colis-
tin-resistance encoding mcr gene. Out of the mcr genes 
mcr-1 was the prominent gene (47.9%; 23/48). Studies 
from Malaysia have found 23.08% mcr-1 encoding E. coli 
from broiler chicken, while 52.1% of E. coli from chicken 
meat was carrying mcr-1 gene [19, 20, 43]. Similarly, 
23.08% mcr-1 harboring Klebsiella pneumonia strains 
were reported from pigs in Malaysia [44]. Furthermore, 
mcr-1 gene positive Enterobacteriaceae isolates have 
been found in food animals, humans, and environment 
globally, with high prevalence in food animals compared 
to humans [15, 45–47]. This widespread and relatively 
increased prevalence of mcr-1 gene related colistin-
resistance in farm animals and retail meat indicate that 
food animals could be a potential reservoir for human 
transmission [48]. Recently, following the ban of colistin 
use as food additive in food animals in many countries, 
the prevalence of mcr-1 gene positive bacteria in food 
animals, including chickens has decreased [49].

Moreover, we found other mcr genes including mcr-
4 (2.1%; 1/48), mcr-5 (2.1%; 1/48), mcr-6 (12.5%; 6/48), 

mcr-7 (14.5%; 7/48), mcr-8 (18.8%; 9/48) and mcr-9 (2.1%; 
1/48) for the first time in Malaysia. However, none of the 
isolates of this research were positive for mcr-2 and mcr-
3 genes. A study from China were reported mcr-4 and 
mcr-5 from chicken origin isolates [50]. In addition, the 
mcr-5 gene was also detected from chicken origin from 
Singapore, Brazil, and Paraguay [51, 52]. The mcr-5 and 
mcr-9 genes were found harbored in E. coli from chick-
ens in Brazil [53]. In addition, mcr-9 genes were detected 
in Salmonella isolated from chicken meat in Korea and 
from USA in Salmonella and E. coli, even though the 
bacteria were not associated with colistin resistance [54, 
55]. Meanwhile, mcr-7 and mcr-8 genes were detected 
from Klebsiella pneumonia from chicken and animal ori-
gin respectively in China [14, 56]. The mcr-6 was revealed 
from Moraxella species of pig origin from Britain [57]. 
This indicates that mcr genes are widely disseminated 
among different bacterial species and have spread glob-
ally. A review showed that among the colistin-resist-
ance mcr genes, mcr-1 and mcr-9 have become globally 
spread [58]. In our research, four (8.3%) mcr positive E. 
coli isolates were harboring more than one mcr genes. 
One isolate tested positive for both mcr-4 and mcr-6, 
while another carried mcr-1 and mcr-8. The third har-
bored mcr-1 and mcr-7 and the fourth E. coli isolate was 

Fig. 8  Agarose gel electrophoresis image of mcr positive E. coli phylogenetic typing. Amplified PCR products with E. coli phylogrouping genes; arpA 
(400 bp), chuA (288 bp), yjaA (211 bp) and TspE4C2 (152 bp); lane 1, + - - -, belonging to phylogroup A; lane 2, + - - + , belonging to group B1; lane 
3,- + + -, group B2; lane 4, + - + -, group C; lane 5, + + - -, group D; lane 6, + + + -, group E; lane 7, - + - -,group F; lane 8, - - + -, clade I/II
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Table 4  Phenotypic and genotypic characterization of mcr positive E. coli from broiler chicken and farm environment (n = 48)

ATM Aztreonam, CTX Cefotaxime, AMC Amoxicillin-clavulanic acid, CAZ Ceftazidime, CRO Ceftriaxone, SXT Trimethoprim-sulfamethoxazole, CHL Chloramphenicol, TET 
Tetracycline, IMP Imipenem, MEM Meropenem, CIP Ciprofloxacin, AMP Ampicillin, STR Streptomycin, NAL Nalidixic acid, CXM Cefuroxime, GEN Gentamicin

Isolate ID Source ST Resistant Antibiotics Colistin MIC(µg/ml) Phylogroup group mcr and ESBL gene Virulence gene

KBF1 Fecal 165 CIP,AMP,CHL,TET,SXT,STR,CTX,ATM,NAL,CRO,CXM ≥ 4 A mcr-4, mcr-6, CTX ast, iss,irp2

F6(2) Fecal 605 CIP,AMP,CHL,TET,SXT,STR,NAL,GEN ≥ 4 A mcr-1 ast,irp2

19D(2) Evt swab 7506 CIP,AMP,CHL,TET,SXT,STR,CTX,NAL,CXM,GEN ≤ 2 B1 mcr-7 iss

BFd8H3 Food 1771 CIP,AMP,CHL,TET,SXT,STR,NAL, ≤ 2 A mcr-8 ast,iss,irp2

ZC5B cloacal 1771 CIP,AMP,CHL,TET,SXT,STR,NAL, ≤ 2 C mcr-8 ast

B9H2 cloacal 155 CIP,AMP,CHL,TET,SXT,STR, ≤ 2 E mcr-1 ast, iss,irp2,iucD

12B cloacal 48 AMC,CIP,AMP,CHL,TET,SXT,STR,CTX,NAL, ≤ 2 Clade I or II mcr-1 ast, iss,irp2,iucD

3BA cloacal 1703 CIP,AMP,CHL,TET,SXT,STR,NAL ≤ 2 A mcr-1 ast,pap C

ZC4BN cloacal 206 CIP,AMP,CHL,TET,STR, ≤ 2 C mcr-8, SHV ast

C39H4 cloacal 1771 CIP,AMP,CHL,TET,SXT,STR,NAL ≤ 2 A mcr-8, CTX ast,papC

YC1H2 cloacal 354 CIP,AMP,CHL,TET,SXT,STR,NAL,GEN ≥ 4 F mcr-6 ast

Dr7H2 Water 1771 CIP,AMP,CHL,TET,SXT,STR,NAL, ≥ 4 A mcr-8 irp2

E15(2) Evt swab 206 CAZ,AMC, CIP,AMP,CHL,TET,SXT,STR,CTX,NAL,CXM, GEN ≥ 4 A mcr-1 ast,tsh,iss

KB4A cloacal 162 CIP,AMP,CHL,TET,SXT,STR,NAL,GEN ≤ 2 B1 mcr-9, CTX ast,iss, iuc D

BFd5H4 Food 159 CIP,AMP,CHL,TET,SXT,STR,NAL,CXM, ≥ 4 C mcr-1,mcr-5 ast,iss, iuc D

B8H4 cloacal 11,630 AMC, CIP,AMP,CHL,TET,SXT,STR,CTX,NAL,CXM ≤ 2 B1 mcr-6 ast, iuc D

B7H4 cloacal 38 CIP,AMP,CHL,TET,SXT,STR,NAL,GEN ≥ 4 D mcr-7, mcr-1 ast,iss,papC,iucD

E43A Evt swab 398 CIP,AMP,CHL,TET,SXT,STR,NAL, ≥ 4 F mcr-6, CTX ast,iss

Drw3 Water 206 CIP,AMP,CHL,TET,SXT,STR,CTX,NAL,CRO, ≥ 4 A mcr-1, mcr-8, SHV ast

Drw7 Water 1285 CIP, AMP,CHL,TET,SXT,STR,NAL,CXM,GEN ≥ 4 B1 mcr-1, SHV _

WF5 Swage 1140 CAZ,AMC,CIP,AMP,CHL,TET,SXT,STR,NAL,CXM ≥ 4 D mcr-7 iss,irp2

L25B Litter 106 CAZ,AMC,CIP,AMP,CHL,TET,SXT,STR,CTX,ATM,NAL,CR
O,CXM

≥ 4 D mcr-1, SHV,CTX irp2

Food_G Food 43 AMP,CHL,TET,SXT,STR,NAL ≥ 4 C mcr-1 _

7a cloacal _ CIP,IPM,AMP,CHL,TET,SXT,STR,NAL ≥ 4 D mcr-6 _

B2H1 cloacal _ CIP,AMP,CHL,TET,SXT,STR,NAL, ≥ 4 B2 mcr-6 _

BFood7H1 Food CIP,AMP,CHL,TET,SXT,STR,NAL,CXM ≤ 2 A mcr-7 _

Drw1 Water _ CIP,AMP,CHL,TET,SXT,STR,CTX,NAL, ≥ 4 D mcr-8 _

Drw4 Water _ CIP,AMP,CHL,TET,SXT,STR,CTX,NAL,CRO, ≥ 4 B1 mcr-8 _

E1 Evt swab _ CIP,AMP,CHL,TET,SXT,STR,CTX,NAL,CXM,GEN ≥ 4 A mcr-1 _

E21 Evt swab CIP,AMP,CHL,TET,SXT,STR, ≤ 2 Unknown mcr-7

E22 Evt swab CIP, AMP,CHL,TET,SXT,STR,NAL, ≤ 2 A mcr-1 _

E28 Evt swab CIP,AMP,CHL,TET,SXT,STR,NAL, ≤ 2 E mcr-1

EVT11 Evt swab AMC,CIP,AMP,CHL,TET,SXT,STR,NAL, ≤ 2 A mcr-7

EVT16 Evt swab _ CIP,AMP,CHL,TET,SXT,STR,NAL,GEN ≥ 4 A mcr-1 _

EVT21 Evt swab _ CIP,AMP,CHL,TET,SXT,STR,ATM,NAL, ≥ 4 A mcr-1 _

F1 Fecal _ CIP,AMP,CHL,TET,SXT,STR,NAL, ≥ 4 A mcr-7 _

L16 Litter _ CIP,AMP,CHL,TET,SXT,STR,NAL, ≥ 4 A mcr-1 _

L17 Litter _ CIP,AMP,CHL,TET,SXT,STR,ATM,NAL ≥ 4 C mcr-8 _

YC23H2 cloacal CIP,AMP,CHL,TET,SXT,STR, ≤ 2 A mcr-1 ast

ZC13H1 cloacal CIP, AMP,CHL,TET,SXT,STR,NAL,GEN ≤ 2 A mcr-1

ZC22H1 cloacal _ AMP, CHL,TET,STR ≥ 4 B1 mcr-1 _

EVT13 Evt swab AMC, CIP,AMP,CHL,TET,SXT,STR,NAL,CXM ≤ 2 A mcr-1

Fecal Fecal CIP, AMP,CHL,TET,SXT,STR,CTX,NAL,CRO,CXM ≤ 2 Clade I or II mcr-1

FoodB Food _ CAZ, MEM,CIP,AMP,CHL,TET,SXT,STR,CTX,ATM,NAL,C
RO,CXM

≥ 4 A mcr-1 _

FoodD Food AMC, CIP,AMP,CHL,TET,SXT,STR,CTX,ATM,NAL,CRO,C
XM,GEN

≤ 2 A mcr-1

11a cloacal AMC, CIP,AMP,CHL,TET,SXT,STR,CTX,NAL,CXM ≤ 2 A mcr-6

E2 Evt swab _ CIP, AMP, CHL,TET,SXT,STR,NAL,GEN ≥ 4 A mcr-8 _

12a cloacal CAZ,CIP,AMP,CHL,TET,SXT,STR,CTX,ATM,NAL,CRO,CX
M,GEN

≤ 2 A mcr-6
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positive for both mcr-1 and mcr-5. The first two isolates 
belonged to phylogroup A, while the latter belonged to 
phylogroup D. These strains were isolated from chicken 
fecal samples, drinking water and cloacal swab. Majority 
of the mcr-1 gene positive E. coli were detected from clo-
acal and environmental swab samples. Meanwhile, mcr-1 
gene positive E. coli were also detected in food, feces, lit-
ter and drinking water samples. The majority of the mcr 
genes positive E. coli were detected from chicken farm 
environment samples. Similarly, mcr-1 encoding E.  coli 
strains were reported from litter, feed and drinking water 
in study from Lebanon and Indonesia [59, 60]. Shedding 
of the AMR bacteria and determinants from the feces 
into the farm environment causes dissemination of AMR 
to the chicken and animal handlers. As the litter often be 
used as a fertilizer, it also serve as a reservoir of resistant 
bacteria and determinants to agriculture and the envi-
ronment [61]. Few previous studies in Asia showed mcr 
genes ranging from 10.5%-36.6% of mcr-1 in Bangladesh, 
Indonesia chicken [46, 60, 62]. To best of our knowledge, 
mcr-4, mcr-5, mcr-6, mcr-7, mcr-8, and mcr-9 genes were 
not reported from broiler chicken and farm environment 
origin in Malaysia.

Most of the isolates in our study were assigned to phy-
logroup A followed by B1, which is consistent with pre-
vious studies based on healthy broilers and environment 
[20, 63, 64]. In addition, phylogroup D (10.4%), F (4.2%) 
and B2 (2.1%) were found in the current study. Several 
studies have shown phylogroups B2 and F from APEC 
colibacillosis-causing strains that were a causative agent 
of human ExPEC [63, 65–67]. Phylogenetic group B2 and 
D are the most virulent causes of ExPEC infections in 
humans and chickens in France and China [22, 68].

In the present study, E. coli ST155, ST48 and ST38 
harbored four virulence genes, including ast, iss, irp2 
and iucD genes. E. coli ST155 and ST48 were caring mcr-
1,while E. coli ST38 were positive for mcr-1 and mcr-
7. E. coli ST165 were related to ast, iss and irp2 genes 
which was positive for mcr-4, mcr-6 and CTX, while E. 
coli ST206 were carrying ast, tsh and iss genes that was 
positive for mcr-1. E. coli ST155 isolates were also found 
in broiler chicken samples from previous research from 
Malaysia [20, 69]. Previous study reported the presence 
of E. coli ST155, ST48, and ST398 with MDR trait in 
human and chicken farm environment in Nigeria [70]. 
Furthermore E. coli ST155 was detected from APEC 
[71, 72] and from both APEC and human ExPEC [73] 
strains in previous studies. ST206 has been reported 
in China from human clinical samples, harboring both 
the mcr-1 and carbapenems gene blaNDM-5 genes [74]. 
E. coli ST206 isolates were also associated with ESBL 

gene (CTX-M-27) from human and animal sources in 
Nigeria [75]. ST48 was previously reported in systemic 
E. coli associated with APEC in UK [76]. E. coli ST38 
was isolated from human EXPEC from several stud-
ies around the globe [77]. In the present study, E. coli 
ST155, ST48, ST38, ST398 and ST206 were positive for 
APEC associated virulence genes. Furthermore, these 
E. coli STs were reported as potentially zoonotic human 
ExpEC. We detected several virulence genes, includ-
ing papC, iucD, irp2, tsh, ast and iss genes from the 
mcr positive E. coli isolates. The ast (38%,18/48) were 
the most frequently detected virulence gene followed 
by iss (23%,11/48), irp2 (17%, 8/48), iucD (13%, 6/18), 
papC(6%, 3/48) and tsh (2%,1/48) genes. The detection 
of Inspect and ExPEC virulent genes from apparently 
healthy broilers and farm environment indicates that 
healthy chickens and farm environment can be the res-
ervoir of mcr positive virulent APEC. Similarly, intesti-
nal E. coli were found harboring ExPEC including APEC 
associated genes as reported in previous studies [76, 78, 
79]. These virulence genes, including papC, iucD, irp2, 
tsh, astA and iss genes has been reported from previous 
study associated with APEC [80].

Conclusion and recommendations
This study found that colistin-resistant E. coli in broiler 
chickens and chicken farm environment is high, despite 
a decrease observed in previous studies following the 
ban of colistin from animal food additives. However, 
the E. coli isolates harbored a variety of mcr genes 
and were highly resistant to antibiotics such as tetra-
cycline, aminoglycoside, chloramphenicol, penicillin, 
quinolone, fluoroquinolone, sulfonamide, and cepha-
losporin. All the mcr genes positive E. coli isolates dis-
played resistance against multiple antibiotics. Among 
E. coli isolates from cloacal and farm environments, 
mcr-1 was the dominant mcr gene. Furthermore, mcr-
4 and mcr-5 genes were found in faecal and feed sam-
ples respectively. This is the first study to report the 
prevalence of mcr-4, mcr-5, mcr-6, mcr-7, mcr-8, and 
mcr-9 genes in E. coli isolated from Malaysian broiler 
chickens and farm environments. Our findings sug-
gested that MDR colistin-resistant E. coli strains carry 
virulence genes could be found in broiler chickens and 
broiler farm environments. These strains pose a high 
risk of spreading to humans, animals, and the environ-
ment. Based on our findings, we recommend stricter 
regulation of antibiotic use in farm animals since live-
stock and environments have a vital role in the trans-
mission of antibiotic-resistant bacteria.
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Limitation of the study
This study was limited in scope and did not cover all dis-
tricts in Kelantan state and other Malaysian states. In 
addition, samples were collected only from broiler chick-
ens reared under intensive production systems. Diversi-
fying the study by including different poultry production 
systems including layers, breeders, and backyard poultry 
farms from representative poultry farms across the coun-
try may give a better and more accurate epidemiologi-
cal information on the resistant bacteria. Moreover, this 
study did not detect plasmids of the isolated strains.
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